summaryrefslogtreecommitdiffstats
path: root/invoice
diff options
context:
space:
mode:
authorSebastian Reichel <sre@ring0.de>2012-10-02 01:05:51 +0200
committerSebastian Reichel <sre@ring0.de>2012-10-02 01:05:51 +0200
commit186049b3ed33f025eeb87eb34c19a28e1d5ba70a (patch)
tree5d892564001404fe979e18eac0e65dfcad65ed5e /invoice
parent9713c98dbceb54d8d00c186ba8f41f3a5befcfd1 (diff)
downloadserial-barcode-scanner-186049b3ed33f025eeb87eb34c19a28e1d5ba70a.tar.bz2
restructure code, switch from GTK to Web based UI
- move barcode generation scripts into generation/ - move code to src/ - remove database analysis from invoice/graph - put database creation sql files into sql/ - remove glade builder file - add new templates/ directory, which contains files used by the Web-UI
Diffstat (limited to 'invoice')
-rwxr-xr-xinvoice/generate-invoice.py6
-rwxr-xr-xinvoice/graph/cairoplot.py2336
-rwxr-xr-xinvoice/graph/graphs.py223
-rwxr-xr-xinvoice/graph/series.py1140
4 files changed, 3 insertions, 3702 deletions
diff --git a/invoice/generate-invoice.py b/invoice/generate-invoice.py
index 6613bfc..56db6ec 100755
--- a/invoice/generate-invoice.py
+++ b/invoice/generate-invoice.py
@@ -58,7 +58,7 @@ def get_invoice_data(user, start=0, stop=0):
if stop > 0:
stopcondition = " AND timestamp <= %d" % stop
- c.execute("SELECT date(timestamp, 'unixepoch', 'localtime'), time(timestamp, 'unixepoch', 'localtime'), products.name, purchases.product, purchases.timestamp FROM purchases, products WHERE user = ? AND products.id = purchases.product" + startcondition + stopcondition + " ORDER BY timestamp;", (user,))
+ c.execute("SELECT date(timestamp, 'unixepoch', 'localtime'), time(timestamp, 'unixepoch', 'localtime'), products.name, sells.product, sells.timestamp FROM sells, products WHERE user = ? AND products.id = sells.product" + startcondition + stopcondition + " ORDER BY timestamp;", (user,))
result = []
for row in c:
@@ -194,7 +194,7 @@ def get_invoice_amount(user, start=0, stop=0):
if user < 0:
return 0
else:
- query = "SELECT SUM(memberprice) FROM users, purchases purch, prices \
+ query = "SELECT SUM(memberprice) FROM users, sells purch, prices \
WHERE users.id = ? AND users.id = purch.user AND purch.product = prices.product \
AND purch.timestamp >= ? AND purch.timestamp <= ? AND prices.valid_from = \
(SELECT valid_from FROM prices WHERE product = purch.product AND \
@@ -265,7 +265,7 @@ def get_users_with_purchases(start, stop):
connection = sqlite3.connect('shop.db')
c = connection.cursor()
- c.execute("SELECT user FROM purchases WHERE timestamp >= ? AND timestamp <= ? GROUP BY user ORDER BY user;", (start,stop))
+ c.execute("SELECT user FROM sells WHERE timestamp >= ? AND timestamp <= ? GROUP BY user ORDER BY user;", (start,stop))
for row in c:
result.append(row[0])
diff --git a/invoice/graph/cairoplot.py b/invoice/graph/cairoplot.py
deleted file mode 100755
index a15f329..0000000
--- a/invoice/graph/cairoplot.py
+++ /dev/null
@@ -1,2336 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# CairoPlot.py
-#
-# Copyright (c) 2008 Rodrigo Moreira Araújo
-#
-# Author: Rodrigo Moreiro Araujo <alf.rodrigo@gmail.com>
-#
-# This program is free software; you can redistribute it and/or
-# modify it under the terms of the GNU Lesser General Public License
-# as published by the Free Software Foundation; either version 2 of
-# the License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU Lesser General Public
-# License along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
-# USA
-
-#Contributor: João S. O. Bueno
-
-#TODO: review BarPlot Code
-#TODO: x_label colision problem on Horizontal Bar Plot
-#TODO: y_label's eat too much space on HBP
-
-
-__version__ = 1.2
-
-import cairo
-import math
-import random
-from series import Series, Group, Data
-
-HORZ = 0
-VERT = 1
-NORM = 2
-
-COLORS = {"red" : (1.0,0.0,0.0,1.0), "lime" : (0.0,1.0,0.0,1.0), "blue" : (0.0,0.0,1.0,1.0),
- "maroon" : (0.5,0.0,0.0,1.0), "green" : (0.0,0.5,0.0,1.0), "navy" : (0.0,0.0,0.5,1.0),
- "yellow" : (1.0,1.0,0.0,1.0), "magenta" : (1.0,0.0,1.0,1.0), "cyan" : (0.0,1.0,1.0,1.0),
- "orange" : (1.0,0.5,0.0,1.0), "white" : (1.0,1.0,1.0,1.0), "black" : (0.0,0.0,0.0,1.0),
- "gray" : (0.5,0.5,0.5,1.0), "light_gray" : (0.9,0.9,0.9,1.0),
- "transparent" : (0.0,0.0,0.0,0.0)}
-
-THEMES = {"black_red" : [(0.0,0.0,0.0,1.0), (1.0,0.0,0.0,1.0)],
- "red_green_blue" : [(1.0,0.0,0.0,1.0), (0.0,1.0,0.0,1.0), (0.0,0.0,1.0,1.0)],
- "red_orange_yellow" : [(1.0,0.2,0.0,1.0), (1.0,0.7,0.0,1.0), (1.0,1.0,0.0,1.0)],
- "yellow_orange_red" : [(1.0,1.0,0.0,1.0), (1.0,0.7,0.0,1.0), (1.0,0.2,0.0,1.0)],
- "rainbow" : [(1.0,0.0,0.0,1.0), (1.0,0.5,0.0,1.0), (1.0,1.0,0.0,1.0), (0.0,1.0,0.0,1.0), (0.0,0.0,1.0,1.0), (0.3, 0.0, 0.5,1.0), (0.5, 0.0, 1.0, 1.0)]}
-
-def colors_from_theme( theme, series_length, mode = 'solid' ):
- colors = []
- if theme not in THEMES.keys() :
- raise Exception, "Theme not defined"
- color_steps = THEMES[theme]
- n_colors = len(color_steps)
- if series_length <= n_colors:
- colors = [color + tuple([mode]) for color in color_steps[0:n_colors]]
- else:
- iterations = [(series_length - n_colors)/(n_colors - 1) for i in color_steps[:-1]]
- over_iterations = (series_length - n_colors) % (n_colors - 1)
- for i in range(n_colors - 1):
- if over_iterations <= 0:
- break
- iterations[i] += 1
- over_iterations -= 1
- for index,color in enumerate(color_steps[:-1]):
- colors.append(color + tuple([mode]))
- if iterations[index] == 0:
- continue
- next_color = color_steps[index+1]
- color_step = ((next_color[0] - color[0])/(iterations[index] + 1),
- (next_color[1] - color[1])/(iterations[index] + 1),
- (next_color[2] - color[2])/(iterations[index] + 1),
- (next_color[3] - color[3])/(iterations[index] + 1))
- for i in range( iterations[index] ):
- colors.append((color[0] + color_step[0]*(i+1),
- color[1] + color_step[1]*(i+1),
- color[2] + color_step[2]*(i+1),
- color[3] + color_step[3]*(i+1),
- mode))
- colors.append(color_steps[-1] + tuple([mode]))
- return colors
-
-
-def other_direction(direction):
- "explicit is better than implicit"
- if direction == HORZ:
- return VERT
- else:
- return HORZ
-
-#Class definition
-
-class Plot(object):
- def __init__(self,
- surface=None,
- data=None,
- width=640,
- height=480,
- background=None,
- border = 0,
- x_labels = None,
- y_labels = None,
- series_colors = None):
- random.seed(2)
- self.create_surface(surface, width, height)
- self.dimensions = {}
- self.dimensions[HORZ] = width
- self.dimensions[VERT] = height
- self.context = cairo.Context(self.surface)
- self.labels={}
- self.labels[HORZ] = x_labels
- self.labels[VERT] = y_labels
- self.load_series(data, x_labels, y_labels, series_colors)
- self.font_size = 10
- self.set_background (background)
- self.border = border
- self.borders = {}
- self.line_color = (0.5, 0.5, 0.5)
- self.line_width = 0.5
- self.label_color = (0.0, 0.0, 0.0)
- self.grid_color = (0.8, 0.8, 0.8)
-
- def create_surface(self, surface, width=None, height=None):
- self.filename = None
- if isinstance(surface, cairo.Surface):
- self.surface = surface
- return
- if not type(surface) in (str, unicode):
- raise TypeError("Surface should be either a Cairo surface or a filename, not %s" % surface)
- sufix = surface.rsplit(".")[-1].lower()
- self.filename = surface
- if sufix == "png":
- self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, width, height)
- elif sufix == "ps":
- self.surface = cairo.PSSurface(surface, width, height)
- elif sufix == "pdf":
- self.surface = cairo.PSSurface(surface, width, height)
- else:
- if sufix != "svg":
- self.filename += ".svg"
- self.surface = cairo.SVGSurface(self.filename, width, height)
-
- def commit(self):
- try:
- self.context.show_page()
- if self.filename and self.filename.endswith(".png"):
- self.surface.write_to_png(self.filename)
- else:
- self.surface.finish()
- except cairo.Error:
- pass
-
- def load_series (self, data, x_labels=None, y_labels=None, series_colors=None):
- self.series_labels = []
- self.series = None
-
- #The pretty way
- #if not isinstance(data, Series):
- # # Not an instance of Series
- # self.series = Series(data)
- #else:
- # self.series = data
- #
- #self.series_labels = self.series.get_names()
-
- #TODO: Remove on next version
- # The ugly way, keeping retrocompatibility...
- if callable(data) or type(data) is list and callable(data[0]): # Lambda or List of lambdas
- self.series = data
- self.series_labels = None
- elif isinstance(data, Series): # Instance of Series
- self.series = data
- self.series_labels = data.get_names()
- else: # Anything else
- self.series = Series(data)
- self.series_labels = self.series.get_names()
-
- #TODO: allow user passed series_widths
- self.series_widths = [1.0 for group in self.series]
-
- #TODO: Remove on next version
- self.process_colors( series_colors )
-
- def process_colors( self, series_colors, length = None, mode = 'solid' ):
- #series_colors might be None, a theme, a string of colors names or a list of color tuples
- if length is None :
- length = len( self.series.to_list() )
-
- #no colors passed
- if not series_colors:
- #Randomize colors
- self.series_colors = [ [random.random() for i in range(3)] + [1.0, mode] for series in range( length ) ]
- else:
- #Just theme pattern
- if not hasattr( series_colors, "__iter__" ):
- theme = series_colors
- self.series_colors = colors_from_theme( theme.lower(), length )
-
- #Theme pattern and mode
- elif not hasattr(series_colors, '__delitem__') and not hasattr( series_colors[0], "__iter__" ):
- theme = series_colors[0]
- mode = series_colors[1]
- self.series_colors = colors_from_theme( theme.lower(), length, mode )
-
- #List
- else:
- self.series_colors = series_colors
- for index, color in enumerate( self.series_colors ):
- #element is a color name
- if not hasattr(color, "__iter__"):
- self.series_colors[index] = COLORS[color.lower()] + tuple([mode])
- #element is rgb tuple instead of rgba
- elif len( color ) == 3 :
- self.series_colors[index] += (1.0,mode)
- #element has 4 elements, might be rgba tuple or rgb tuple with mode
- elif len( color ) == 4 :
- #last element is mode
- if not hasattr(color[3], "__iter__"):
- self.series_colors[index] += tuple([color[3]])
- self.series_colors[index][3] = 1.0
- #last element is alpha
- else:
- self.series_colors[index] += tuple([mode])
-
- def get_width(self):
- return self.surface.get_width()
-
- def get_height(self):
- return self.surface.get_height()
-
- def set_background(self, background):
- if background is None:
- self.background = (0.0,0.0,0.0,0.0)
- elif type(background) in (cairo.LinearGradient, tuple):
- self.background = background
- elif not hasattr(background,"__iter__"):
- colors = background.split(" ")
- if len(colors) == 1 and colors[0] in COLORS:
- self.background = COLORS[background]
- elif len(colors) > 1:
- self.background = cairo.LinearGradient(self.dimensions[HORZ] / 2, 0, self.dimensions[HORZ] / 2, self.dimensions[VERT])
- for index,color in enumerate(colors):
- self.background.add_color_stop_rgba(float(index)/(len(colors)-1),*COLORS[color])
- else:
- raise TypeError ("Background should be either cairo.LinearGradient or a 3/4-tuple, not %s" % type(background))
-
- def render_background(self):
- if isinstance(self.background, cairo.LinearGradient):
- self.context.set_source(self.background)
- else:
- self.context.set_source_rgba(*self.background)
- self.context.rectangle(0,0, self.dimensions[HORZ], self.dimensions[VERT])
- self.context.fill()
-
- def render_bounding_box(self):
- self.context.set_source_rgba(*self.line_color)
- self.context.set_line_width(self.line_width)
- self.context.rectangle(self.border, self.border,
- self.dimensions[HORZ] - 2 * self.border,
- self.dimensions[VERT] - 2 * self.border)
- self.context.stroke()
-
- def render(self):
- pass
-
-class ScatterPlot( Plot ):
- def __init__(self,
- surface=None,
- data=None,
- errorx=None,
- errory=None,
- width=640,
- height=480,
- background=None,
- border=0,
- axis = False,
- dash = False,
- discrete = False,
- dots = 0,
- grid = False,
- series_legend = False,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- z_bounds = None,
- x_title = None,
- y_title = None,
- series_colors = None,
- circle_colors = None ):
-
- self.bounds = {}
- self.bounds[HORZ] = x_bounds
- self.bounds[VERT] = y_bounds
- self.bounds[NORM] = z_bounds
- self.titles = {}
- self.titles[HORZ] = x_title
- self.titles[VERT] = y_title
- self.max_value = {}
- self.axis = axis
- self.discrete = discrete
- self.dots = dots
- self.grid = grid
- self.series_legend = series_legend
- self.variable_radius = False
- self.x_label_angle = math.pi / 2.5
- self.circle_colors = circle_colors
-
- Plot.__init__(self, surface, data, width, height, background, border, x_labels, y_labels, series_colors)
-
- self.dash = None
- if dash:
- if hasattr(dash, "keys"):
- self.dash = [dash[key] for key in self.series_labels]
- elif max([hasattr(item,'__delitem__') for item in data]) :
- self.dash = dash
- else:
- self.dash = [dash]
-
- self.load_errors(errorx, errory)
-
- def convert_list_to_tuple(self, data):
- #Data must be converted from lists of coordinates to a single
- # list of tuples
- out_data = zip(*data)
- if len(data) == 3:
- self.variable_radius = True
- return out_data
-
- def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
- #TODO: In cairoplot 2.0 keep only the Series instances
-
- # Convert Data and Group to Series
- if isinstance(data, Data) or isinstance(data, Group):
- data = Series(data)
-
- # Series
- if isinstance(data, Series):
- for group in data:
- for item in group:
- if len(item) is 3:
- self.variable_radius = True
-
- #Dictionary with lists
- if hasattr(data, "keys") :
- if hasattr( data.values()[0][0], "__delitem__" ) :
- for key in data.keys() :
- data[key] = self.convert_list_to_tuple(data[key])
- elif len(data.values()[0][0]) == 3:
- self.variable_radius = True
- #List
- elif hasattr(data[0], "__delitem__") :
- #List of lists
- if hasattr(data[0][0], "__delitem__") :
- for index,value in enumerate(data) :
- data[index] = self.convert_list_to_tuple(value)
- #List
- elif type(data[0][0]) != type((0,0)):
- data = self.convert_list_to_tuple(data)
- #Three dimensional data
- elif len(data[0][0]) == 3:
- self.variable_radius = True
-
- #List with three dimensional tuples
- elif len(data[0]) == 3:
- self.variable_radius = True
- Plot.load_series(self, data, x_labels, y_labels, series_colors)
- self.calc_boundaries()
- self.calc_labels()
-
- def load_errors(self, errorx, errory):
- self.errors = None
- if errorx == None and errory == None:
- return
- self.errors = {}
- self.errors[HORZ] = None
- self.errors[VERT] = None
- #asimetric errors
- if errorx and hasattr(errorx[0], "__delitem__"):
- self.errors[HORZ] = errorx
- #simetric errors
- elif errorx:
- self.errors[HORZ] = [errorx]
- #asimetric errors
- if errory and hasattr(errory[0], "__delitem__"):
- self.errors[VERT] = errory
- #simetric errors
- elif errory:
- self.errors[VERT] = [errory]
-
- def calc_labels(self):
- if not self.labels[HORZ]:
- amplitude = self.bounds[HORZ][1] - self.bounds[HORZ][0]
- if amplitude % 10: #if horizontal labels need floating points
- self.labels[HORZ] = ["%.2lf" % (float(self.bounds[HORZ][0] + (amplitude * i / 10.0))) for i in range(11) ]
- else:
- self.labels[HORZ] = ["%d" % (int(self.bounds[HORZ][0] + (amplitude * i / 10.0))) for i in range(11) ]
- if not self.labels[VERT]:
- amplitude = self.bounds[VERT][1] - self.bounds[VERT][0]
- if amplitude % 10: #if vertical labels need floating points
- self.labels[VERT] = ["%.2lf" % (float(self.bounds[VERT][0] + (amplitude * i / 10.0))) for i in range(11) ]
- else:
- self.labels[VERT] = ["%d" % (int(self.bounds[VERT][0] + (amplitude * i / 10.0))) for i in range(11) ]
-
- def calc_extents(self, direction):
- self.context.set_font_size(self.font_size * 0.8)
- self.max_value[direction] = max(self.context.text_extents(item)[2] for item in self.labels[direction])
- self.borders[other_direction(direction)] = self.max_value[direction] + self.border + 20
-
- def calc_boundaries(self):
- #HORZ = 0, VERT = 1, NORM = 2
- min_data_value = [0,0,0]
- max_data_value = [0,0,0]
-
- for group in self.series:
- if type(group[0].content) in (int, float, long):
- group = [Data((index, item.content)) for index,item in enumerate(group)]
-
- for point in group:
- for index, item in enumerate(point.content):
- if item > max_data_value[index]:
- max_data_value[index] = item
- elif item < min_data_value[index]:
- min_data_value[index] = item
-
- if not self.bounds[HORZ]:
- self.bounds[HORZ] = (min_data_value[HORZ], max_data_value[HORZ])
- if not self.bounds[VERT]:
- self.bounds[VERT] = (min_data_value[VERT], max_data_value[VERT])
- if not self.bounds[NORM]:
- self.bounds[NORM] = (min_data_value[NORM], max_data_value[NORM])
-
- def calc_all_extents(self):
- self.calc_extents(HORZ)
- self.calc_extents(VERT)
-
- self.plot_height = self.dimensions[VERT] - 2 * self.borders[VERT]
- self.plot_width = self.dimensions[HORZ] - 2* self.borders[HORZ]
-
- self.plot_top = self.dimensions[VERT] - self.borders[VERT]
-
- def calc_steps(self):
- #Calculates all the x, y, z and color steps
- series_amplitude = [self.bounds[index][1] - self.bounds[index][0] for index in range(3)]
-
- if series_amplitude[HORZ]:
- self.horizontal_step = float (self.plot_width) / series_amplitude[HORZ]
- else:
- self.horizontal_step = 0.00
-
- if series_amplitude[VERT]:
- self.vertical_step = float (self.plot_height) / series_amplitude[VERT]
- else:
- self.vertical_step = 0.00
-
- if series_amplitude[NORM]:
- if self.variable_radius:
- self.z_step = float (self.bounds[NORM][1]) / series_amplitude[NORM]
- if self.circle_colors:
- self.circle_color_step = tuple([float(self.circle_colors[1][i]-self.circle_colors[0][i])/series_amplitude[NORM] for i in range(4)])
- else:
- self.z_step = 0.00
- self.circle_color_step = ( 0.0, 0.0, 0.0, 0.0 )
-
- def get_circle_color(self, value):
- return tuple( [self.circle_colors[0][i] + value*self.circle_color_step[i] for i in range(4)] )
-
- def render(self):
- self.calc_all_extents()
- self.calc_steps()
- self.render_background()
- self.render_bounding_box()
- if self.axis:
- self.render_axis()
- if self.grid:
- self.render_grid()
- self.render_labels()
- self.render_plot()
- if self.errors:
- self.render_errors()
- if self.series_legend and self.series_labels:
- self.render_legend()
-
- def render_axis(self):
- #Draws both the axis lines and their titles
- cr = self.context
- cr.set_source_rgba(*self.line_color)
- cr.move_to(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
- cr.line_to(self.borders[HORZ], self.borders[VERT])
- cr.stroke()
-
- cr.move_to(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
- cr.line_to(self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT])
- cr.stroke()
-
- cr.set_source_rgba(*self.label_color)
- self.context.set_font_size( 1.2 * self.font_size )
- if self.titles[HORZ]:
- title_width,title_height = cr.text_extents(self.titles[HORZ])[2:4]
- cr.move_to( self.dimensions[HORZ]/2 - title_width/2, self.borders[VERT] - title_height/2 )
- cr.show_text( self.titles[HORZ] )
-
- if self.titles[VERT]:
- title_width,title_height = cr.text_extents(self.titles[VERT])[2:4]
- cr.move_to( self.dimensions[HORZ] - self.borders[HORZ] + title_height/2, self.dimensions[VERT]/2 - title_width/2)
- cr.save()
- cr.rotate( math.pi/2 )
- cr.show_text( self.titles[VERT] )
- cr.restore()
-
- def render_grid(self):
- cr = self.context
- horizontal_step = float( self.plot_height ) / ( len( self.labels[VERT] ) - 1 )
- vertical_step = float( self.plot_width ) / ( len( self.labels[HORZ] ) - 1 )
-
- x = self.borders[HORZ] + vertical_step
- y = self.plot_top - horizontal_step
-
- for label in self.labels[HORZ][:-1]:
- cr.set_source_rgba(*self.grid_color)
- cr.move_to(x, self.dimensions[VERT] - self.borders[VERT])
- cr.line_to(x, self.borders[VERT])
- cr.stroke()
- x += vertical_step
- for label in self.labels[VERT][:-1]:
- cr.set_source_rgba(*self.grid_color)
- cr.move_to(self.borders[HORZ], y)
- cr.line_to(self.dimensions[HORZ] - self.borders[HORZ], y)
- cr.stroke()
- y -= horizontal_step
-
- def render_labels(self):
- self.context.set_font_size(self.font_size * 0.8)
- self.render_horz_labels()
- self.render_vert_labels()
-
- def render_horz_labels(self):
- cr = self.context
- step = float( self.plot_width ) / ( len( self.labels[HORZ] ) - 1 )
- x = self.borders[HORZ]
- y = self.dimensions[VERT] - self.borders[VERT] + 5
-
- # store rotation matrix from the initial state
- rotation_matrix = cr.get_matrix()
- rotation_matrix.rotate(self.x_label_angle)
-
- cr.set_source_rgba(*self.label_color)
-
- for item in self.labels[HORZ]:
- width = cr.text_extents(item)[2]
- cr.move_to(x, y)
- cr.save()
- cr.set_matrix(rotation_matrix)
- cr.show_text(item)
- cr.restore()
- x += step
-
- def render_vert_labels(self):
- cr = self.context
- step = ( self.plot_height ) / ( len( self.labels[VERT] ) - 1 )
- y = self.plot_top
- cr.set_source_rgba(*self.label_color)
- for item in self.labels[VERT]:
- width = cr.text_extents(item)[2]
- cr.move_to(self.borders[HORZ] - width - 5,y)
- cr.show_text(item)
- y -= step
-
- def render_legend(self):
- cr = self.context
- cr.set_font_size(self.font_size)
- cr.set_line_width(self.line_width)
-
- widest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[2])
- tallest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[3])
- max_width = self.context.text_extents(widest_word)[2]
- max_height = self.context.text_extents(tallest_word)[3] * 1.1
-
- color_box_height = max_height / 2
- color_box_width = color_box_height * 2
-
- #Draw a bounding box
- bounding_box_width = max_width + color_box_width + 15
- bounding_box_height = (len(self.series_labels)+0.5) * max_height
- cr.set_source_rgba(1,1,1)
- cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - bounding_box_width, self.borders[VERT],
- bounding_box_width, bounding_box_height)
- cr.fill()
-
- cr.set_source_rgba(*self.line_color)
- cr.set_line_width(self.line_width)
- cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - bounding_box_width, self.borders[VERT],
- bounding_box_width, bounding_box_height)
- cr.stroke()
-
- for idx,key in enumerate(self.series_labels):
- #Draw color box
- cr.set_source_rgba(*self.series_colors[idx][:4])
- cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - max_width - color_box_width - 10,
- self.borders[VERT] + color_box_height + (idx*max_height) ,
- color_box_width, color_box_height)
- cr.fill()
-
- cr.set_source_rgba(0, 0, 0)
- cr.rectangle(self.dimensions[HORZ] - self.borders[HORZ] - max_width - color_box_width - 10,
- self.borders[VERT] + color_box_height + (idx*max_height),
- color_box_width, color_box_height)
- cr.stroke()
-
- #Draw series labels
- cr.set_source_rgba(0, 0, 0)
- cr.move_to(self.dimensions[HORZ] - self.borders[HORZ] - max_width - 5, self.borders[VERT] + ((idx+1)*max_height))
- cr.show_text(key)
-
- def render_errors(self):
- cr = self.context
- cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
- cr.clip()
- radius = self.dots
- x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
- y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
- for index, group in enumerate(self.series):
- cr.set_source_rgba(*self.series_colors[index][:4])
- for number, data in enumerate(group):
- x = x0 + self.horizontal_step * data.content[0]
- y = self.dimensions[VERT] - y0 - self.vertical_step * data.content[1]
- if self.errors[HORZ]:
- cr.move_to(x, y)
- x1 = x - self.horizontal_step * self.errors[HORZ][0][number]
- cr.line_to(x1, y)
- cr.line_to(x1, y - radius)
- cr.line_to(x1, y + radius)
- cr.stroke()
- if self.errors[HORZ] and len(self.errors[HORZ]) == 2:
- cr.move_to(x, y)
- x1 = x + self.horizontal_step * self.errors[HORZ][1][number]
- cr.line_to(x1, y)
- cr.line_to(x1, y - radius)
- cr.line_to(x1, y + radius)
- cr.stroke()
- if self.errors[VERT]:
- cr.move_to(x, y)
- y1 = y + self.vertical_step * self.errors[VERT][0][number]
- cr.line_to(x, y1)
- cr.line_to(x - radius, y1)
- cr.line_to(x + radius, y1)
- cr.stroke()
- if self.errors[VERT] and len(self.errors[VERT]) == 2:
- cr.move_to(x, y)
- y1 = y - self.vertical_step * self.errors[VERT][1][number]
- cr.line_to(x, y1)
- cr.line_to(x - radius, y1)
- cr.line_to(x + radius, y1)
- cr.stroke()
-
-
- def render_plot(self):
- cr = self.context
- if self.discrete:
- cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
- cr.clip()
- x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
- y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
- radius = self.dots
- for number, group in enumerate (self.series):
- cr.set_source_rgba(*self.series_colors[number][:4])
- for data in group :
- if self.variable_radius:
- radius = data.content[2]*self.z_step
- if self.circle_colors:
- cr.set_source_rgba( *self.get_circle_color( data.content[2]) )
- x = x0 + self.horizontal_step*data.content[0]
- y = y0 + self.vertical_step*data.content[1]
- cr.arc(x, self.dimensions[VERT] - y, radius, 0, 2*math.pi)
- cr.fill()
- else:
- cr.rectangle(self.borders[HORZ], self.borders[VERT], self.plot_width, self.plot_height)
- cr.clip()
- x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
- y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
- radius = self.dots
- for number, group in enumerate (self.series):
- last_data = None
- cr.set_source_rgba(*self.series_colors[number][:4])
- for data in group :
- x = x0 + self.horizontal_step*data.content[0]
- y = y0 + self.vertical_step*data.content[1]
- if self.dots:
- if self.variable_radius:
- radius = data.content[2]*self.z_step
- cr.arc(x, self.dimensions[VERT] - y, radius, 0, 2*math.pi)
- cr.fill()
- if last_data :
- old_x = x0 + self.horizontal_step*last_data.content[0]
- old_y = y0 + self.vertical_step*last_data.content[1]
- cr.move_to( old_x, self.dimensions[VERT] - old_y )
- cr.line_to( x, self.dimensions[VERT] - y)
- cr.set_line_width(self.series_widths[number])
-
- # Display line as dash line
- if self.dash and self.dash[number]:
- s = self.series_widths[number]
- cr.set_dash([s*3, s*3], 0)
-
- cr.stroke()
- cr.set_dash([])
- last_data = data
-
-class DotLinePlot(ScatterPlot):
- def __init__(self,
- surface=None,
- data=None,
- width=640,
- height=480,
- background=None,
- border=0,
- axis = False,
- dash = False,
- dots = 0,
- grid = False,
- series_legend = False,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- x_title = None,
- y_title = None,
- series_colors = None):
-
- ScatterPlot.__init__(self, surface, data, None, None, width, height, background, border,
- axis, dash, False, dots, grid, series_legend, x_labels, y_labels,
- x_bounds, y_bounds, None, x_title, y_title, series_colors, None )
-
-
- def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
- Plot.load_series(self, data, x_labels, y_labels, series_colors)
- for group in self.series :
- for index,data in enumerate(group):
- group[index].content = (index, data.content)
-
- self.calc_boundaries()
- self.calc_labels()
-
-class FunctionPlot(ScatterPlot):
- def __init__(self,
- surface=None,
- data=None,
- width=640,
- height=480,
- background=None,
- border=0,
- axis = False,
- discrete = False,
- dots = 0,
- grid = False,
- series_legend = False,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- x_title = None,
- y_title = None,
- series_colors = None,
- step = 1):
-
- self.function = data
- self.step = step
- self.discrete = discrete
-
- data, x_bounds = self.load_series_from_function( self.function, x_bounds )
-
- ScatterPlot.__init__(self, surface, data, None, None, width, height, background, border,
- axis, False, discrete, dots, grid, series_legend, x_labels, y_labels,
- x_bounds, y_bounds, None, x_title, y_title, series_colors, None )
-
- def load_series(self, data, x_labels = None, y_labels = None, series_colors=None):
- Plot.load_series(self, data, x_labels, y_labels, series_colors)
-
- if len(self.series[0][0]) is 1:
- for group_id, group in enumerate(self.series) :
- for index,data in enumerate(group):
- group[index].content = (self.bounds[HORZ][0] + self.step*index, data.content)
-
- self.calc_boundaries()
- self.calc_labels()
-
- def load_series_from_function( self, function, x_bounds ):
- #TODO: Add the possibility for the user to define multiple functions with different discretization parameters
-
- #This function converts a function, a list of functions or a dictionary
- #of functions into its corresponding array of data
- series = Series()
-
- if isinstance(function, Group) or isinstance(function, Data):
- function = Series(function)
-
- # If is instance of Series
- if isinstance(function, Series):
- # Overwrite any bounds passed by the function
- x_bounds = (function.range[0],function.range[-1])
-
- #if no bounds are provided
- if x_bounds == None:
- x_bounds = (0,10)
-
-
- #TODO: Finish the dict translation
- if hasattr(function, "keys"): #dictionary:
- for key in function.keys():
- group = Group(name=key)
- #data[ key ] = []
- i = x_bounds[0]
- while i <= x_bounds[1] :
- group.add_data(function[ key ](i))
- #data[ key ].append( function[ key ](i) )
- i += self.step
- series.add_group(group)
-
- elif hasattr(function, "__delitem__"): #list of functions
- for index,f in enumerate( function ) :
- group = Group()
- #data.append( [] )
- i = x_bounds[0]
- while i <= x_bounds[1] :
- group.add_data(f(i))
- #data[ index ].append( f(i) )
- i += self.step
- series.add_group(group)
-
- elif isinstance(function, Series): # instance of Series
- series = function
-
- else: #function
- group = Group()
- i = x_bounds[0]
- while i <= x_bounds[1] :
- group.add_data(function(i))
- i += self.step
- series.add_group(group)
-
-
- return series, x_bounds
-
- def calc_labels(self):
- if not self.labels[HORZ]:
- self.labels[HORZ] = []
- i = self.bounds[HORZ][0]
- while i<=self.bounds[HORZ][1]:
- self.labels[HORZ].append(str(i))
- i += float(self.bounds[HORZ][1] - self.bounds[HORZ][0])/10
- ScatterPlot.calc_labels(self)
-
- def render_plot(self):
- if not self.discrete:
- ScatterPlot.render_plot(self)
- else:
- last = None
- cr = self.context
- for number, group in enumerate (self.series):
- cr.set_source_rgba(*self.series_colors[number][:4])
- x0 = self.borders[HORZ] - self.bounds[HORZ][0]*self.horizontal_step
- y0 = self.borders[VERT] - self.bounds[VERT][0]*self.vertical_step
- for data in group:
- x = x0 + self.horizontal_step * data.content[0]
- y = y0 + self.vertical_step * data.content[1]
- cr.move_to(x, self.dimensions[VERT] - y)
- cr.line_to(x, self.plot_top)
- cr.set_line_width(self.series_widths[number])
- cr.stroke()
- if self.dots:
- cr.new_path()
- cr.arc(x, self.dimensions[VERT] - y, 3, 0, 2.1 * math.pi)
- cr.close_path()
- cr.fill()
-
-class BarPlot(Plot):
- def __init__(self,
- surface = None,
- data = None,
- width = 640,
- height = 480,
- background = "white light_gray",
- border = 0,
- display_values = False,
- grid = False,
- rounded_corners = False,
- stack = False,
- three_dimension = False,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- series_colors = None,
- main_dir = None):
-
- self.bounds = {}
- self.bounds[HORZ] = x_bounds
- self.bounds[VERT] = y_bounds
- self.display_values = display_values
- self.grid = grid
- self.rounded_corners = rounded_corners
- self.stack = stack
- self.three_dimension = three_dimension
- self.x_label_angle = math.pi / 2.5
- self.main_dir = main_dir
- self.max_value = {}
- self.plot_dimensions = {}
- self.steps = {}
- self.value_label_color = (0.5,0.5,0.5,1.0)
-
- Plot.__init__(self, surface, data, width, height, background, border, x_labels, y_labels, series_colors)
-
- def load_series(self, data, x_labels = None, y_labels = None, series_colors = None):
- Plot.load_series(self, data, x_labels, y_labels, series_colors)
- self.calc_boundaries()
-
- def process_colors(self, series_colors):
- #Data for a BarPlot might be a List or a List of Lists.
- #On the first case, colors must be generated for all bars,
- #On the second, colors must be generated for each of the inner lists.
-
- #TODO: Didn't get it...
- #if hasattr(self.data[0], '__getitem__'):
- # length = max(len(series) for series in self.data)
- #else:
- # length = len( self.data )
-
- length = max(len(group) for group in self.series)
-
- Plot.process_colors( self, series_colors, length, 'linear')
-
- def calc_boundaries(self):
- if not self.bounds[self.main_dir]:
- if self.stack:
- max_data_value = max(sum(group.to_list()) for group in self.series)
- else:
- max_data_value = max(max(group.to_list()) for group in self.series)
- self.bounds[self.main_dir] = (0, max_data_value)
- if not self.bounds[other_direction(self.main_dir)]:
- self.bounds[other_direction(self.main_dir)] = (0, len(self.series))
-
- def calc_extents(self, direction):
- self.max_value[direction] = 0
- if self.labels[direction]:
- widest_word = max(self.labels[direction], key = lambda item: self.context.text_extents(item)[2])
- self.max_value[direction] = self.context.text_extents(widest_word)[3 - direction]
- self.borders[other_direction(direction)] = (2-direction)*self.max_value[direction] + self.border + direction*(5)
- else:
- self.borders[other_direction(direction)] = self.border
-
- def calc_horz_extents(self):
- self.calc_extents(HORZ)
-
- def calc_vert_extents(self):
- self.calc_extents(VERT)
-
- def calc_all_extents(self):
- self.calc_horz_extents()
- self.calc_vert_extents()
- other_dir = other_direction(self.main_dir)
- self.value_label = 0
- if self.display_values:
- if self.stack:
- self.value_label = self.context.text_extents(str(max(sum(group.to_list()) for group in self.series)))[2 + self.main_dir]
- else:
- self.value_label = self.context.text_extents(str(max(max(group.to_list()) for group in self.series)))[2 + self.main_dir]
- if self.labels[self.main_dir]:
- self.plot_dimensions[self.main_dir] = self.dimensions[self.main_dir] - 2*self.borders[self.main_dir] - self.value_label
- else:
- self.plot_dimensions[self.main_dir] = self.dimensions[self.main_dir] - self.borders[self.main_dir] - 1.2*self.border - self.value_label
- self.plot_dimensions[other_dir] = self.dimensions[other_dir] - self.borders[other_dir] - self.border
- self.plot_top = self.dimensions[VERT] - self.borders[VERT]
-
- def calc_steps(self):
- other_dir = other_direction(self.main_dir)
- self.series_amplitude = self.bounds[self.main_dir][1] - self.bounds[self.main_dir][0]
- if self.series_amplitude:
- self.steps[self.main_dir] = float(self.plot_dimensions[self.main_dir])/self.series_amplitude
- else:
- self.steps[self.main_dir] = 0.00
- series_length = len(self.series)
- self.steps[other_dir] = float(self.plot_dimensions[other_dir])/(series_length + 0.1*(series_length + 1))
- self.space = 0.1*self.steps[other_dir]
-
- def render(self):
- self.calc_all_extents()
- self.calc_steps()
- self.render_background()
- self.render_bounding_box()
- if self.grid:
- self.render_grid()
- if self.three_dimension:
- self.render_ground()
- if self.display_values:
- self.render_values()
- self.render_labels()
- self.render_plot()
- if self.series_labels:
- self.render_legend()
-
- def draw_3d_rectangle_front(self, x0, y0, x1, y1, shift):
- self.context.rectangle(x0-shift, y0+shift, x1-x0, y1-y0)
-
- def draw_3d_rectangle_side(self, x0, y0, x1, y1, shift):
- self.context.move_to(x1-shift,y0+shift)
- self.context.line_to(x1, y0)
- self.context.line_to(x1, y1)
- self.context.line_to(x1-shift, y1+shift)
- self.context.line_to(x1-shift, y0+shift)
- self.context.close_path()
-
- def draw_3d_rectangle_top(self, x0, y0, x1, y1, shift):
- self.context.move_to(x0-shift,y0+shift)
- self.context.line_to(x0, y0)
- self.context.line_to(x1, y0)
- self.context.line_to(x1-shift, y0+shift)
- self.context.line_to(x0-shift, y0+shift)
- self.context.close_path()
-
- def draw_round_rectangle(self, x0, y0, x1, y1):
- self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
- self.context.line_to(x1-5, y0)
- self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
- self.context.line_to(x1, y1-5)
- self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
- self.context.line_to(x0+5, y1)
- self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
- self.context.line_to(x0, y0+5)
- self.context.close_path()
-
- def render_ground(self):
- self.draw_3d_rectangle_front(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
- self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
- self.context.fill()
-
- self.draw_3d_rectangle_side (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
- self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
- self.context.fill()
-
- self.draw_3d_rectangle_top (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
- self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
- self.context.fill()
-
- def render_labels(self):
- self.context.set_font_size(self.font_size * 0.8)
- if self.labels[HORZ]:
- self.render_horz_labels()
- if self.labels[VERT]:
- self.render_vert_labels()
-
- def render_legend(self):
- cr = self.context
- cr.set_font_size(self.font_size)
- cr.set_line_width(self.line_width)
-
- widest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[2])
- tallest_word = max(self.series_labels, key = lambda item: self.context.text_extents(item)[3])
- max_width = self.context.text_extents(widest_word)[2]
- max_height = self.context.text_extents(tallest_word)[3] * 1.1 + 5
-
- color_box_height = max_height / 2
- color_box_width = color_box_height * 2
-
- #Draw a bounding box
- bounding_box_width = max_width + color_box_width + 15
- bounding_box_height = (len(self.series_labels)+0.5) * max_height
- cr.set_source_rgba(1,1,1)
- cr.rectangle(self.dimensions[HORZ] - self.border - bounding_box_width, self.border,
- bounding_box_width, bounding_box_height)
- cr.fill()
-
- cr.set_source_rgba(*self.line_color)
- cr.set_line_width(self.line_width)
- cr.rectangle(self.dimensions[HORZ] - self.border - bounding_box_width, self.border,
- bounding_box_width, bounding_box_height)
- cr.stroke()
-
- for idx,key in enumerate(self.series_labels):
- #Draw color box
- cr.set_source_rgba(*self.series_colors[idx][:4])
- cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10,
- self.border + color_box_height + (idx*max_height) ,
- color_box_width, color_box_height)
- cr.fill()
-
- cr.set_source_rgba(0, 0, 0)
- cr.rectangle(self.dimensions[HORZ] - self.border - max_width - color_box_width - 10,
- self.border + color_box_height + (idx*max_height),
- color_box_width, color_box_height)
- cr.stroke()
-
- #Draw series labels
- cr.set_source_rgba(0, 0, 0)
- cr.move_to(self.dimensions[HORZ] - self.border - max_width - 5, self.border + ((idx+1)*max_height))
- cr.show_text(key)
-
-
-class HorizontalBarPlot(BarPlot):
- def __init__(self,
- surface = None,
- data = None,
- width = 640,
- height = 480,
- background = "white light_gray",
- border = 0,
- display_values = False,
- grid = False,
- rounded_corners = False,
- stack = False,
- three_dimension = False,
- series_labels = None,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- series_colors = None):
-
- BarPlot.__init__(self, surface, data, width, height, background, border,
- display_values, grid, rounded_corners, stack, three_dimension,
- x_labels, y_labels, x_bounds, y_bounds, series_colors, HORZ)
- self.series_labels = series_labels
-
- def calc_vert_extents(self):
- self.calc_extents(VERT)
- if self.labels[HORZ] and not self.labels[VERT]:
- self.borders[HORZ] += 10
-
- def draw_rectangle_bottom(self, x0, y0, x1, y1):
- self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
- self.context.line_to(x0, y0+5)
- self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
- self.context.line_to(x1, y0)
- self.context.line_to(x1, y1)
- self.context.line_to(x0+5, y1)
- self.context.close_path()
-
- def draw_rectangle_top(self, x0, y0, x1, y1):
- self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
- self.context.line_to(x1, y1-5)
- self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
- self.context.line_to(x0, y1)
- self.context.line_to(x0, y0)
- self.context.line_to(x1, y0)
- self.context.close_path()
-
- def draw_rectangle(self, index, length, x0, y0, x1, y1):
- if length == 1:
- BarPlot.draw_rectangle(self, x0, y0, x1, y1)
- elif index == 0:
- self.draw_rectangle_bottom(x0, y0, x1, y1)
- elif index == length-1:
- self.draw_rectangle_top(x0, y0, x1, y1)
- else:
- self.context.rectangle(x0, y0, x1-x0, y1-y0)
-
- #TODO: Review BarPlot.render_grid code
- def render_grid(self):
- self.context.set_source_rgba(0.8, 0.8, 0.8)
- if self.labels[HORZ]:
- self.context.set_font_size(self.font_size * 0.8)
- step = (self.dimensions[HORZ] - 2*self.borders[HORZ] - self.value_label)/(len(self.labels[HORZ])-1)
- x = self.borders[HORZ]
- next_x = 0
- for item in self.labels[HORZ]:
- width = self.context.text_extents(item)[2]
- if x - width/2 > next_x and x - width/2 > self.border:
- self.context.move_to(x, self.border)
- self.context.line_to(x, self.dimensions[VERT] - self.borders[VERT])
- self.context.stroke()
- next_x = x + width/2
- x += step
- else:
- lines = 11
- horizontal_step = float(self.plot_dimensions[HORZ])/(lines-1)
- x = self.borders[HORZ]
- for y in xrange(0, lines):
- self.context.move_to(x, self.border)
- self.context.line_to(x, self.dimensions[VERT] - self.borders[VERT])
- self.context.stroke()
- x += horizontal_step
-
- def render_horz_labels(self):
- step = (self.dimensions[HORZ] - 2*self.borders[HORZ])/(len(self.labels[HORZ])-1)
- x = self.borders[HORZ]
- next_x = 0
-
- for item in self.labels[HORZ]:
- self.context.set_source_rgba(*self.label_color)
- width = self.context.text_extents(item)[2]
- if x - width/2 > next_x and x - width/2 > self.border:
- self.context.move_to(x - width/2, self.dimensions[VERT] - self.borders[VERT] + self.max_value[HORZ] + 3)
- self.context.show_text(item)
- next_x = x + width/2
- x += step
-
- def render_vert_labels(self):
- series_length = len(self.labels[VERT])
- step = (self.plot_dimensions[VERT] - (series_length + 1)*self.space)/(len(self.labels[VERT]))
- y = self.border + step/2 + self.space
-
- for item in self.labels[VERT]:
- self.context.set_source_rgba(*self.label_color)
- width, height = self.context.text_extents(item)[2:4]
- self.context.move_to(self.borders[HORZ] - width - 5, y + height/2)
- self.context.show_text(item)
- y += step + self.space
- self.labels[VERT].reverse()
-
- def render_values(self):
- self.context.set_source_rgba(*self.value_label_color)
- self.context.set_font_size(self.font_size * 0.8)
- if self.stack:
- for i,group in enumerate(self.series):
- value = sum(group.to_list())
- height = self.context.text_extents(str(value))[3]
- x = self.borders[HORZ] + value*self.steps[HORZ] + 2
- y = self.borders[VERT] + (i+0.5)*self.steps[VERT] + (i+1)*self.space + height/2
- self.context.move_to(x, y)
- self.context.show_text(str(value))
- else:
- for i,group in enumerate(self.series):
- inner_step = self.steps[VERT]/len(group)
- y0 = self.border + i*self.steps[VERT] + (i+1)*self.space
- for number,data in enumerate(group):
- height = self.context.text_extents(str(data.content))[3]
- self.context.move_to(self.borders[HORZ] + data.content*self.steps[HORZ] + 2, y0 + 0.5*inner_step + height/2, )
- self.context.show_text(str(data.content))
- y0 += inner_step
-
- def render_plot(self):
- if self.stack:
- for i,group in enumerate(self.series):
- x0 = self.borders[HORZ]
- y0 = self.borders[VERT] + i*self.steps[VERT] + (i+1)*self.space
- for number,data in enumerate(group):
- if self.series_colors[number][4] in ('radial','linear') :
- linear = cairo.LinearGradient( data.content*self.steps[HORZ]/2, y0, data.content*self.steps[HORZ]/2, y0 + self.steps[VERT] )
- color = self.series_colors[number]
- linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
- linear.add_color_stop_rgba(1.0, *color[:4])
- self.context.set_source(linear)
- elif self.series_colors[number][4] == 'solid':
- self.context.set_source_rgba(*self.series_colors[number][:4])
- if self.rounded_corners:
- self.draw_rectangle(number, len(group), x0, y0, x0+data.content*self.steps[HORZ], y0+self.steps[VERT])
- self.context.fill()
- else:
- self.context.rectangle(x0, y0, data.content*self.steps[HORZ], self.steps[VERT])
- self.context.fill()
- x0 += data.content*self.steps[HORZ]
- else:
- for i,group in enumerate(self.series):
- inner_step = self.steps[VERT]/len(group)
- x0 = self.borders[HORZ]
- y0 = self.border + i*self.steps[VERT] + (i+1)*self.space
- for number,data in enumerate(group):
- linear = cairo.LinearGradient(data.content*self.steps[HORZ]/2, y0, data.content*self.steps[HORZ]/2, y0 + inner_step)
- color = self.series_colors[number]
- linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
- linear.add_color_stop_rgba(1.0, *color[:4])
- self.context.set_source(linear)
- if self.rounded_corners and data.content != 0:
- BarPlot.draw_round_rectangle(self,x0, y0, x0 + data.content*self.steps[HORZ], y0 + inner_step)
- self.context.fill()
- else:
- self.context.rectangle(x0, y0, data.content*self.steps[HORZ], inner_step)
- self.context.fill()
- y0 += inner_step
-
-class VerticalBarPlot(BarPlot):
- def __init__(self,
- surface = None,
- data = None,
- width = 640,
- height = 480,
- background = "white light_gray",
- border = 0,
- display_values = False,
- grid = False,
- rounded_corners = False,
- stack = False,
- three_dimension = False,
- series_labels = None,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- series_colors = None):
-
- BarPlot.__init__(self, surface, data, width, height, background, border,
- display_values, grid, rounded_corners, stack, three_dimension,
- x_labels, y_labels, x_bounds, y_bounds, series_colors, VERT)
- self.series_labels = series_labels
-
- def calc_vert_extents(self):
- self.calc_extents(VERT)
- if self.labels[VERT] and not self.labels[HORZ]:
- self.borders[VERT] += 10
-
- def draw_rectangle_bottom(self, x0, y0, x1, y1):
- self.context.move_to(x1,y1)
- self.context.arc(x1-5, y1-5, 5, 0, math.pi/2)
- self.context.line_to(x0+5, y1)
- self.context.arc(x0+5, y1-5, 5, math.pi/2, math.pi)
- self.context.line_to(x0, y0)
- self.context.line_to(x1, y0)
- self.context.line_to(x1, y1)
- self.context.close_path()
-
- def draw_rectangle_top(self, x0, y0, x1, y1):
- self.context.arc(x0+5, y0+5, 5, -math.pi, -math.pi/2)
- self.context.line_to(x1-5, y0)
- self.context.arc(x1-5, y0+5, 5, -math.pi/2, 0)
- self.context.line_to(x1, y1)
- self.context.line_to(x0, y1)
- self.context.line_to(x0, y0)
- self.context.close_path()
-
- def draw_rectangle(self, index, length, x0, y0, x1, y1):
- if length == 1:
- BarPlot.draw_rectangle(self, x0, y0, x1, y1)
- elif index == 0:
- self.draw_rectangle_bottom(x0, y0, x1, y1)
- elif index == length-1:
- self.draw_rectangle_top(x0, y0, x1, y1)
- else:
- self.context.rectangle(x0, y0, x1-x0, y1-y0)
-
- def render_grid(self):
- self.context.set_source_rgba(0.8, 0.8, 0.8)
- if self.labels[VERT]:
- lines = len(self.labels[VERT])
- vertical_step = float(self.plot_dimensions[self.main_dir])/(lines-1)
- y = self.borders[VERT] + self.value_label
- else:
- lines = 11
- vertical_step = float(self.plot_dimensions[self.main_dir])/(lines-1)
- y = 1.2*self.border + self.value_label
- for x in xrange(0, lines):
- self.context.move_to(self.borders[HORZ], y)
- self.context.line_to(self.dimensions[HORZ] - self.border, y)
- self.context.stroke()
- y += vertical_step
-
- def render_ground(self):
- self.draw_3d_rectangle_front(self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
- self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
- self.context.fill()
-
- self.draw_3d_rectangle_side (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
- self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
- self.context.fill()
-
- self.draw_3d_rectangle_top (self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT],
- self.dimensions[HORZ] - self.borders[HORZ], self.dimensions[VERT] - self.borders[VERT] + 5, 10)
- self.context.fill()
-
- def render_horz_labels(self):
- series_length = len(self.labels[HORZ])
- step = float (self.plot_dimensions[HORZ] - (series_length + 1)*self.space)/len(self.labels[HORZ])
- x = self.borders[HORZ] + step/2 + self.space
- next_x = 0
-
- for item in self.labels[HORZ]:
- self.context.set_source_rgba(*self.label_color)
- width = self.context.text_extents(item)[2]
- if x - width/2 > next_x and x - width/2 > self.borders[HORZ]:
- self.context.move_to(x - width/2, self.dimensions[VERT] - self.borders[VERT] + self.max_value[HORZ] + 3)
- self.context.show_text(item)
- next_x = x + width/2
- x += step + self.space
-
- def render_vert_labels(self):
- self.context.set_source_rgba(*self.label_color)
- y = self.borders[VERT] + self.value_label
- step = (self.dimensions[VERT] - 2*self.borders[VERT] - self.value_label)/(len(self.labels[VERT]) - 1)
- self.labels[VERT].reverse()
- for item in self.labels[VERT]:
- width, height = self.context.text_extents(item)[2:4]
- self.context.move_to(self.borders[HORZ] - width - 5, y + height/2)
- self.context.show_text(item)
- y += step
- self.labels[VERT].reverse()
-
- def render_values(self):
- self.context.set_source_rgba(*self.value_label_color)
- self.context.set_font_size(self.font_size * 0.8)
- if self.stack:
- for i,group in enumerate(self.series):
- value = sum(group.to_list())
- width = self.context.text_extents(str(value))[2]
- x = self.borders[HORZ] + (i+0.5)*self.steps[HORZ] + (i+1)*self.space - width/2
- y = value*self.steps[VERT] + 2
- self.context.move_to(x, self.plot_top-y)
- self.context.show_text(str(value))
- else:
- for i,group in enumerate(self.series):
- inner_step = self.steps[HORZ]/len(group)
- x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
- for number,data in enumerate(group):
- width = self.context.text_extents(str(data.content))[2]
- self.context.move_to(x0 + 0.5*inner_step - width/2, self.plot_top - data.content*self.steps[VERT] - 2)
- self.context.show_text(str(data.content))
- x0 += inner_step
-
- def render_plot(self):
- if self.stack:
- for i,group in enumerate(self.series):
- x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
- y0 = 0
- for number,data in enumerate(group):
- if self.series_colors[number][4] in ('linear','radial'):
- linear = cairo.LinearGradient( x0, data.content*self.steps[VERT]/2, x0 + self.steps[HORZ], data.content*self.steps[VERT]/2 )
- color = self.series_colors[number]
- linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
- linear.add_color_stop_rgba(1.0, *color[:4])
- self.context.set_source(linear)
- elif self.series_colors[number][4] == 'solid':
- self.context.set_source_rgba(*self.series_colors[number][:4])
- if self.rounded_corners:
- self.draw_rectangle(number, len(group), x0, self.plot_top - y0 - data.content*self.steps[VERT], x0 + self.steps[HORZ], self.plot_top - y0)
- self.context.fill()
- else:
- self.context.rectangle(x0, self.plot_top - y0 - data.content*self.steps[VERT], self.steps[HORZ], data.content*self.steps[VERT])
- self.context.fill()
- y0 += data.content*self.steps[VERT]
- else:
- for i,group in enumerate(self.series):
- inner_step = self.steps[HORZ]/len(group)
- y0 = self.borders[VERT]
- x0 = self.borders[HORZ] + i*self.steps[HORZ] + (i+1)*self.space
- for number,data in enumerate(group):
- if self.series_colors[number][4] == 'linear':
- linear = cairo.LinearGradient( x0, data.content*self.steps[VERT]/2, x0 + inner_step, data.content*self.steps[VERT]/2 )
- color = self.series_colors[number]
- linear.add_color_stop_rgba(0.0, 3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
- linear.add_color_stop_rgba(1.0, *color[:4])
- self.context.set_source(linear)
- elif self.series_colors[number][4] == 'solid':
- self.context.set_source_rgba(*self.series_colors[number][:4])
- if self.rounded_corners and data.content != 0:
- BarPlot.draw_round_rectangle(self, x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top)
- self.context.fill()
- elif self.three_dimension:
- self.draw_3d_rectangle_front(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
- self.context.fill()
- self.draw_3d_rectangle_side(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
- self.context.fill()
- self.draw_3d_rectangle_top(x0, self.plot_top - data.content*self.steps[VERT], x0+inner_step, self.plot_top, 5)
- self.context.fill()
- else:
- self.context.rectangle(x0, self.plot_top - data.content*self.steps[VERT], inner_step, data.content*self.steps[VERT])
- self.context.fill()
-
- x0 += inner_step
-
-class StreamChart(VerticalBarPlot):
- def __init__(self,
- surface = None,
- data = None,
- width = 640,
- height = 480,
- background = "white light_gray",
- border = 0,
- grid = False,
- series_legend = None,
- x_labels = None,
- x_bounds = None,
- y_bounds = None,
- series_colors = None):
-
- VerticalBarPlot.__init__(self, surface, data, width, height, background, border,
- False, grid, False, True, False,
- None, x_labels, None, x_bounds, y_bounds, series_colors)
-
- def calc_steps(self):
- other_dir = other_direction(self.main_dir)
- self.series_amplitude = self.bounds[self.main_dir][1] - self.bounds[self.main_dir][0]
- if self.series_amplitude:
- self.steps[self.main_dir] = float(self.plot_dimensions[self.main_dir])/self.series_amplitude
- else:
- self.steps[self.main_dir] = 0.00
- series_length = len(self.data)
- self.steps[other_dir] = float(self.plot_dimensions[other_dir])/series_length
-
- def render_legend(self):
- pass
-
- def ground(self, index):
- sum_values = sum(self.data[index])
- return -0.5*sum_values
-
- def calc_angles(self):
- middle = self.plot_top - self.plot_dimensions[VERT]/2.0
- self.angles = [tuple([0.0 for x in range(len(self.data)+1)])]
- for x_index in range(1, len(self.data)-1):
- t = []
- x0 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
- x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
- y0 = middle - self.ground(x_index-1)*self.steps[VERT]
- y2 = middle - self.ground(x_index+1)*self.steps[VERT]
- t.append(math.atan(float(y0-y2)/(x0-x2)))
- for data_index in range(len(self.data[x_index])):
- x0 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
- x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
- y0 = middle - self.ground(x_index-1)*self.steps[VERT] - self.data[x_index-1][data_index]*self.steps[VERT]
- y2 = middle - self.ground(x_index+1)*self.steps[VERT] - self.data[x_index+1][data_index]*self.steps[VERT]
-
- for i in range(0,data_index):
- y0 -= self.data[x_index-1][i]*self.steps[VERT]
- y2 -= self.data[x_index+1][i]*self.steps[VERT]
-
- if data_index == len(self.data[0])-1 and False:
- self.context.set_source_rgba(0.0,0.0,0.0,0.3)
- self.context.move_to(x0,y0)
- self.context.line_to(x2,y2)
- self.context.stroke()
- self.context.arc(x0,y0,2,0,2*math.pi)
- self.context.fill()
- t.append(math.atan(float(y0-y2)/(x0-x2)))
- self.angles.append(tuple(t))
- self.angles.append(tuple([0.0 for x in range(len(self.data)+1)]))
-
- def render_plot(self):
- self.calc_angles()
- middle = self.plot_top - self.plot_dimensions[VERT]/2.0
- p = 0.4*self.steps[HORZ]
- for data_index in range(len(self.data[0])-1,-1,-1):
- self.context.set_source_rgba(*self.series_colors[data_index][:4])
-
- #draw the upper line
- for x_index in range(len(self.data)-1) :
- x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
- y1 = middle - self.ground(x_index)*self.steps[VERT] - self.data[x_index][data_index]*self.steps[VERT]
- x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
- y2 = middle - self.ground(x_index + 1)*self.steps[VERT] - self.data[x_index + 1][data_index]*self.steps[VERT]
-
- for i in range(0,data_index):
- y1 -= self.data[x_index][i]*self.steps[VERT]
- y2 -= self.data[x_index+1][i]*self.steps[VERT]
-
- if x_index == 0:
- self.context.move_to(x1,y1)
-
- ang1 = self.angles[x_index][data_index+1]
- ang2 = self.angles[x_index+1][data_index+1] + math.pi
- self.context.curve_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1),
- x2+p*math.cos(ang2),y2+p*math.sin(ang2),
- x2,y2)
-
- for x_index in range(len(self.data)-1,0,-1) :
- x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
- y1 = middle - self.ground(x_index)*self.steps[VERT]
- x2 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
- y2 = middle - self.ground(x_index - 1)*self.steps[VERT]
-
- for i in range(0,data_index):
- y1 -= self.data[x_index][i]*self.steps[VERT]
- y2 -= self.data[x_index-1][i]*self.steps[VERT]
-
- if x_index == len(self.data)-1:
- self.context.line_to(x1,y1+2)
-
- #revert angles by pi degrees to take the turn back
- ang1 = self.angles[x_index][data_index] + math.pi
- ang2 = self.angles[x_index-1][data_index]
- self.context.curve_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1),
- x2+p*math.cos(ang2),y2+p*math.sin(ang2),
- x2,y2+2)
-
- self.context.close_path()
- self.context.fill()
-
- if False:
- self.context.move_to(self.borders[HORZ] + 0.5*self.steps[HORZ], middle)
- for x_index in range(len(self.data)-1) :
- x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
- y1 = middle - self.ground(x_index)*self.steps[VERT] - self.data[x_index][data_index]*self.steps[VERT]
- x2 = self.borders[HORZ] + (0.5 + x_index + 1)*self.steps[HORZ]
- y2 = middle - self.ground(x_index + 1)*self.steps[VERT] - self.data[x_index + 1][data_index]*self.steps[VERT]
-
- for i in range(0,data_index):
- y1 -= self.data[x_index][i]*self.steps[VERT]
- y2 -= self.data[x_index+1][i]*self.steps[VERT]
-
- ang1 = self.angles[x_index][data_index+1]
- ang2 = self.angles[x_index+1][data_index+1] + math.pi
- self.context.set_source_rgba(1.0,0.0,0.0)
- self.context.arc(x1+p*math.cos(ang1),y1+p*math.sin(ang1),2,0,2*math.pi)
- self.context.fill()
- self.context.set_source_rgba(0.0,0.0,0.0)
- self.context.arc(x2+p*math.cos(ang2),y2+p*math.sin(ang2),2,0,2*math.pi)
- self.context.fill()
- '''self.context.set_source_rgba(0.0,0.0,0.0,0.3)
- self.context.arc(x2,y2,2,0,2*math.pi)
- self.context.fill()'''
- self.context.move_to(x1,y1)
- self.context.line_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1))
- self.context.stroke()
- self.context.move_to(x2,y2)
- self.context.line_to(x2+p*math.cos(ang2),y2+p*math.sin(ang2))
- self.context.stroke()
- if False:
- for x_index in range(len(self.data)-1,0,-1) :
- x1 = self.borders[HORZ] + (0.5 + x_index)*self.steps[HORZ]
- y1 = middle - self.ground(x_index)*self.steps[VERT]
- x2 = self.borders[HORZ] + (0.5 + x_index - 1)*self.steps[HORZ]
- y2 = middle - self.ground(x_index - 1)*self.steps[VERT]
-
- for i in range(0,data_index):
- y1 -= self.data[x_index][i]*self.steps[VERT]
- y2 -= self.data[x_index-1][i]*self.steps[VERT]
-
- #revert angles by pi degrees to take the turn back
- ang1 = self.angles[x_index][data_index] + math.pi
- ang2 = self.angles[x_index-1][data_index]
- self.context.set_source_rgba(0.0,1.0,0.0)
- self.context.arc(x1+p*math.cos(ang1),y1+p*math.sin(ang1),2,0,2*math.pi)
- self.context.fill()
- self.context.set_source_rgba(0.0,0.0,1.0)
- self.context.arc(x2+p*math.cos(ang2),y2+p*math.sin(ang2),2,0,2*math.pi)
- self.context.fill()
- '''self.context.set_source_rgba(0.0,0.0,0.0,0.3)
- self.context.arc(x2,y2,2,0,2*math.pi)
- self.context.fill()'''
- self.context.move_to(x1,y1)
- self.context.line_to(x1+p*math.cos(ang1),y1+p*math.sin(ang1))
- self.context.stroke()
- self.context.move_to(x2,y2)
- self.context.line_to(x2+p*math.cos(ang2),y2+p*math.sin(ang2))
- self.context.stroke()
- #break
-
- #self.context.arc(self.dimensions[HORZ]/2, self.dimensions[VERT]/2,50,0,3*math.pi/2)
- #self.context.fill()
-
-
-class PiePlot(Plot):
- #TODO: Check the old cairoplot, graphs aren't matching
- def __init__ (self,
- surface = None,
- data = None,
- width = 640,
- height = 480,
- background = "white light_gray",
- gradient = False,
- shadow = False,
- colors = None):
-
- Plot.__init__( self, surface, data, width, height, background, series_colors = colors )
- self.center = (self.dimensions[HORZ]/2, self.dimensions[VERT]/2)
- self.total = sum( self.series.to_list() )
- self.radius = min(self.dimensions[HORZ]/3,self.dimensions[VERT]/3)
- self.gradient = gradient
- self.shadow = shadow
-
- def sort_function(x,y):
- return x.content - y.content
-
- def load_series(self, data, x_labels=None, y_labels=None, series_colors=None):
- Plot.load_series(self, data, x_labels, y_labels, series_colors)
- # Already done inside series
- #self.data = sorted(self.data)
-
- def draw_piece(self, angle, next_angle):
- self.context.move_to(self.center[0],self.center[1])
- self.context.line_to(self.center[0] + self.radius*math.cos(angle), self.center[1] + self.radius*math.sin(angle))
- self.context.arc(self.center[0], self.center[1], self.radius, angle, next_angle)
- self.context.line_to(self.center[0], self.center[1])
- self.context.close_path()
-
- def render(self):
- self.render_background()
- self.render_bounding_box()
- if self.shadow:
- self.render_shadow()
- self.render_plot()
- self.render_series_labels()
-
- def render_shadow(self):
- horizontal_shift = 3
- vertical_shift = 3
- self.context.set_source_rgba(0, 0, 0, 0.5)
- self.context.arc(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.radius, 0, 2*math.pi)
- self.context.fill()
-
- def render_series_labels(self):
- angle = 0
- next_angle = 0
- x0,y0 = self.center
- cr = self.context
- for number,key in enumerate(self.series_labels):
- # self.data[number] should be just a number
- data = sum(self.series[number].to_list())
-
- next_angle = angle + 2.0*math.pi*data/self.total
- cr.set_source_rgba(*self.series_colors[number][:4])
- w = cr.text_extents(key)[2]
- if (angle + next_angle)/2 < math.pi/2 or (angle + next_angle)/2 > 3*math.pi/2:
- cr.move_to(x0 + (self.radius+10)*math.cos((angle+next_angle)/2), y0 + (self.radius+10)*math.sin((angle+next_angle)/2) )
- else:
- cr.move_to(x0 + (self.radius+10)*math.cos((angle+next_angle)/2) - w, y0 + (self.radius+10)*math.sin((angle+next_angle)/2) )
- cr.show_text(key)
- angle = next_angle
-
- def render_plot(self):
- angle = 0
- next_angle = 0
- x0,y0 = self.center
- cr = self.context
- for number,group in enumerate(self.series):
- # Group should be just a number
- data = sum(group.to_list())
- next_angle = angle + 2.0*math.pi*data/self.total
- if self.gradient or self.series_colors[number][4] in ('linear','radial'):
- gradient_color = cairo.RadialGradient(self.center[0], self.center[1], 0, self.center[0], self.center[1], self.radius)
- gradient_color.add_color_stop_rgba(0.3, *self.series_colors[number][:4])
- gradient_color.add_color_stop_rgba(1, self.series_colors[number][0]*0.7,
- self.series_colors[number][1]*0.7,
- self.series_colors[number][2]*0.7,
- self.series_colors[number][3])
- cr.set_source(gradient_color)
- else:
- cr.set_source_rgba(*self.series_colors[number][:4])
-
- self.draw_piece(angle, next_angle)
- cr.fill()
-
- cr.set_source_rgba(1.0, 1.0, 1.0)
- self.draw_piece(angle, next_angle)
- cr.stroke()
-
- angle = next_angle
-
-class DonutPlot(PiePlot):
- def __init__ (self,
- surface = None,
- data = None,
- width = 640,
- height = 480,
- background = "white light_gray",
- gradient = False,
- shadow = False,
- colors = None,
- inner_radius=-1):
-
- Plot.__init__( self, surface, data, width, height, background, series_colors = colors )
-
- self.center = ( self.dimensions[HORZ]/2, self.dimensions[VERT]/2 )
- self.total = sum( self.series.to_list() )
- self.radius = min( self.dimensions[HORZ]/3,self.dimensions[VERT]/3 )
- self.inner_radius = inner_radius*self.radius
-
- if inner_radius == -1:
- self.inner_radius = self.radius/3
-
- self.gradient = gradient
- self.shadow = shadow
-
- def draw_piece(self, angle, next_angle):
- self.context.move_to(self.center[0] + (self.inner_radius)*math.cos(angle), self.center[1] + (self.inner_radius)*math.sin(angle))
- self.context.line_to(self.center[0] + self.radius*math.cos(angle), self.center[1] + self.radius*math.sin(angle))
- self.context.arc(self.center[0], self.center[1], self.radius, angle, next_angle)
- self.context.line_to(self.center[0] + (self.inner_radius)*math.cos(next_angle), self.center[1] + (self.inner_radius)*math.sin(next_angle))
- self.context.arc_negative(self.center[0], self.center[1], self.inner_radius, next_angle, angle)
- self.context.close_path()
-
- def render_shadow(self):
- horizontal_shift = 3
- vertical_shift = 3
- self.context.set_source_rgba(0, 0, 0, 0.5)
- self.context.arc(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.inner_radius, 0, 2*math.pi)
- self.context.arc_negative(self.center[0] + horizontal_shift, self.center[1] + vertical_shift, self.radius, 0, -2*math.pi)
- self.context.fill()
-
-class GanttChart (Plot) :
- def __init__(self,
- surface = None,
- data = None,
- width = 640,
- height = 480,
- x_labels = None,
- y_labels = None,
- colors = None):
- self.bounds = {}
- self.max_value = {}
- Plot.__init__(self, surface, data, width, height, x_labels = x_labels, y_labels = y_labels, series_colors = colors)
-
- def load_series(self, data, x_labels=None, y_labels=None, series_colors=None):
- Plot.load_series(self, data, x_labels, y_labels, series_colors)
- self.calc_boundaries()
-
- def calc_boundaries(self):
- self.bounds[HORZ] = (0,len(self.series))
- end_pos = max(self.series.to_list())
-
- #for group in self.series:
- # if hasattr(item, "__delitem__"):
- # for sub_item in item:
- # end_pos = max(sub_item)
- # else:
- # end_pos = max(item)
- self.bounds[VERT] = (0,end_pos)
-
- def calc_extents(self, direction):
- self.max_value[direction] = 0
- if self.labels[direction]:
- self.max_value[direction] = max(self.context.text_extents(item)[2] for item in self.labels[direction])
- else:
- self.max_value[direction] = self.context.text_extents( str(self.bounds[direction][1] + 1) )[2]
-
- def calc_horz_extents(self):
- self.calc_extents(HORZ)
- self.borders[HORZ] = 100 + self.max_value[HORZ]
-
- def calc_vert_extents(self):
- self.calc_extents(VERT)
- self.borders[VERT] = self.dimensions[VERT]/(self.bounds[HORZ][1] + 1)
-
- def calc_steps(self):
- self.horizontal_step = (self.dimensions[HORZ] - self.borders[HORZ])/(len(self.labels[VERT]))
- self.vertical_step = self.borders[VERT]
-
- def render(self):
- self.calc_horz_extents()
- self.calc_vert_extents()
- self.calc_steps()
- self.render_background()
-
- self.render_labels()
- self.render_grid()
- self.render_plot()
-
- def render_background(self):
- cr = self.context
- cr.set_source_rgba(255,255,255)
- cr.rectangle(0,0,self.dimensions[HORZ], self.dimensions[VERT])
- cr.fill()
- for number,group in enumerate(self.series):
- linear = cairo.LinearGradient(self.dimensions[HORZ]/2, self.borders[VERT] + number*self.vertical_step,
- self.dimensions[HORZ]/2, self.borders[VERT] + (number+1)*self.vertical_step)
- linear.add_color_stop_rgba(0,1.0,1.0,1.0,1.0)
- linear.add_color_stop_rgba(1.0,0.9,0.9,0.9,1.0)
- cr.set_source(linear)
- cr.rectangle(0,self.borders[VERT] + number*self.vertical_step,self.dimensions[HORZ],self.vertical_step)
- cr.fill()
-
- def render_grid(self):
- cr = self.context
- cr.set_source_rgba(0.7, 0.7, 0.7)
- cr.set_dash((1,0,0,0,0,0,1))
- cr.set_line_width(0.5)
- for number,label in enumerate(self.labels[VERT]):
- h = cr.text_extents(label)[3]
- cr.move_to(self.borders[HORZ] + number*self.horizontal_step, self.vertical_step/2 + h)
- cr.line_to(self.borders[HORZ] + number*self.horizontal_step, self.dimensions[VERT])
- cr.stroke()
-
- def render_labels(self):
- self.context.set_font_size(0.02 * self.dimensions[HORZ])
-
- self.render_horz_labels()
- self.render_vert_labels()
-
- def render_horz_labels(self):
- cr = self.context
- labels = self.labels[HORZ]
- if not labels:
- labels = [str(i) for i in range(1, self.bounds[HORZ][1] + 1) ]
- for number,label in enumerate(labels):
- if label != None:
- cr.set_source_rgba(0.5, 0.5, 0.5)
- w,h = cr.text_extents(label)[2], cr.text_extents(label)[3]
- cr.move_to(40,self.borders[VERT] + number*self.vertical_step + self.vertical_step/2 + h/2)
- cr.show_text(label)
-
- def render_vert_labels(self):
- cr = self.context
- labels = self.labels[VERT]
- if not labels:
- labels = [str(i) for i in range(1, self.bounds[VERT][1] + 1) ]
- for number,label in enumerate(labels):
- w,h = cr.text_extents(label)[2], cr.text_extents(label)[3]
- cr.move_to(self.borders[HORZ] + number*self.horizontal_step - w/2, self.vertical_step/2)
- cr.show_text(label)
-
- def render_rectangle(self, x0, y0, x1, y1, color):
- self.draw_shadow(x0, y0, x1, y1)
- self.draw_rectangle(x0, y0, x1, y1, color)
-
- def draw_rectangular_shadow(self, gradient, x0, y0, w, h):
- self.context.set_source(gradient)
- self.context.rectangle(x0,y0,w,h)
- self.context.fill()
-
- def draw_circular_shadow(self, x, y, radius, ang_start, ang_end, mult, shadow):
- gradient = cairo.RadialGradient(x, y, 0, x, y, 2*radius)
- gradient.add_color_stop_rgba(0, 0, 0, 0, shadow)
- gradient.add_color_stop_rgba(1, 0, 0, 0, 0)
- self.context.set_source(gradient)
- self.context.move_to(x,y)
- self.context.line_to(x + mult[0]*radius,y + mult[1]*radius)
- self.context.arc(x, y, 8, ang_start, ang_end)
- self.context.line_to(x,y)
- self.context.close_path()
- self.context.fill()
-
- def draw_rectangle(self, x0, y0, x1, y1, color):
- cr = self.context
- middle = (x0+x1)/2
- linear = cairo.LinearGradient(middle,y0,middle,y1)
- linear.add_color_stop_rgba(0,3.5*color[0]/5.0, 3.5*color[1]/5.0, 3.5*color[2]/5.0,1.0)
- linear.add_color_stop_rgba(1,*color[:4])
- cr.set_source(linear)
-
- cr.arc(x0+5, y0+5, 5, 0, 2*math.pi)
- cr.arc(x1-5, y0+5, 5, 0, 2*math.pi)
- cr.arc(x0+5, y1-5, 5, 0, 2*math.pi)
- cr.arc(x1-5, y1-5, 5, 0, 2*math.pi)
- cr.rectangle(x0+5,y0,x1-x0-10,y1-y0)
- cr.rectangle(x0,y0+5,x1-x0,y1-y0-10)
- cr.fill()
-
- def draw_shadow(self, x0, y0, x1, y1):
- shadow = 0.4
- h_mid = (x0+x1)/2
- v_mid = (y0+y1)/2
- h_linear_1 = cairo.LinearGradient(h_mid,y0-4,h_mid,y0+4)
- h_linear_2 = cairo.LinearGradient(h_mid,y1-4,h_mid,y1+4)
- v_linear_1 = cairo.LinearGradient(x0-4,v_mid,x0+4,v_mid)
- v_linear_2 = cairo.LinearGradient(x1-4,v_mid,x1+4,v_mid)
-
- h_linear_1.add_color_stop_rgba( 0, 0, 0, 0, 0)
- h_linear_1.add_color_stop_rgba( 1, 0, 0, 0, shadow)
- h_linear_2.add_color_stop_rgba( 0, 0, 0, 0, shadow)
- h_linear_2.add_color_stop_rgba( 1, 0, 0, 0, 0)
- v_linear_1.add_color_stop_rgba( 0, 0, 0, 0, 0)
- v_linear_1.add_color_stop_rgba( 1, 0, 0, 0, shadow)
- v_linear_2.add_color_stop_rgba( 0, 0, 0, 0, shadow)
- v_linear_2.add_color_stop_rgba( 1, 0, 0, 0, 0)
-
- self.draw_rectangular_shadow(h_linear_1,x0+4,y0-4,x1-x0-8,8)
- self.draw_rectangular_shadow(h_linear_2,x0+4,y1-4,x1-x0-8,8)
- self.draw_rectangular_shadow(v_linear_1,x0-4,y0+4,8,y1-y0-8)
- self.draw_rectangular_shadow(v_linear_2,x1-4,y0+4,8,y1-y0-8)
-
- self.draw_circular_shadow(x0+4, y0+4, 4, math.pi, 3*math.pi/2, (-1,0), shadow)
- self.draw_circular_shadow(x1-4, y0+4, 4, 3*math.pi/2, 2*math.pi, (0,-1), shadow)
- self.draw_circular_shadow(x0+4, y1-4, 4, math.pi/2, math.pi, (0,1), shadow)
- self.draw_circular_shadow(x1-4, y1-4, 4, 0, math.pi/2, (1,0), shadow)
-
- def render_plot(self):
- for index,group in enumerate(self.series):
- for data in group:
- self.render_rectangle(self.borders[HORZ] + data.content[0]*self.horizontal_step,
- self.borders[VERT] + index*self.vertical_step + self.vertical_step/4.0,
- self.borders[HORZ] + data.content[1]*self.horizontal_step,
- self.borders[VERT] + index*self.vertical_step + 3.0*self.vertical_step/4.0,
- self.series_colors[index])
-
-# Function definition
-
-def scatter_plot(name,
- data = None,
- errorx = None,
- errory = None,
- width = 640,
- height = 480,
- background = "white light_gray",
- border = 0,
- axis = False,
- dash = False,
- discrete = False,
- dots = False,
- grid = False,
- series_legend = False,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- z_bounds = None,
- x_title = None,
- y_title = None,
- series_colors = None,
- circle_colors = None):
-
- '''
- - Function to plot scatter data.
-
- - Parameters
-
- data - The values to be ploted might be passed in a two basic:
- list of points: [(0,0), (0,1), (0,2)] or [(0,0,1), (0,1,4), (0,2,1)]
- lists of coordinates: [ [0,0,0] , [0,1,2] ] or [ [0,0,0] , [0,1,2] , [1,4,1] ]
- Notice that these kinds of that can be grouped in order to form more complex data
- using lists of lists or dictionaries;
- series_colors - Define color values for each of the series
- circle_colors - Define a lower and an upper bound for the circle colors for variable radius
- (3 dimensions) series
- '''
-
- plot = ScatterPlot( name, data, errorx, errory, width, height, background, border,
- axis, dash, discrete, dots, grid, series_legend, x_labels, y_labels,
- x_bounds, y_bounds, z_bounds, x_title, y_title, series_colors, circle_colors )
- plot.render()
- plot.commit()
-
-def dot_line_plot(name,
- data,
- width,
- height,
- background = "white light_gray",
- border = 0,
- axis = False,
- dash = False,
- dots = False,
- grid = False,
- series_legend = False,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- x_title = None,
- y_title = None,
- series_colors = None):
- '''
- - Function to plot graphics using dots and lines.
-
- dot_line_plot (name, data, width, height, background = "white light_gray", border = 0, axis = False, grid = False, x_labels = None, y_labels = None, x_bounds = None, y_bounds = None)
-
- - Parameters
-
- name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
- data - The list, list of lists or dictionary holding the data to be plotted;
- width, height - Dimensions of the output image;
- background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
- If left None, a gray to white gradient will be generated;
- border - Distance in pixels of a square border into which the graphics will be drawn;
- axis - Whether or not the axis are to be drawn;
- dash - Boolean or a list or a dictionary of booleans indicating whether or not the associated series should be drawn in dashed mode;
- dots - Whether or not dots should be drawn on each point;
- grid - Whether or not the gris is to be drawn;
- series_legend - Whether or not the legend is to be drawn;
- x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
- x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
- x_title - Whether or not to plot a title over the x axis.
- y_title - Whether or not to plot a title over the y axis.
-
- - Examples of use
-
- data = [0, 1, 3, 8, 9, 0, 10, 10, 2, 1]
- CairoPlot.dot_line_plot('teste', data, 400, 300)
-
- data = { "john" : [10, 10, 10, 10, 30], "mary" : [0, 0, 3, 5, 15], "philip" : [13, 32, 11, 25, 2] }
- x_labels = ["jan/2008", "feb/2008", "mar/2008", "apr/2008", "may/2008" ]
- CairoPlot.dot_line_plot( 'test', data, 400, 300, axis = True, grid = True,
- series_legend = True, x_labels = x_labels )
- '''
- plot = DotLinePlot( name, data, width, height, background, border,
- axis, dash, dots, grid, series_legend, x_labels, y_labels,
- x_bounds, y_bounds, x_title, y_title, series_colors )
- plot.render()
- plot.commit()
-
-def function_plot(name,
- data,
- width,
- height,
- background = "white light_gray",
- border = 0,
- axis = True,
- dots = False,
- discrete = False,
- grid = False,
- series_legend = False,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- x_title = None,
- y_title = None,
- series_colors = None,
- step = 1):
-
- '''
- - Function to plot functions.
-
- function_plot(name, data, width, height, background = "white light_gray", border = 0, axis = True, grid = False, dots = False, x_labels = None, y_labels = None, x_bounds = None, y_bounds = None, step = 1, discrete = False)
-
- - Parameters
-
- name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
- data - The list, list of lists or dictionary holding the data to be plotted;
- width, height - Dimensions of the output image;
- background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
- If left None, a gray to white gradient will be generated;
- border - Distance in pixels of a square border into which the graphics will be drawn;
- axis - Whether or not the axis are to be drawn;
- grid - Whether or not the gris is to be drawn;
- dots - Whether or not dots should be shown at each point;
- x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
- x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
- step - the horizontal distance from one point to the other. The smaller, the smoother the curve will be;
- discrete - whether or not the function should be plotted in discrete format.
-
- - Example of use
-
- data = lambda x : x**2
- CairoPlot.function_plot('function4', data, 400, 300, grid = True, x_bounds=(-10,10), step = 0.1)
- '''
-
- plot = FunctionPlot( name, data, width, height, background, border,
- axis, discrete, dots, grid, series_legend, x_labels, y_labels,
- x_bounds, y_bounds, x_title, y_title, series_colors, step )
- plot.render()
- plot.commit()
-
-def pie_plot( name, data, width, height, background = "white light_gray", gradient = False, shadow = False, colors = None ):
-
- '''
- - Function to plot pie graphics.
-
- pie_plot(name, data, width, height, background = "white light_gray", gradient = False, colors = None)
-
- - Parameters
-
- name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
- data - The list, list of lists or dictionary holding the data to be plotted;
- width, height - Dimensions of the output image;
- background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
- If left None, a gray to white gradient will be generated;
- gradient - Whether or not the pie color will be painted with a gradient;
- shadow - Whether or not there will be a shadow behind the pie;
- colors - List of slices colors.
-
- - Example of use
-
- teste_data = {"john" : 123, "mary" : 489, "philip" : 890 , "suzy" : 235}
- CairoPlot.pie_plot("pie_teste", teste_data, 500, 500)
- '''
-
- plot = PiePlot( name, data, width, height, background, gradient, shadow, colors )
- plot.render()
- plot.commit()
-
-def donut_plot(name, data, width, height, background = "white light_gray", gradient = False, shadow = False, colors = None, inner_radius = -1):
-
- '''
- - Function to plot donut graphics.
-
- donut_plot(name, data, width, height, background = "white light_gray", gradient = False, inner_radius = -1)
-
- - Parameters
-
- name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
- data - The list, list of lists or dictionary holding the data to be plotted;
- width, height - Dimensions of the output image;
- background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
- If left None, a gray to white gradient will be generated;
- shadow - Whether or not there will be a shadow behind the donut;
- gradient - Whether or not the donut color will be painted with a gradient;
- colors - List of slices colors;
- inner_radius - The radius of the donut's inner circle.
-
- - Example of use
-
- teste_data = {"john" : 123, "mary" : 489, "philip" : 890 , "suzy" : 235}
- CairoPlot.donut_plot("donut_teste", teste_data, 500, 500)
- '''
-
- plot = DonutPlot(name, data, width, height, background, gradient, shadow, colors, inner_radius)
- plot.render()
- plot.commit()
-
-def gantt_chart(name, pieces, width, height, x_labels, y_labels, colors):
-
- '''
- - Function to generate Gantt Charts.
-
- gantt_chart(name, pieces, width, height, x_labels, y_labels, colors):
-
- - Parameters
-
- name - Name of the desired output file, no need to input the .svg as it will be added at runtim;
- pieces - A list defining the spaces to be drawn. The user must pass, for each line, the index of its start and the index of its end. If a line must have two or more spaces, they must be passed inside a list;
- width, height - Dimensions of the output image;
- x_labels - A list of names for each of the vertical lines;
- y_labels - A list of names for each of the horizontal spaces;
- colors - List containing the colors expected for each of the horizontal spaces
-
- - Example of use
-
- pieces = [ (0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,8)]
- x_labels = [ 'teste01', 'teste02', 'teste03', 'teste04']
- y_labels = [ '0001', '0002', '0003', '0004', '0005', '0006', '0007', '0008', '0009', '0010' ]
- colors = [ (1.0, 0.0, 0.0), (1.0, 0.7, 0.0), (1.0, 1.0, 0.0), (0.0, 1.0, 0.0) ]
- CairoPlot.gantt_chart('gantt_teste', pieces, 600, 300, x_labels, y_labels, colors)
- '''
-
- plot = GanttChart(name, pieces, width, height, x_labels, y_labels, colors)
- plot.render()
- plot.commit()
-
-def vertical_bar_plot(name,
- data,
- width,
- height,
- background = "white light_gray",
- border = 0,
- display_values = False,
- grid = False,
- rounded_corners = False,
- stack = False,
- three_dimension = False,
- series_labels = None,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- colors = None):
- #TODO: Fix docstring for vertical_bar_plot
- '''
- - Function to generate vertical Bar Plot Charts.
-
- bar_plot(name, data, width, height, background, border, grid, rounded_corners, three_dimension,
- x_labels, y_labels, x_bounds, y_bounds, colors):
-
- - Parameters
-
- name - Name of the desired output file, no need to input the .svg as it will be added at runtime;
- data - The list, list of lists or dictionary holding the data to be plotted;
- width, height - Dimensions of the output image;
- background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
- If left None, a gray to white gradient will be generated;
- border - Distance in pixels of a square border into which the graphics will be drawn;
- grid - Whether or not the gris is to be drawn;
- rounded_corners - Whether or not the bars should have rounded corners;
- three_dimension - Whether or not the bars should be drawn in pseudo 3D;
- x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
- x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
- colors - List containing the colors expected for each of the bars.
-
- - Example of use
-
- data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- CairoPlot.vertical_bar_plot ('bar2', data, 400, 300, border = 20, grid = True, rounded_corners = False)
- '''
-
- plot = VerticalBarPlot(name, data, width, height, background, border,
- display_values, grid, rounded_corners, stack, three_dimension,
- series_labels, x_labels, y_labels, x_bounds, y_bounds, colors)
- plot.render()
- plot.commit()
-
-def horizontal_bar_plot(name,
- data,
- width,
- height,
- background = "white light_gray",
- border = 0,
- display_values = False,
- grid = False,
- rounded_corners = False,
- stack = False,
- three_dimension = False,
- series_labels = None,
- x_labels = None,
- y_labels = None,
- x_bounds = None,
- y_bounds = None,
- colors = None):
-
- #TODO: Fix docstring for horizontal_bar_plot
- '''
- - Function to generate Horizontal Bar Plot Charts.
-
- bar_plot(name, data, width, height, background, border, grid, rounded_corners, three_dimension,
- x_labels, y_labels, x_bounds, y_bounds, colors):
-
- - Parameters
-
- name - Name of the desired output file, no need to input the .svg as it will be added at runtime;
- data - The list, list of lists or dictionary holding the data to be plotted;
- width, height - Dimensions of the output image;
- background - A 3 element tuple representing the rgb color expected for the background or a new cairo linear gradient.
- If left None, a gray to white gradient will be generated;
- border - Distance in pixels of a square border into which the graphics will be drawn;
- grid - Whether or not the gris is to be drawn;
- rounded_corners - Whether or not the bars should have rounded corners;
- three_dimension - Whether or not the bars should be drawn in pseudo 3D;
- x_labels, y_labels - lists of strings containing the horizontal and vertical labels for the axis;
- x_bounds, y_bounds - tuples containing the lower and upper value bounds for the data to be plotted;
- colors - List containing the colors expected for each of the bars.
-
- - Example of use
-
- data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
- CairoPlot.bar_plot ('bar2', data, 400, 300, border = 20, grid = True, rounded_corners = False)
- '''
-
- plot = HorizontalBarPlot(name, data, width, height, background, border,
- display_values, grid, rounded_corners, stack, three_dimension,
- series_labels, x_labels, y_labels, x_bounds, y_bounds, colors)
- plot.render()
- plot.commit()
-
-def stream_chart(name,
- data,
- width,
- height,
- background = "white light_gray",
- border = 0,
- grid = False,
- series_legend = None,
- x_labels = None,
- x_bounds = None,
- y_bounds = None,
- colors = None):
-
- #TODO: Fix docstring for horizontal_bar_plot
- plot = StreamChart(name, data, width, height, background, border,
- grid, series_legend, x_labels, x_bounds, y_bounds, colors)
- plot.render()
- plot.commit()
-
-
-if __name__ == "__main__":
- import tests
- import seriestests
diff --git a/invoice/graph/graphs.py b/invoice/graph/graphs.py
deleted file mode 100755
index b59b7e1..0000000
--- a/invoice/graph/graphs.py
+++ /dev/null
@@ -1,223 +0,0 @@
-#!/usr/bin/python
-# -*- coding: utf-8 -*-
-import cairoplot, datetime, sqlite3, time
-
-def TortendiagramUser():
- data = {}
- now = int(time.time())
-
- query = "SELECT users.id, SUM(memberprice) FROM users, purchases purch, prices \
- WHERE users.id = purch.user AND purch.product = prices.product AND \
- purch.timestamp > ? AND purch.timestamp < ? AND prices.valid_from = \
- (SELECT valid_from FROM prices WHERE product = purch.product AND \
- valid_from < purch.timestamp ORDER BY valid_from DESC LIMIT 1) \
- GROUP BY users.id"
-
- connection = sqlite3.connect('shop.db')
- c = connection.cursor()
- c.execute(query, (0, now))
- for row in c:
- data["%d (%d.%d Euro)" %(row[0], row[1] / 100, row[1] % 100)] = row[1]
- c.close()
-
- cairoplot.pie_plot("tortendiagram", data, 640, 480)
-
-def BalkendiagramUserRanking():
- data = {}
- names = []
- now = int(time.time())
-
- query = "SELECT firstname, lastname, SUM(memberprice) FROM users, purchases purch, prices \
- WHERE users.id = purch.user AND purch.product = prices.product AND \
- purch.timestamp > ? AND purch.timestamp < ? AND prices.valid_from = \
- (SELECT valid_from FROM prices WHERE product = purch.product AND \
- valid_from < purch.timestamp ORDER BY valid_from DESC LIMIT 1) \
- GROUP BY users.id"
-
- connection = sqlite3.connect('shop.db')
- c = connection.cursor()
- c.execute(query, (0, now))
- for row in c:
- data["%s %s (%d.%d Euro)" % (row[0], row[1], row[2] / 100, row[2] % 100)] = row[2]
- c.close()
-
- count=0
- sorted_data = []
- for key, value in sorted(data.iteritems(), key=lambda (k,v): (v,k), reverse=True):
- sorted_data.append(value)
- names.append(key)
- count+=1
- if count >= 10:
- break
-
- cairoplot.horizontal_bar_plot("ranking", sorted_data, 640, 480, y_labels = names, rounded_corners = True, grid = True)
-
-def TortendiagramProduct():
- data = {}
-
- connection = sqlite3.connect('shop.db')
- c = connection.cursor()
- c.execute("SELECT products.name, SUM(1) FROM products, purchases " +
- "WHERE products.id = purchases.product GROUP BY products.id")
- for row in c:
- data[row[0]] = row[1]
- c.close()
-
- cairoplot.pie_plot("tortendiagram2", data, 640, 480)
-
-def Lagerbestand(category):
- data = {}
-
- day = 24 * 60 * 60
- interval = 21
- now = int(time.time())
-
- dates = []
- dt = datetime.datetime.fromtimestamp(now)
- dates.append("%04d-%02d-%02d" % (dt.year, dt.month, dt.day))
-
- colors = [
- "black",
- "red",
- "green",
- "blue",
- "orange",
- (117/255.0, 255/255.0, 20/255.0),
- (216/255.0, 20/255.0, 255/255.0),
- (204/255.0, 153/255.0, 0/255.0),
- (0/255.0, 204/255.0, 255/255.0),
- (153/255.0, 77/255.0, 0/255.0),
- (128/255.0, 0/255.0, 128/255.0),
- (204/255.0, 0/255.0, 0/255.0),
- (0/255.0, 0/255.0, 102/255.0),
- "yellow",
- ]
-
- connection = sqlite3.connect('shop.db')
- c = connection.cursor()
- query = ""
- name = ""
- numbers = []
-
- if category == "getraenke":
- query = "name LIKE '%Mate%' OR name LIKE '%Apfelsaft%' OR name LIKE '%Fritz%' OR name LIKE '%Coca Cola%' OR name LIKE '%Vilsa%' OR name = 'Fanta' OR name = 'Sprite'"
- elif category == "haribo":
- query = "name LIKE '%Haribo%'"
- elif category == "haribo_total":
- query = "name LIKE '%Haribo%'"
- name = "Haribo"
- interval = 4*7
- elif category == "riegel":
- query = "name LIKE '%KitKat%' OR name = 'Lion' OR name LIKE '%Snickers%' OR name = 'Mars' OR name = 'Twix' OR name = 'Duplo'"
- elif category == "other":
- query = "name LIKE '%Gouda%' OR name LIKE '%Chipsfrisch%' OR name LIKE '%Sesamsticks%'"
- elif category == "schoko":
- query = "name = 'Ü-Ei' OR name LIKE '%Tender%' OR name = 'Knoppers' OR name LIKE '%m&m%'"
- elif category == "balisto":
- query = "name LIKE '%Balisto%'"
- else:
- return
-
- c.execute("SELECT name, amount FROM products WHERE (%s) AND amount > 0" % query);
- for row in c:
- data[row[0]] = [int(row[1])]
-
- current = now
- currentid = 1
- while current > (now - interval * day):
- for k, v in data.iteritems():
- data[k].append(v[-1])
-
- dt = datetime.datetime.fromtimestamp(current - day)
- dates.append("%04d-%02d-%02d" % (dt.year, dt.month, dt.day))
-
- c.execute("SELECT name, SUM(restock.amount) FROM products, restock WHERE products.id = restock.product AND timestamp > ? AND timestamp < ? GROUP BY name", (current - day, current));
- for row in c:
- if row[0] in data:
- data[row[0]][currentid] -= row[1]
- c.execute("SELECT name, SUM(1) FROM products, purchases WHERE products.id = purchases.product AND timestamp > ? AND timestamp < ? GROUP BY name", (current - day, current));
- for row in c:
- if row[0] in data:
- data[row[0]][currentid] += row[1]
-
- current -= day
- currentid += 1
-
- for k, v in data.iteritems():
- data[k].reverse()
- dates.reverse()
-
- c.close()
-
- result = {}
- if name == "":
- result = data
- else:
- result[name] = [0]*interval;
- for product in data:
- for i in range(0,interval):
- result[name][i] += data[product][i]
-
- cairoplot.dot_line_plot("lagerbestand_%s" % category, result, 640, 480, series_colors = colors, x_labels = dates, y_title = "Anzahl", axis=True, grid=True, series_legend = True)
-
-def TotalPurchasesPerDay():
- day = 24 * 60 * 60
- now = int(time.time())
-
- colors = [
- "black",
- ]
-
- dates = []
- dt = datetime.datetime.fromtimestamp(now)
- dates.append("%04d-%02d-%02d" % (dt.year, dt.month, dt.day))
-
- connection = sqlite3.connect('shop.db')
- c = connection.cursor()
- query = "SELECT SUM(memberprice) FROM purchases purch, prices WHERE purch.product = prices.product AND purch.user > 0 AND purch.timestamp > ? AND purch.timestamp < ? AND prices.valid_from = (SELECT valid_from FROM prices WHERE product = purch.product AND valid_from < purch.timestamp ORDER BY valid_from DESC LIMIT 1)"
-
- current = now
- data = []
- while current > (now - 42 * day):
- c.execute(query, (current-day, current))
-
- dt = datetime.datetime.fromtimestamp(current - day)
- dates.append("%04d-%02d-%02d" % (dt.year, dt.month, dt.day))
-
- for row in c:
- amount = row[0] or 0
- data.append(int(amount)/100.0)
-
- current -= day
-
- data.reverse()
- dates.reverse()
-
- c.execute(query, (0, now))
- total = c.fetchone()[0]
-
- dt = datetime.datetime.fromtimestamp(now)
- start = dt.replace(hour = 8, minute = 0, second = 0, day = 16)
- if start > dt:
- start = start.replace(month = start.month - 1)
- c.execute(query, (start.strftime("%s"), now))
- month = c.fetchone()[0]
-
- c.close()
-
- print "Total sales: %.2f€" % (total / 100.0)
- print "Total sales this month: %.2f€" % (month / 100.0)
- print "Average per day (last 42 days): %.2f€" % (sum(data)/len(data))
-
- cairoplot.dot_line_plot("total_sales_per_day", data, 640, 480, series_colors = colors, x_labels = dates, y_title = "Euro", axis=True, grid=True)
-
-TortendiagramUser()
-BalkendiagramUserRanking()
-
-TortendiagramProduct()
-
-data = [ "getraenke", "haribo", "haribo_total", "riegel", "other", "schoko", "balisto" ]
-for x in data:
- Lagerbestand(x)
-
-TotalPurchasesPerDay()
diff --git a/invoice/graph/series.py b/invoice/graph/series.py
deleted file mode 100755
index 157ab3d..0000000
--- a/invoice/graph/series.py
+++ /dev/null
@@ -1,1140 +0,0 @@
-#!/usr/bin/env python
-# -*- coding: utf-8 -*-
-
-# Serie.py
-#
-# Copyright (c) 2008 Magnun Leno da Silva
-#
-# Author: Magnun Leno da Silva <magnun.leno@gmail.com>
-#
-# This program is free software; you can redistribute it and/or
-# modify it under the terms of the GNU Lesser General Public License
-# as published by the Free Software Foundation; either version 2 of
-# the License, or (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU Lesser General Public
-# License along with this program; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
-# USA
-
-# Contributor: Rodrigo Moreiro Araujo <alf.rodrigo@gmail.com>
-
-#import cairoplot
-import doctest
-
-NUMTYPES = (int, float, long)
-LISTTYPES = (list, tuple)
-STRTYPES = (str, unicode)
-FILLING_TYPES = ['linear', 'solid', 'gradient']
-DEFAULT_COLOR_FILLING = 'solid'
-#TODO: Define default color list
-DEFAULT_COLOR_LIST = None
-
-class Data(object):
- '''
- Class that models the main data structure.
- It can hold:
- - a number type (int, float or long)
- - a tuple, witch represents a point and can have 2 or 3 items (x,y,z)
- - if a list is passed it will be converted to a tuple.
-
- obs: In case a tuple is passed it will convert to tuple
- '''
- def __init__(self, data=None, name=None, parent=None):
- '''
- Starts main atributes from the Data class
- @name - Name for each point;
- @content - The real data, can be an int, float, long or tuple, which
- represents a point (x,y) or (x,y,z);
- @parent - A pointer that give the data access to it's parent.
-
- Usage:
- >>> d = Data(name='empty'); print d
- empty: ()
- >>> d = Data((1,1),'point a'); print d
- point a: (1, 1)
- >>> d = Data((1,2,3),'point b'); print d
- point b: (1, 2, 3)
- >>> d = Data([2,3],'point c'); print d
- point c: (2, 3)
- >>> d = Data(12, 'simple value'); print d
- simple value: 12
- '''
- # Initial values
- self.__content = None
- self.__name = None
-
- # Setting passed values
- self.parent = parent
- self.name = name
- self.content = data
-
- # Name property
- @apply
- def name():
- doc = '''
- Name is a read/write property that controls the input of name.
- - If passed an invalid value it cleans the name with None
-
- Usage:
- >>> d = Data(13); d.name = 'name_test'; print d
- name_test: 13
- >>> d.name = 11; print d
- 13
- >>> d.name = 'other_name'; print d
- other_name: 13
- >>> d.name = None; print d
- 13
- >>> d.name = 'last_name'; print d
- last_name: 13
- >>> d.name = ''; print d
- 13
- '''
- def fget(self):
- '''
- returns the name as a string
- '''
- return self.__name
-
- def fset(self, name):
- '''
- Sets the name of the Data
- '''
- if type(name) in STRTYPES and len(name) > 0:
- self.__name = name
- else:
- self.__name = None
-
-
-
- return property(**locals())
-
- # Content property
- @apply
- def content():
- doc = '''
- Content is a read/write property that validate the data passed
- and return it.
-
- Usage:
- >>> d = Data(); d.content = 13; d.content
- 13
- >>> d = Data(); d.content = (1,2); d.content
- (1, 2)
- >>> d = Data(); d.content = (1,2,3); d.content
- (1, 2, 3)
- >>> d = Data(); d.content = [1,2,3]; d.content
- (1, 2, 3)
- >>> d = Data(); d.content = [1.5,.2,3.3]; d.content
- (1.5, 0.20000000000000001, 3.2999999999999998)
- '''
- def fget(self):
- '''
- Return the content of Data
- '''
- return self.__content
-
- def fset(self, data):
- '''
- Ensures that data is a valid tuple/list or a number (int, float
- or long)
- '''
- # Type: None
- if data is None:
- self.__content = None
- return
-
- # Type: Int or Float
- elif type(data) in NUMTYPES:
- self.__content = data
-
- # Type: List or Tuple
- elif type(data) in LISTTYPES:
- # Ensures the correct size
- if len(data) not in (2, 3):
- raise TypeError, "Data (as list/tuple) must have 2 or 3 items"
- return
-
- # Ensures that all items in list/tuple is a number
- isnum = lambda x : type(x) not in NUMTYPES
-
- if max(map(isnum, data)):
- # An item in data isn't an int or a float
- raise TypeError, "All content of data must be a number (int or float)"
-
- # Convert the tuple to list
- if type(data) is list:
- data = tuple(data)
-
- # Append a copy and sets the type
- self.__content = data[:]
-
- # Unknown type!
- else:
- self.__content = None
- raise TypeError, "Data must be an int, float or a tuple with two or three items"
- return
-
- return property(**locals())
-
-
- def clear(self):
- '''
- Clear the all Data (content, name and parent)
- '''
- self.content = None
- self.name = None
- self.parent = None
-
- def copy(self):
- '''
- Returns a copy of the Data structure
- '''
- # The copy
- new_data = Data()
- if self.content is not None:
- # If content is a point
- if type(self.content) is tuple:
- new_data.__content = self.content[:]
-
- # If content is a number
- else:
- new_data.__content = self.content
-
- # If it has a name
- if self.name is not None:
- new_data.__name = self.name
-
- return new_data
-
- def __str__(self):
- '''
- Return a string representation of the Data structure
- '''
- if self.name is None:
- if self.content is None:
- return ''
- return str(self.content)
- else:
- if self.content is None:
- return self.name+": ()"
- return self.name+": "+str(self.content)
-
- def __len__(self):
- '''
- Return the length of the Data.
- - If it's a number return 1;
- - If it's a list return it's length;
- - If its None return 0.
- '''
- if self.content is None:
- return 0
- elif type(self.content) in NUMTYPES:
- return 1
- return len(self.content)
-
-
-
-
-class Group(object):
- '''
- Class that models a group of data. Every value (int, float, long, tuple
- or list) passed is converted to a list of Data.
- It can receive:
- - A single number (int, float, long);
- - A list of numbers;
- - A tuple of numbers;
- - An instance of Data;
- - A list of Data;
-
- Obs: If a tuple with 2 or 3 items is passed it is converted to a point.
- If a tuple with only 1 item is passed it's converted to a number;
- If a tuple with more than 2 items is passed it's converted to a
- list of numbers
- '''
- def __init__(self, group=None, name=None, parent=None):
- '''
- Starts main atributes in Group instance.
- @data_list - a list of data which forms the group;
- @range - a range that represent the x axis of possible functions;
- @name - name of the data group;
- @parent - the Serie parent of this group.
-
- Usage:
- >>> g = Group(13, 'simple number'); print g
- simple number ['13']
- >>> g = Group((1,2), 'simple point'); print g
- simple point ['(1, 2)']
- >>> g = Group([1,2,3,4], 'list of numbers'); print g
- list of numbers ['1', '2', '3', '4']
- >>> g = Group((1,2,3,4),'int in tuple'); print g
- int in tuple ['1', '2', '3', '4']
- >>> g = Group([(1,2),(2,3),(3,4)], 'list of points'); print g
- list of points ['(1, 2)', '(2, 3)', '(3, 4)']
- >>> g = Group([[1,2,3],[1,2,3]], '2D coordinate lists'); print g
- 2D coordinated lists ['(1, 1)', '(2, 2)', '(3, 3)']
- >>> g = Group([[1,2],[1,2],[1,2]], '3D coordinate lists'); print g
- 3D coordinated lists ['(1, 1, 1)', '(2, 2, 2)']
- '''
- # Initial values
- self.__data_list = []
- self.__range = []
- self.__name = None
-
-
- self.parent = parent
- self.name = name
- self.data_list = group
-
- # Name property
- @apply
- def name():
- doc = '''
- Name is a read/write property that controls the input of name.
- - If passed an invalid value it cleans the name with None
-
- Usage:
- >>> g = Group(13); g.name = 'name_test'; print g
- name_test ['13']
- >>> g.name = 11; print g
- ['13']
- >>> g.name = 'other_name'; print g
- other_name ['13']
- >>> g.name = None; print g
- ['13']
- >>> g.name = 'last_name'; print g
- last_name ['13']
- >>> g.name = ''; print g
- ['13']
- '''
- def fget(self):
- '''
- Returns the name as a string
- '''
- return self.__name
-
- def fset(self, name):
- '''
- Sets the name of the Group
- '''
- if type(name) in STRTYPES and len(name) > 0:
- self.__name = name
- else:
- self.__name = None
-
- return property(**locals())
-
- # data_list property
- @apply
- def data_list():
- doc = '''
- The data_list is a read/write property that can be a list of
- numbers, a list of points or a list of 2 or 3 coordinate lists. This
- property uses mainly the self.add_data method.
-
- Usage:
- >>> g = Group(); g.data_list = 13; print g
- ['13']
- >>> g.data_list = (1,2); print g
- ['(1, 2)']
- >>> g.data_list = Data((1,2),'point a'); print g
- ['point a: (1, 2)']
- >>> g.data_list = [1,2,3]; print g
- ['1', '2', '3']
- >>> g.data_list = (1,2,3,4); print g
- ['1', '2', '3', '4']
- >>> g.data_list = [(1,2),(2,3),(3,4)]; print g
- ['(1, 2)', '(2, 3)', '(3, 4)']
- >>> g.data_list = [[1,2],[1,2]]; print g
- ['(1, 1)', '(2, 2)']
- >>> g.data_list = [[1,2],[1,2],[1,2]]; print g
- ['(1, 1, 1)', '(2, 2, 2)']
- >>> g.range = (10); g.data_list = lambda x:x**2; print g
- ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)']
- '''
- def fget(self):
- '''
- Returns the value of data_list
- '''
- return self.__data_list
-
- def fset(self, group):
- '''
- Ensures that group is valid.
- '''
- # None
- if group is None:
- self.__data_list = []
-
- # Int/float/long or Instance of Data
- elif type(group) in NUMTYPES or isinstance(group, Data):
- # Clean data_list
- self.__data_list = []
- self.add_data(group)
-
- # One point
- elif type(group) is tuple and len(group) in (2,3):
- self.__data_list = []
- self.add_data(group)
-
- # list of items
- elif type(group) in LISTTYPES and type(group[0]) is not list:
- # Clean data_list
- self.__data_list = []
- for item in group:
- # try to append and catch an exception
- self.add_data(item)
-
- # function lambda
- elif callable(group):
- # Explicit is better than implicit
- function = group
- # Has range
- if len(self.range) is not 0:
- # Clean data_list
- self.__data_list = []
- # Generate values for the lambda function
- for x in self.range:
- #self.add_data((x,round(group(x),2)))
- self.add_data((x,function(x)))
-
- # Only have range in parent
- elif self.parent is not None and len(self.parent.range) is not 0:
- # Copy parent range
- self.__range = self.parent.range[:]
- # Clean data_list
- self.__data_list = []
- # Generate values for the lambda function
- for x in self.range:
- #self.add_data((x,round(group(x),2)))
- self.add_data((x,function(x)))
-
- # Don't have range anywhere
- else:
- # x_data don't exist
- raise Exception, "Data argument is valid but to use function type please set x_range first"
-
- # Coordinate Lists
- elif type(group) in LISTTYPES and type(group[0]) is list:
- # Clean data_list
- self.__data_list = []
- data = []
- if len(group) == 3:
- data = zip(group[0], group[1], group[2])
- elif len(group) == 2:
- data = zip(group[0], group[1])
- else:
- raise TypeError, "Only one list of coordinates was received."
-
- for item in data:
- self.add_data(item)
-
- else:
- raise TypeError, "Group type not supported"
-
- return property(**locals())
-
- @apply
- def range():
- doc = '''
- The range is a read/write property that generates a range of values
- for the x axis of the functions. When passed a tuple it almost works
- like the built-in range funtion:
- - 1 item, represent the end of the range started from 0;
- - 2 items, represents the start and the end, respectively;
- - 3 items, the last one represents the step;
-
- When passed a list the range function understands as a valid range.
-
- Usage:
- >>> g = Group(); g.range = 10; print g.range
- [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
- >>> g = Group(); g.range = (5); print g.range
- [0.0, 1.0, 2.0, 3.0, 4.0]
- >>> g = Group(); g.range = (1,7); print g.range
- [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]
- >>> g = Group(); g.range = (0,10,2); print g.range
- [0.0, 2.0, 4.0, 6.0, 8.0]
- >>>
- >>> g = Group(); g.range = [0]; print g.range
- [0.0]
- >>> g = Group(); g.range = [0,10,20]; print g.range
- [0.0, 10.0, 20.0]
- '''
- def fget(self):
- '''
- Returns the range
- '''
- return self.__range
-
- def fset(self, x_range):
- '''
- Controls the input of a valid type and generate the range
- '''
- # if passed a simple number convert to tuple
- if type(x_range) in NUMTYPES:
- x_range = (x_range,)
-
- # A list, just convert to float
- if type(x_range) is list and len(x_range) > 0:
- # Convert all to float
- x_range = map(float, x_range)
- # Prevents repeated values and convert back to list
- self.__range = list(set(x_range[:]))
- # Sort the list to ascending order
- self.__range.sort()
-
- # A tuple, must check the lengths and generate the values
- elif type(x_range) is tuple and len(x_range) in (1,2,3):
- # Convert all to float
- x_range = map(float, x_range)
-
- # Inital values
- start = 0.0
- step = 1.0
- end = 0.0
-
- # Only the end and it can't be less or iqual to 0
- if len(x_range) is 1 and x_range > 0:
- end = x_range[0]
-
- # The start and the end but the start must be less then the end
- elif len(x_range) is 2 and x_range[0] < x_range[1]:
- start = x_range[0]
- end = x_range[1]
-
- # All 3, but the start must be less then the end
- elif x_range[0] <= x_range[1]:
- start = x_range[0]
- end = x_range[1]
- step = x_range[2]
-
- # Starts the range
- self.__range = []
- # Generate the range
- # Can't use the range function because it doesn't support float values
- while start < end:
- self.__range.append(start)
- start += step
-
- # Incorrect type
- else:
- raise Exception, "x_range must be a list with one or more items or a tuple with 2 or 3 items"
-
- return property(**locals())
-
- def add_data(self, data, name=None):
- '''
- Append a new data to the data_list.
- - If data is an instance of Data, append it
- - If it's an int, float, tuple or list create an instance of Data and append it
-
- Usage:
- >>> g = Group()
- >>> g.add_data(12); print g
- ['12']
- >>> g.add_data(7,'other'); print g
- ['12', 'other: 7']
- >>>
- >>> g = Group()
- >>> g.add_data((1,1),'a'); print g
- ['a: (1, 1)']
- >>> g.add_data((2,2),'b'); print g
- ['a: (1, 1)', 'b: (2, 2)']
- >>>
- >>> g.add_data(Data((1,2),'c')); print g
- ['a: (1, 1)', 'b: (2, 2)', 'c: (1, 2)']
- '''
- if not isinstance(data, Data):
- # Try to convert
- data = Data(data,name,self)
-
- if data.content is not None:
- self.__data_list.append(data.copy())
- self.__data_list[-1].parent = self
-
-
- def to_list(self):
- '''
- Returns the group as a list of numbers (int, float or long) or a
- list of tuples (points 2D or 3D).
-
- Usage:
- >>> g = Group([1,2,3,4],'g1'); g.to_list()
- [1, 2, 3, 4]
- >>> g = Group([(1,2),(2,3),(3,4)],'g2'); g.to_list()
- [(1, 2), (2, 3), (3, 4)]
- >>> g = Group([(1,2,3),(3,4,5)],'g2'); g.to_list()
- [(1, 2, 3), (3, 4, 5)]
- '''
- return [data.content for data in self]
-
- def copy(self):
- '''
- Returns a copy of this group
- '''
- new_group = Group()
- new_group.__name = self.__name
- if self.__range is not None:
- new_group.__range = self.__range[:]
- for data in self:
- new_group.add_data(data.copy())
- return new_group
-
- def get_names(self):
- '''
- Return a list with the names of all data in this group
- '''
- names = []
- for data in self:
- if data.name is None:
- names.append('Data '+str(data.index()+1))
- else:
- names.append(data.name)
- return names
-
-
- def __str__ (self):
- '''
- Returns a string representing the Group
- '''
- ret = ""
- if self.name is not None:
- ret += self.name + " "
- if len(self) > 0:
- list_str = [str(item) for item in self]
- ret += str(list_str)
- else:
- ret += "[]"
- return ret
-
- def __getitem__(self, key):
- '''
- Makes a Group iterable, based in the data_list property
- '''
- return self.data_list[key]
-
- def __len__(self):
- '''
- Returns the length of the Group, based in the data_list property
- '''
- return len(self.data_list)
-
-
-class Colors(object):
- '''
- Class that models the colors its labels (names) and its properties, RGB
- and filling type.
-
- It can receive:
- - A list where each item is a list with 3 or 4 items. The
- first 3 items represent the RGB values and the last argument
- defines the filling type. The list will be converted to a dict
- and each color will receve a name based in its position in the
- list.
- - A dictionary where each key will be the color name and its item
- can be a list with 3 or 4 items. The first 3 items represent
- the RGB colors and the last argument defines the filling type.
- '''
- def __init__(self, color_list=None):
- '''
- Start the color_list property
- @ color_list - the list or dict contaning the colors properties.
- '''
- self.__color_list = None
-
- self.color_list = color_list
-
- @apply
- def color_list():
- doc = '''
- >>> c = Colors([[1,1,1],[2,2,2,'linear'],[3,3,3,'gradient']])
- >>> print c.color_list
- {'Color 2': [2, 2, 2, 'linear'], 'Color 3': [3, 3, 3, 'gradient'], 'Color 1': [1, 1, 1, 'solid']}
- >>> c.color_list = [[1,1,1],(2,2,2,'solid'),(3,3,3,'linear')]
- >>> print c.color_list
- {'Color 2': [2, 2, 2, 'solid'], 'Color 3': [3, 3, 3, 'linear'], 'Color 1': [1, 1, 1, 'solid']}
- >>> c.color_list = {'a':[1,1,1],'b':(2,2,2,'solid'),'c':(3,3,3,'linear'), 'd':(4,4,4)}
- >>> print c.color_list
- {'a': [1, 1, 1, 'solid'], 'c': [3, 3, 3, 'linear'], 'b': [2, 2, 2, 'solid'], 'd': [4, 4, 4, 'solid']}
- '''
- def fget(self):
- '''
- Return the color list
- '''
- return self.__color_list
-
- def fset(self, color_list):
- '''
- Format the color list to a dictionary
- '''
- if color_list is None:
- self.__color_list = None
- return
-
- if type(color_list) in LISTTYPES and type(color_list[0]) in LISTTYPES:
- old_color_list = color_list[:]
- color_list = {}
- for index, color in enumerate(old_color_list):
- if len(color) is 3 and max(map(type, color)) in NUMTYPES:
- color_list['Color '+str(index+1)] = list(color)+[DEFAULT_COLOR_FILLING]
- elif len(color) is 4 and max(map(type, color[:-1])) in NUMTYPES and color[-1] in FILLING_TYPES:
- color_list['Color '+str(index+1)] = list(color)
- else:
- raise TypeError, "Unsuported color format"
- elif type(color_list) is not dict:
- raise TypeError, "Unsuported color format"
-
- for name, color in color_list.items():
- if len(color) is 3:
- if max(map(type, color)) in NUMTYPES:
- color_list[name] = list(color)+[DEFAULT_COLOR_FILLING]
- else:
- raise TypeError, "Unsuported color format"
- elif len(color) is 4:
- if max(map(type, color[:-1])) in NUMTYPES and color[-1] in FILLING_TYPES:
- color_list[name] = list(color)
- else:
- raise TypeError, "Unsuported color format"
- self.__color_list = color_list.copy()
-
- return property(**locals())
-
-
-class Series(object):
- '''
- Class that models a Series (group of groups). Every value (int, float,
- long, tuple or list) passed is converted to a list of Group or Data.
- It can receive:
- - a single number or point, will be converted to a Group of one Data;
- - a list of numbers, will be converted to a group of numbers;
- - a list of tuples, will converted to a single Group of points;
- - a list of lists of numbers, each 'sublist' will be converted to a
- group of numbers;
- - a list of lists of tuples, each 'sublist' will be converted to a
- group of points;
- - a list of lists of lists, the content of the 'sublist' will be
- processed as coordinated lists and the result will be converted to
- a group of points;
- - a Dictionary where each item can be the same of the list: number,
- point, list of numbers, list of points or list of lists (coordinated
- lists);
- - an instance of Data;
- - an instance of group.
- '''
- def __init__(self, series=None, name=None, property=[], colors=None):
- '''
- Starts main atributes in Group instance.
- @series - a list, dict of data of which the series is composed;
- @name - name of the series;
- @property - a list/dict of properties to be used in the plots of
- this Series
-
- Usage:
- >>> print Series([1,2,3,4])
- ["Group 1 ['1', '2', '3', '4']"]
- >>> print Series([[1,2,3],[4,5,6]])
- ["Group 1 ['1', '2', '3']", "Group 2 ['4', '5', '6']"]
- >>> print Series((1,2))
- ["Group 1 ['(1, 2)']"]
- >>> print Series([(1,2),(2,3)])
- ["Group 1 ['(1, 2)', '(2, 3)']"]
- >>> print Series([[(1,2),(2,3)],[(4,5),(5,6)]])
- ["Group 1 ['(1, 2)', '(2, 3)']", "Group 2 ['(4, 5)', '(5, 6)']"]
- >>> print Series([[[1,2,3],[1,2,3],[1,2,3]]])
- ["Group 1 ['(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)']"]
- >>> print Series({'g1':[1,2,3], 'g2':[4,5,6]})
- ["g1 ['1', '2', '3']", "g2 ['4', '5', '6']"]
- >>> print Series({'g1':[(1,2),(2,3)], 'g2':[(4,5),(5,6)]})
- ["g1 ['(1, 2)', '(2, 3)']", "g2 ['(4, 5)', '(5, 6)']"]
- >>> print Series({'g1':[[1,2],[1,2]], 'g2':[[4,5],[4,5]]})
- ["g1 ['(1, 1)', '(2, 2)']", "g2 ['(4, 4)', '(5, 5)']"]
- >>> print Series(Data(1,'d1'))
- ["Group 1 ['d1: 1']"]
- >>> print Series(Group([(1,2),(2,3)],'g1'))
- ["g1 ['(1, 2)', '(2, 3)']"]
- '''
- # Intial values
- self.__group_list = []
- self.__name = None
- self.__range = None
-
- # TODO: Implement colors with filling
- self.__colors = None
-
- self.name = name
- self.group_list = series
- self.colors = colors
-
- # Name property
- @apply
- def name():
- doc = '''
- Name is a read/write property that controls the input of name.
- - If passed an invalid value it cleans the name with None
-
- Usage:
- >>> s = Series(13); s.name = 'name_test'; print s
- name_test ["Group 1 ['13']"]
- >>> s.name = 11; print s
- ["Group 1 ['13']"]
- >>> s.name = 'other_name'; print s
- other_name ["Group 1 ['13']"]
- >>> s.name = None; print s
- ["Group 1 ['13']"]
- >>> s.name = 'last_name'; print s
- last_name ["Group 1 ['13']"]
- >>> s.name = ''; print s
- ["Group 1 ['13']"]
- '''
- def fget(self):
- '''
- Returns the name as a string
- '''
- return self.__name
-
- def fset(self, name):
- '''
- Sets the name of the Group
- '''
- if type(name) in STRTYPES and len(name) > 0:
- self.__name = name
- else:
- self.__name = None
-
- return property(**locals())
-
-
-
- # Colors property
- @apply
- def colors():
- doc = '''
- >>> s = Series()
- >>> s.colors = [[1,1,1],[2,2,2,'linear'],[3,3,3,'gradient']]
- >>> print s.colors
- {'Color 2': [2, 2, 2, 'linear'], 'Color 3': [3, 3, 3, 'gradient'], 'Color 1': [1, 1, 1, 'solid']}
- >>> s.colors = [[1,1,1],(2,2,2,'solid'),(3,3,3,'linear')]
- >>> print s.colors
- {'Color 2': [2, 2, 2, 'solid'], 'Color 3': [3, 3, 3, 'linear'], 'Color 1': [1, 1, 1, 'solid']}
- >>> s.colors = {'a':[1,1,1],'b':(2,2,2,'solid'),'c':(3,3,3,'linear'), 'd':(4,4,4)}
- >>> print s.colors
- {'a': [1, 1, 1, 'solid'], 'c': [3, 3, 3, 'linear'], 'b': [2, 2, 2, 'solid'], 'd': [4, 4, 4, 'solid']}
- '''
- def fget(self):
- '''
- Return the color list
- '''
- return self.__colors.color_list
-
- def fset(self, colors):
- '''
- Format the color list to a dictionary
- '''
- self.__colors = Colors(colors)
-
- return property(**locals())
-
- @apply
- def range():
- doc = '''
- The range is a read/write property that generates a range of values
- for the x axis of the functions. When passed a tuple it almost works
- like the built-in range funtion:
- - 1 item, represent the end of the range started from 0;
- - 2 items, represents the start and the end, respectively;
- - 3 items, the last one represents the step;
-
- When passed a list the range function understands as a valid range.
-
- Usage:
- >>> s = Series(); s.range = 10; print s.range
- [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
- >>> s = Series(); s.range = (5); print s.range
- [0.0, 1.0, 2.0, 3.0, 4.0, 5.0]
- >>> s = Series(); s.range = (1,7); print s.range
- [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
- >>> s = Series(); s.range = (0,10,2); print s.range
- [0.0, 2.0, 4.0, 6.0, 8.0, 10.0]
- >>>
- >>> s = Series(); s.range = [0]; print s.range
- [0.0]
- >>> s = Series(); s.range = [0,10,20]; print s.range
- [0.0, 10.0, 20.0]
- '''
- def fget(self):
- '''
- Returns the range
- '''
- return self.__range
-
- def fset(self, x_range):
- '''
- Controls the input of a valid type and generate the range
- '''
- # if passed a simple number convert to tuple
- if type(x_range) in NUMTYPES:
- x_range = (x_range,)
-
- # A list, just convert to float
- if type(x_range) is list and len(x_range) > 0:
- # Convert all to float
- x_range = map(float, x_range)
- # Prevents repeated values and convert back to list
- self.__range = list(set(x_range[:]))
- # Sort the list to ascending order
- self.__range.sort()
-
- # A tuple, must check the lengths and generate the values
- elif type(x_range) is tuple and len(x_range) in (1,2,3):
- # Convert all to float
- x_range = map(float, x_range)
-
- # Inital values
- start = 0.0
- step = 1.0
- end = 0.0
-
- # Only the end and it can't be less or iqual to 0
- if len(x_range) is 1 and x_range > 0:
- end = x_range[0]
-
- # The start and the end but the start must be lesser then the end
- elif len(x_range) is 2 and x_range[0] < x_range[1]:
- start = x_range[0]
- end = x_range[1]
-
- # All 3, but the start must be lesser then the end
- elif x_range[0] < x_range[1]:
- start = x_range[0]
- end = x_range[1]
- step = x_range[2]
-
- # Starts the range
- self.__range = []
- # Generate the range
- # Cnat use the range function becouse it don't suport float values
- while start <= end:
- self.__range.append(start)
- start += step
-
- # Incorrect type
- else:
- raise Exception, "x_range must be a list with one or more item or a tuple with 2 or 3 items"
-
- return property(**locals())
-
- @apply
- def group_list():
- doc = '''
- The group_list is a read/write property used to pre-process the list
- of Groups.
- It can be:
- - a single number, point or lambda, will be converted to a single
- Group of one Data;
- - a list of numbers, will be converted to a group of numbers;
- - a list of tuples, will converted to a single Group of points;
- - a list of lists of numbers, each 'sublist' will be converted to
- a group of numbers;
- - a list of lists of tuples, each 'sublist' will be converted to a
- group of points;
- - a list of lists of lists, the content of the 'sublist' will be
- processed as coordinated lists and the result will be converted
- to a group of points;
- - a list of lambdas, each lambda represents a Group;
- - a Dictionary where each item can be the same of the list: number,
- point, list of numbers, list of points, list of lists
- (coordinated lists) or lambdas
- - an instance of Data;
- - an instance of group.
-
- Usage:
- >>> s = Series()
- >>> s.group_list = [1,2,3,4]; print s
- ["Group 1 ['1', '2', '3', '4']"]
- >>> s.group_list = [[1,2,3],[4,5,6]]; print s
- ["Group 1 ['1', '2', '3']", "Group 2 ['4', '5', '6']"]
- >>> s.group_list = (1,2); print s
- ["Group 1 ['(1, 2)']"]
- >>> s.group_list = [(1,2),(2,3)]; print s
- ["Group 1 ['(1, 2)', '(2, 3)']"]
- >>> s.group_list = [[(1,2),(2,3)],[(4,5),(5,6)]]; print s
- ["Group 1 ['(1, 2)', '(2, 3)']", "Group 2 ['(4, 5)', '(5, 6)']"]
- >>> s.group_list = [[[1,2,3],[1,2,3],[1,2,3]]]; print s
- ["Group 1 ['(1, 1, 1)', '(2, 2, 2)', '(3, 3, 3)']"]
- >>> s.group_list = [(0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,9)]; print s
- ["Group 1 ['(0.5, 5.5)']", "Group 2 ['(0, 4)', '(6, 8)']", "Group 3 ['(5.5, 7)']", "Group 4 ['(7, 9)']"]
- >>> s.group_list = {'g1':[1,2,3], 'g2':[4,5,6]}; print s
- ["g1 ['1', '2', '3']", "g2 ['4', '5', '6']"]
- >>> s.group_list = {'g1':[(1,2),(2,3)], 'g2':[(4,5),(5,6)]}; print s
- ["g1 ['(1, 2)', '(2, 3)']", "g2 ['(4, 5)', '(5, 6)']"]
- >>> s.group_list = {'g1':[[1,2],[1,2]], 'g2':[[4,5],[4,5]]}; print s
- ["g1 ['(1, 1)', '(2, 2)']", "g2 ['(4, 4)', '(5, 5)']"]
- >>> s.range = 10
- >>> s.group_list = lambda x:x*2
- >>> s.group_list = [lambda x:x*2, lambda x:x**2, lambda x:x**3]; print s
- ["Group 1 ['(0.0, 0.0)', '(1.0, 2.0)', '(2.0, 4.0)', '(3.0, 6.0)', '(4.0, 8.0)', '(5.0, 10.0)', '(6.0, 12.0)', '(7.0, 14.0)', '(8.0, 16.0)', '(9.0, 18.0)', '(10.0, 20.0)']", "Group 2 ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)', '(10.0, 100.0)']", "Group 3 ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 8.0)', '(3.0, 27.0)', '(4.0, 64.0)', '(5.0, 125.0)', '(6.0, 216.0)', '(7.0, 343.0)', '(8.0, 512.0)', '(9.0, 729.0)', '(10.0, 1000.0)']"]
- >>> s.group_list = {'linear':lambda x:x*2, 'square':lambda x:x**2, 'cubic':lambda x:x**3}; print s
- ["cubic ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 8.0)', '(3.0, 27.0)', '(4.0, 64.0)', '(5.0, 125.0)', '(6.0, 216.0)', '(7.0, 343.0)', '(8.0, 512.0)', '(9.0, 729.0)', '(10.0, 1000.0)']", "linear ['(0.0, 0.0)', '(1.0, 2.0)', '(2.0, 4.0)', '(3.0, 6.0)', '(4.0, 8.0)', '(5.0, 10.0)', '(6.0, 12.0)', '(7.0, 14.0)', '(8.0, 16.0)', '(9.0, 18.0)', '(10.0, 20.0)']", "square ['(0.0, 0.0)', '(1.0, 1.0)', '(2.0, 4.0)', '(3.0, 9.0)', '(4.0, 16.0)', '(5.0, 25.0)', '(6.0, 36.0)', '(7.0, 49.0)', '(8.0, 64.0)', '(9.0, 81.0)', '(10.0, 100.0)']"]
- >>> s.group_list = Data(1,'d1'); print s
- ["Group 1 ['d1: 1']"]
- >>> s.group_list = Group([(1,2),(2,3)],'g1'); print s
- ["g1 ['(1, 2)', '(2, 3)']"]
- '''
- def fget(self):
- '''
- Return the group list.
- '''
- return self.__group_list
-
- def fset(self, series):
- '''
- Controls the input of a valid group list.
- '''
- #TODO: Add support to the following strem of data: [ (0.5,5.5) , [(0,4),(6,8)] , (5.5,7) , (7,9)]
-
- # Type: None
- if series is None:
- self.__group_list = []
-
- # List or Tuple
- elif type(series) in LISTTYPES:
- self.__group_list = []
-
- is_function = lambda x: callable(x)
- # Groups
- if list in map(type, series) or max(map(is_function, series)):
- for group in series:
- self.add_group(group)
-
- # single group
- else:
- self.add_group(series)
-
- #old code
- ## List of numbers
- #if type(series[0]) in NUMTYPES or type(series[0]) is tuple:
- # print series
- # self.add_group(series)
- #
- ## List of anything else
- #else:
- # for group in series:
- # self.add_group(group)
-
- # Dict representing series of groups
- elif type(series) is dict:
- self.__group_list = []
- names = series.keys()
- names.sort()
- for name in names:
- self.add_group(Group(series[name],name,self))
-
- # A single lambda
- elif callable(series):
- self.__group_list = []
- self.add_group(series)
-
- # Int/float, instance of Group or Data
- elif type(series) in NUMTYPES or isinstance(series, Group) or isinstance(series, Data):
- self.__group_list = []
- self.add_group(series)
-
- # Default
- else:
- raise TypeError, "Serie type not supported"
-
- return property(**locals())
-
- def add_group(self, group, name=None):
- '''
- Append a new group in group_list
- '''
- if not isinstance(group, Group):
- #Try to convert
- group = Group(group, name, self)
-
- if len(group.data_list) is not 0:
- # Auto naming groups
- if group.name is None:
- group.name = "Group "+str(len(self.__group_list)+1)
-
- self.__group_list.append(group)
- self.__group_list[-1].parent = self
-
- def copy(self):
- '''
- Returns a copy of the Series
- '''
- new_series = Series()
- new_series.__name = self.__name
- if self.__range is not None:
- new_series.__range = self.__range[:]
- #Add color property in the copy method
- #self.__colors = None
-
- for group in self:
- new_series.add_group(group.copy())
-
- return new_series
-
- def get_names(self):
- '''
- Returns a list of the names of all groups in the Serie
- '''
- names = []
- for group in self:
- if group.name is None:
- names.append('Group '+str(group.index()+1))
- else:
- names.append(group.name)
-
- return names
-
- def to_list(self):
- '''
- Returns a list with the content of all groups and data
- '''
- big_list = []
- for group in self:
- for data in group:
- if type(data.content) in NUMTYPES:
- big_list.append(data.content)
- else:
- big_list = big_list + list(data.content)
- return big_list
-
- def __getitem__(self, key):
- '''
- Makes the Series iterable, based in the group_list property
- '''
- return self.__group_list[key]
-
- def __str__(self):
- '''
- Returns a string that represents the Series
- '''
- ret = ""
- if self.name is not None:
- ret += self.name + " "
- if len(self) > 0:
- list_str = [str(item) for item in self]
- ret += str(list_str)
- else:
- ret += "[]"
- return ret
-
- def __len__(self):
- '''
- Returns the length of the Series, based in the group_lsit property
- '''
- return len(self.group_list)
-
-
-if __name__ == '__main__':
- doctest.testmod()