/* * * oFono - Open Source Telephony - RIL Modem Support * * Copyright (C) 2008-2011 Intel Corporation. All rights reserved. * Copyright (C) 2010 ST-Ericsson AB. * Copyright (C) 2012-2013 Canonical Ltd. * Copyright (C) 2013 Jolla Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include "common.h" #include "rilmodem.h" struct netreg_data { GRil *ril; char mcc[OFONO_MAX_MCC_LENGTH + 1]; char mnc[OFONO_MAX_MNC_LENGTH + 1]; int signal_index; /* If strength is reported via CIND */ int signal_min; /* min strength reported via CIND */ int signal_max; /* max strength reported via CIND */ int signal_invalid; /* invalid strength reported via CIND */ int tech; guint nitz_timeout; unsigned int vendor; }; /* * This function makes a similar processing to was is done by validateInput() * and getLteLevel() in $AOSP/frameworks/base/telephony/java/android/telephony/ * SignalStrength.java. The main difference is that we linearly transform the * ranges to ofono's one, while AOSP gives number of bars in a non-linear way * (bins for each bar have different size). We rely on the indicator to obtain * a translation to bars that makes sense for humans. */ static int get_lte_strength(int signal, int rsrp, int rssnr) { int s_rsrp = -1, s_rssnr = -1, s_signal = -1; /* * The range of signal is specified to be [0, 31] by ril.h, but the code * in SignalStrength.java contradicts this: valid values are (0-63, 99) * as defined in TS 36.331 for E-UTRA rssi. */ signal = (signal >= 0 && signal <= 63) ? signal : INT_MAX; rsrp = (rsrp >= 44 && rsrp <= 140) ? -rsrp : INT_MAX; rssnr = (rssnr >= -200 && rssnr <= 300) ? rssnr : INT_MAX; /* Linearly transform [-140, -44] to [0, 100] */ if (rsrp != INT_MAX) s_rsrp = (25 * rsrp + 3500) / 24; /* Linearly transform [-200, 300] to [0, 100] */ if (rssnr != INT_MAX) s_rssnr = (rssnr + 200) / 5; if (s_rsrp != -1 && s_rssnr != -1) return s_rsrp < s_rssnr ? s_rsrp : s_rssnr; if (s_rssnr != -1) return s_rssnr; if (s_rsrp != -1) return s_rsrp; /* Linearly transform [0, 63] to [0, 100] */ if (signal != INT_MAX) s_signal = (100 * signal) / 63; return s_signal; } /* * Comments to get_lte_strength() apply here also, changing getLteLevel() with * getGsmLevel(). The atmodem driver does exactly the same transformation with * the rssi from AT+CSQ command. */ static int get_gsm_strength(int signal) { /* Checking the range contemplates also the case signal=99 (invalid) */ if (signal >= 0 && signal <= 31) return (signal * 100) / 31; else return -1; } static int parse_signal_strength(GRil *gril, const struct ril_msg *message, int ril_tech) { struct parcel rilp; int gw_sigstr, gw_signal, cdma_dbm, evdo_dbm; int lte_sigstr = -1, lte_rsrp = -1, lte_rssnr = -1; int lte_signal; int signal; g_ril_init_parcel(message, &rilp); /* RIL_SignalStrength_v5 */ /* GW_SignalStrength */ gw_sigstr = parcel_r_int32(&rilp); gw_signal = get_gsm_strength(gw_sigstr); parcel_r_int32(&rilp); /* bitErrorRate */ /* * CDMA/EVDO values are not processed as CDMA is not supported */ /* CDMA_SignalStrength */ cdma_dbm = parcel_r_int32(&rilp); parcel_r_int32(&rilp); /* ecio */ /* EVDO_SignalStrength */ evdo_dbm = parcel_r_int32(&rilp); parcel_r_int32(&rilp); /* ecio */ parcel_r_int32(&rilp); /* signalNoiseRatio */ /* Present only for RIL_SignalStrength_v6 or newer */ if (parcel_data_avail(&rilp) > 0) { /* LTE_SignalStrength */ lte_sigstr = parcel_r_int32(&rilp); lte_rsrp = parcel_r_int32(&rilp); parcel_r_int32(&rilp); /* rsrq */ lte_rssnr = parcel_r_int32(&rilp); parcel_r_int32(&rilp); /* cqi */ lte_signal = get_lte_strength(lte_sigstr, lte_rsrp, lte_rssnr); } else { lte_signal = -1; } g_ril_append_print_buf(gril, "{gw: %d, cdma: %d, evdo: %d, lte: %d %d %d}", gw_sigstr, cdma_dbm, evdo_dbm, lte_sigstr, lte_rsrp, lte_rssnr); if (message->unsolicited) g_ril_print_unsol(gril, message); else g_ril_print_response(gril, message); /* Return the first valid one */ if (gw_signal != -1 && lte_signal != -1) if (ril_tech == RADIO_TECH_LTE) signal = lte_signal; else signal = gw_signal; else if (gw_signal != -1) signal = gw_signal; else if (lte_signal != -1) signal = lte_signal; else signal = -1; return signal; } static void ril_registration_status(struct ofono_netreg *netreg, ofono_netreg_status_cb_t cb, void *data); static int ril_tech_to_access_tech(int ril_tech) { /* * This code handles the mapping between the RIL_RadioTechnology * and ofono's access technology values ( see values - 27.007 * Section 7.3 ). */ switch (ril_tech) { case RADIO_TECH_UNKNOWN: return -1; case RADIO_TECH_GSM: case RADIO_TECH_GPRS: return ACCESS_TECHNOLOGY_GSM; case RADIO_TECH_EDGE: return ACCESS_TECHNOLOGY_GSM_EGPRS; case RADIO_TECH_UMTS: return ACCESS_TECHNOLOGY_UTRAN; case RADIO_TECH_HSDPA: return ACCESS_TECHNOLOGY_UTRAN_HSDPA; case RADIO_TECH_HSUPA: return ACCESS_TECHNOLOGY_UTRAN_HSUPA; case RADIO_TECH_HSPAP: case RADIO_TECH_HSPA: /* HSPAP is HSPA+; which ofono doesn't define; * so, if differentiating HSPA and HSPA+ is * important, then ofono needs to be patched, * and we probably also need to introduce a * new indicator icon. */ return ACCESS_TECHNOLOGY_UTRAN_HSDPA_HSUPA; case RADIO_TECH_LTE: return ACCESS_TECHNOLOGY_EUTRAN; default: return -1; } } static void extract_mcc_mnc(const char *str, char *mcc, char *mnc) { /* Three digit country code */ strncpy(mcc, str, OFONO_MAX_MCC_LENGTH); mcc[OFONO_MAX_MCC_LENGTH] = '\0'; /* Usually a 2 but sometimes 3 digit network code */ strncpy(mnc, str + OFONO_MAX_MCC_LENGTH, OFONO_MAX_MNC_LENGTH); mnc[OFONO_MAX_MNC_LENGTH] = '\0'; } static void ril_creg_cb(struct ril_msg *message, gpointer user_data) { struct cb_data *cbd = user_data; ofono_netreg_status_cb_t cb = cbd->cb; struct netreg_data *nd = cbd->user; struct parcel rilp; char **strv; int num_str; char *debug_str; int status = -1; int lac = -1; int ci = -1; int tech = -1; char *end; DBG(""); if (message->error != RIL_E_SUCCESS) { ofono_error("%s: failed to pull registration state", __func__); goto error; } g_ril_init_parcel(message, &rilp); strv = parcel_r_strv(&rilp); num_str = g_strv_length(strv); if (strv == NULL) goto error; debug_str = g_strjoinv(",", strv); g_ril_append_print_buf(nd->ril, "{%d,%s}", num_str, debug_str); g_free(debug_str); g_ril_print_response(nd->ril, message); status = strtoul(strv[0], &end, 10); if (end == strv[0] || *end != '\0') goto error_free; status = ril_util_registration_state_to_status(status); if (status < 0) goto error_free; if (num_str >= 2) { lac = strtoul(strv[1], &end, 16); if (end == strv[1] || *end != '\0') lac = -1; } if (num_str >= 3) { ci = strtoul(strv[2], &end, 16); if (end == strv[2] || *end != '\0') ci = -1; } if (num_str >= 4) { tech = strtoul(strv[3], &end, 10); if (end == strv[3] || *end != '\0') tech = -1; if (g_ril_vendor(nd->ril) == OFONO_RIL_VENDOR_MTK) { switch (tech) { case MTK_RADIO_TECH_HSDPAP: case MTK_RADIO_TECH_HSDPAP_UPA: case MTK_RADIO_TECH_HSUPAP: case MTK_RADIO_TECH_HSUPAP_DPA: tech = RADIO_TECH_HSPAP; break; case MTK_RADIO_TECH_DC_DPA: tech = RADIO_TECH_HSDPA; break; case MTK_RADIO_TECH_DC_UPA: tech = RADIO_TECH_HSUPA; break; case MTK_RADIO_TECH_DC_HSDPAP: case MTK_RADIO_TECH_DC_HSDPAP_UPA: case MTK_RADIO_TECH_DC_HSDPAP_DPA: case MTK_RADIO_TECH_DC_HSPAP: tech = RADIO_TECH_HSPAP; break; } } } g_strfreev(strv); nd->tech = tech; CALLBACK_WITH_SUCCESS(cb, status, lac, ci, ril_tech_to_access_tech(tech), cbd->data); return; error_free: g_strfreev(strv); error: CALLBACK_WITH_FAILURE(cb, -1, -1, -1, -1, cbd->data); } static void ril_creg_notify(struct ofono_error *error, int status, int lac, int ci, int tech, gpointer user_data) { struct ofono_netreg *netreg = user_data; if (error->type != OFONO_ERROR_TYPE_NO_ERROR) { DBG("Error during status notification"); return; } ofono_netreg_status_notify(netreg, status, lac, ci, tech); } static void ril_network_state_change(struct ril_msg *message, gpointer user_data) { struct ofono_netreg *netreg = user_data; struct netreg_data *nd = ofono_netreg_get_data(netreg); g_ril_print_unsol_no_args(nd->ril, message); ril_registration_status(netreg, NULL, NULL); } static void ril_registration_status(struct ofono_netreg *netreg, ofono_netreg_status_cb_t cb, void *data) { struct netreg_data *nd = ofono_netreg_get_data(netreg); struct cb_data *cbd; /* * If no cb specified, setup internal callback to * handle unsolicited VOICE_NET_STATE_CHANGE events. */ if (cb == NULL) cbd = cb_data_new(ril_creg_notify, netreg, nd); else cbd = cb_data_new(cb, data, nd); if (g_ril_send(nd->ril, RIL_REQUEST_VOICE_REGISTRATION_STATE, NULL, ril_creg_cb, cbd, g_free) == 0) { g_free(cbd); CALLBACK_WITH_FAILURE(cb, -1, -1, -1, -1, data); } } static void set_oper_name(const char *lalpha, const char *salpha, struct ofono_network_operator *op) { /* Try to use long by default */ if (lalpha) strncpy(op->name, lalpha, OFONO_MAX_OPERATOR_NAME_LENGTH); else if (salpha) strncpy(op->name, salpha, OFONO_MAX_OPERATOR_NAME_LENGTH); } static void ril_cops_cb(struct ril_msg *message, gpointer user_data) { struct cb_data *cbd = user_data; ofono_netreg_operator_cb_t cb = cbd->cb; struct netreg_data *nd = cbd->user; struct ofono_network_operator op; struct parcel rilp; int num_params; char *lalpha; char *salpha; char *numeric; DBG(""); if (message->error != RIL_E_SUCCESS) goto error; /* * Minimum message length is 16: * - array size * - 3 NULL strings */ if (message->buf_len < 16) { ofono_error("%s: invalid OPERATOR reply: " "size too small (< 16): %d ", __func__, (int) message->buf_len); goto error; } g_ril_init_parcel(message, &rilp); num_params = parcel_r_int32(&rilp); if (num_params != 3) { ofono_error("%s: invalid OPERATOR reply: " "number of params is %d; should be 3.", __func__, num_params); goto error; } lalpha = parcel_r_string(&rilp); salpha = parcel_r_string(&rilp); numeric = parcel_r_string(&rilp); g_ril_append_print_buf(nd->ril, "(lalpha=%s, salpha=%s, numeric=%s)", lalpha, salpha, numeric); g_ril_print_response(nd->ril, message); if ((lalpha == NULL && salpha == NULL) || numeric == NULL) { g_free(lalpha); g_free(salpha); g_free(numeric); goto error; } set_oper_name(lalpha, salpha, &op); extract_mcc_mnc(numeric, op.mcc, op.mnc); op.status = OPERATOR_STATUS_CURRENT; op.tech = ril_tech_to_access_tech(nd->tech); g_free(lalpha); g_free(salpha); g_free(numeric); CALLBACK_WITH_SUCCESS(cb, &op, cbd->data); return; error: CALLBACK_WITH_FAILURE(cb, NULL, cbd->data); } static void ril_current_operator(struct ofono_netreg *netreg, ofono_netreg_operator_cb_t cb, void *data) { struct netreg_data *nd = ofono_netreg_get_data(netreg); struct cb_data *cbd = cb_data_new(cb, data, nd); if (g_ril_send(nd->ril, RIL_REQUEST_OPERATOR, NULL, ril_cops_cb, cbd, g_free) == 0) { g_free(cbd); CALLBACK_WITH_FAILURE(cb, NULL, data); } } static void ril_cops_list_cb(struct ril_msg *message, gpointer user_data) { struct cb_data *cbd = user_data; ofono_netreg_operator_list_cb_t cb = cbd->cb; struct netreg_data *nd = cbd->user; struct ofono_network_operator *ops; struct parcel rilp; int num_ops; unsigned int i = 0; unsigned int num_strings; int strings_per_opt = 4; DBG(""); if (message->error != RIL_E_SUCCESS) goto error; /* * Minimum message length is 4: * - array size */ if (message->buf_len < 4) { ofono_error("%s: invalid QUERY_AVAIL_NETWORKS reply: " "size too small (< 4): %d ", __func__, (int) message->buf_len); goto error; } g_ril_init_parcel(message, &rilp); g_ril_append_print_buf(nd->ril, "{"); if (g_ril_vendor(nd->ril) == OFONO_RIL_VENDOR_MTK) strings_per_opt = 5; /* Number of operators at the list */ num_strings = (unsigned int) parcel_r_int32(&rilp); if (num_strings % strings_per_opt) { ofono_error("%s: invalid QUERY_AVAIL_NETWORKS reply: " "num_strings (%d) MOD %d != 0", __func__, num_strings, strings_per_opt); goto error; } num_ops = num_strings / strings_per_opt; DBG("noperators = %d", num_ops); ops = g_new0(struct ofono_network_operator, num_ops); for (i = 0; num_ops; num_ops--) { char *lalpha; char *salpha; char *numeric; char *status; int tech = -1; lalpha = parcel_r_string(&rilp); salpha = parcel_r_string(&rilp); numeric = parcel_r_string(&rilp); status = parcel_r_string(&rilp); /* * MTK: additional string with technology: 2G/3G are the only * valid values currently. */ if (g_ril_vendor(nd->ril) == OFONO_RIL_VENDOR_MTK) { char *t = parcel_r_string(&rilp); if (strcmp(t, "3G") == 0) tech = ACCESS_TECHNOLOGY_UTRAN; else tech = ACCESS_TECHNOLOGY_GSM; g_free(t); } if (lalpha == NULL && salpha == NULL) goto next; if (numeric == NULL) goto next; if (status == NULL) goto next; set_oper_name(lalpha, salpha, &ops[i]); extract_mcc_mnc(numeric, ops[i].mcc, ops[i].mnc); ops[i].tech = tech; /* Set the proper status */ if (!strcmp(status, "unknown")) ops[i].status = OPERATOR_STATUS_UNKNOWN; else if (!strcmp(status, "available")) ops[i].status = OPERATOR_STATUS_AVAILABLE; else if (!strcmp(status, "current")) ops[i].status = OPERATOR_STATUS_CURRENT; else if (!strcmp(status, "forbidden")) ops[i].status = OPERATOR_STATUS_FORBIDDEN; i++; next: g_ril_append_print_buf(nd->ril, "%s [lalpha=%s, salpha=%s, " " numeric=%s status=%s]", print_buf, lalpha, salpha, numeric, status); g_free(lalpha); g_free(salpha); g_free(numeric); g_free(status); } g_ril_append_print_buf(nd->ril, "%s}", print_buf); g_ril_print_response(nd->ril, message); CALLBACK_WITH_SUCCESS(cb, i, ops, cbd->data); g_free(ops); return; error: CALLBACK_WITH_FAILURE(cb, 0, NULL, cbd->data); } static void ril_list_operators(struct ofono_netreg *netreg, ofono_netreg_operator_list_cb_t cb, void *data) { struct netreg_data *nd = ofono_netreg_get_data(netreg); struct cb_data *cbd = cb_data_new(cb, data, nd); if (g_ril_send(nd->ril, RIL_REQUEST_QUERY_AVAILABLE_NETWORKS, NULL, ril_cops_list_cb, cbd, g_free) == 0) { g_free(cbd); CALLBACK_WITH_FAILURE(cb, 0, NULL, data); } } static void ril_register_cb(struct ril_msg *message, gpointer user_data) { struct cb_data *cbd = user_data; ofono_netreg_register_cb_t cb = cbd->cb; struct netreg_data *nd = cbd->user; struct ofono_error error; if (message->error == RIL_E_SUCCESS) { decode_ril_error(&error, "OK"); g_ril_print_response_no_args(nd->ril, message); } else { decode_ril_error(&error, "FAIL"); } cb(&error, cbd->data); } static void ril_register_auto(struct ofono_netreg *netreg, ofono_netreg_register_cb_t cb, void *data) { struct netreg_data *nd = ofono_netreg_get_data(netreg); struct cb_data *cbd = cb_data_new(cb, data, nd); if (g_ril_send(nd->ril, RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, NULL, ril_register_cb, cbd, g_free) == 0) { g_free(cbd); CALLBACK_WITH_FAILURE(cb, data); } } static void ril_register_manual(struct ofono_netreg *netreg, const char *mcc, const char *mnc, ofono_netreg_register_cb_t cb, void *data) { struct netreg_data *nd = ofono_netreg_get_data(netreg); struct cb_data *cbd = cb_data_new(cb, data, nd); char buf[OFONO_MAX_MCC_LENGTH + OFONO_MAX_MNC_LENGTH + 1]; struct parcel rilp; DBG(""); /* RIL expects a char * specifying MCCMNC of network to select */ snprintf(buf, sizeof(buf), "%s%s", mcc, mnc); parcel_init(&rilp); parcel_w_string(&rilp, buf); g_ril_append_print_buf(nd->ril, "(%s)", buf); /* In case of error free cbd and return the cb with failure */ if (g_ril_send(nd->ril, RIL_REQUEST_SET_NETWORK_SELECTION_MANUAL, &rilp, ril_register_cb, cbd, g_free) > 0) return; g_free(cbd); CALLBACK_WITH_FAILURE(cb, data); } static void ril_strength_notify(struct ril_msg *message, gpointer user_data) { struct ofono_netreg *netreg = user_data; struct netreg_data *nd = ofono_netreg_get_data(netreg); int strength = parse_signal_strength(nd->ril, message, nd->tech); ofono_netreg_strength_notify(netreg, strength); } static void ril_strength_cb(struct ril_msg *message, gpointer user_data) { struct cb_data *cbd = user_data; ofono_netreg_strength_cb_t cb = cbd->cb; struct netreg_data *nd = cbd->user; struct ofono_error error; int strength; if (message->error == RIL_E_SUCCESS) { decode_ril_error(&error, "OK"); } else { ofono_error("Failed to retrive the signal strength"); goto error; } /* parse_signal_strength() handles both reply & unsolicited */ strength = parse_signal_strength(nd->ril, message, nd->tech); cb(&error, strength, cbd->data); return; error: CALLBACK_WITH_FAILURE(cb, -1, cbd->data); } static void ril_signal_strength(struct ofono_netreg *netreg, ofono_netreg_strength_cb_t cb, void *data) { struct netreg_data *nd = ofono_netreg_get_data(netreg); struct cb_data *cbd = cb_data_new(cb, data, nd); if (g_ril_send(nd->ril, RIL_REQUEST_SIGNAL_STRENGTH, NULL, ril_strength_cb, cbd, g_free) == 0) { ofono_error("Send RIL_REQUEST_SIGNAL_STRENGTH failed."); g_free(cbd); CALLBACK_WITH_FAILURE(cb, -1, data); } } static void ril_nitz_notify(struct ril_msg *message, gpointer user_data) { struct ofono_netreg *netreg = user_data; struct netreg_data *nd = ofono_netreg_get_data(netreg); struct parcel rilp; int year, mon, mday, hour, min, sec, dst, tzi, n_match; char tzs, tz[4]; gchar *nitz; struct ofono_network_time time; DBG(""); /* Minimum NITZ is: 'yy/mm/dd,hh:mm:ss' TZ '(+/-)tz,dt' are optional */ if (message->buf_len < 17) return; g_ril_init_parcel(message, &rilp); nitz = parcel_r_string(&rilp); g_ril_append_print_buf(nd->ril, "(%s)", nitz); g_ril_print_unsol(nd->ril, message); if (nitz == NULL) goto error; n_match = sscanf(nitz, "%u/%u/%u,%u:%u:%u%c%u,%u", &year, &mon, &mday, &hour, &min, &sec, &tzs, &tzi, &dst); if (n_match != 9) goto error; sprintf(tz, "%c%d", tzs, tzi); time.utcoff = atoi(tz) * 15 * 60; time.dst = dst; time.sec = sec; time.min = min; time.hour = hour; time.mday = mday; time.mon = mon; time.year = 2000 + year; ofono_netreg_time_notify(netreg, &time); error: g_free(nitz); } static gboolean ril_delayed_register(gpointer user_data) { struct ofono_netreg *netreg = user_data; struct netreg_data *nd = ofono_netreg_get_data(netreg); ofono_netreg_register(netreg); /* Register for network state changes */ g_ril_register(nd->ril, RIL_UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED, ril_network_state_change, netreg); /* Register for network time update reports */ g_ril_register(nd->ril, RIL_UNSOL_NITZ_TIME_RECEIVED, ril_nitz_notify, netreg); /* Register for signal strength changes */ g_ril_register(nd->ril, RIL_UNSOL_SIGNAL_STRENGTH, ril_strength_notify, netreg); /* This makes the timeout a single-shot */ return FALSE; } static int ril_netreg_probe(struct ofono_netreg *netreg, unsigned int vendor, void *data) { GRil *ril = data; struct netreg_data *nd; nd = g_new0(struct netreg_data, 1); nd->ril = g_ril_clone(ril); nd->vendor = vendor; nd->tech = RADIO_TECH_UNKNOWN; ofono_netreg_set_data(netreg, nd); /* * ofono_netreg_register() needs to be called after * the driver has been set in ofono_netreg_create(), * which calls this function. Most other drivers make * some kind of capabilities query to the modem, and then * call register in the callback; we use the idle loop here. */ g_idle_add(ril_delayed_register, netreg); return 0; } static void ril_netreg_remove(struct ofono_netreg *netreg) { struct netreg_data *nd = ofono_netreg_get_data(netreg); if (nd->nitz_timeout) g_source_remove(nd->nitz_timeout); ofono_netreg_set_data(netreg, NULL); g_ril_unref(nd->ril); g_free(nd); } static struct ofono_netreg_driver driver = { .name = RILMODEM, .probe = ril_netreg_probe, .remove = ril_netreg_remove, .registration_status = ril_registration_status, .current_operator = ril_current_operator, .list_operators = ril_list_operators, .register_auto = ril_register_auto, .register_manual = ril_register_manual, .strength = ril_signal_strength, }; void ril_netreg_init(void) { ofono_netreg_driver_register(&driver); } void ril_netreg_exit(void) { ofono_netreg_driver_unregister(&driver); }