summaryrefslogtreecommitdiffstats
path: root/ctrl/kinematics.vala
blob: 0f07f62f6986886708c786f6e24332d28a921cad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
/* Copyright 2010, ARM Limited
 * Original C++ Code written by Aaron Berk
 * Ported to Vala by Sebastian Reichel <sre@ring0.de>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

public class Kinematics {
	public double[] result = new double[3];
    bool firstUpdate;

    /* Quaternion orientation of earth frame relative to auxiliary frame. */
    double AEq_1;
    double AEq_2;
    double AEq_3;
    double AEq_4;

    /* Estimated orientation quaternion elements with initial conditions. */
    double SEq_1;
    double SEq_2;
    double SEq_3;
    double SEq_4;

	/* filter tuning constant */
	double beta;

	uint i = 0;

	public Kinematics() {
		reset();

		var gyroMeasError = 10.0;
		beta = Math.sqrt(3.0 / 4.0) * (Math.PI * (gyroMeasError / 180.0));
	}

	public void update(double gx, double gy, double gz, double ax, double ay, double az, double mx, double my, double mz, double time) {
		//var deltat = time/1000000.0;
		//stdout.printf(@"$deltat\n");
		var deltat = 0.01;

		i++;

		//stdout.printf(@"$i $gx $gy $gz\n");

		/* auxiliary variables to avoid reapeated calcualtions */
		var halfSEq_1 = 0.5 * SEq_1;
		var halfSEq_2 = 0.5 * SEq_2;
		var halfSEq_3 = 0.5 * SEq_3;
		var halfSEq_4 = 0.5 * SEq_4;
		var twoSEq_1  = 2.0 * SEq_1;
		var twoSEq_2  = 2.0 * SEq_2;
		var twoSEq_3  = 2.0 * SEq_3;

		/* compute the quaternion rate measured by gyroscopes */
		var SEqDot_omega_1 = -halfSEq_2 * gx - halfSEq_3 * gy - halfSEq_4 * gz;
		var SEqDot_omega_2 =  halfSEq_1 * gx + halfSEq_3 * gz - halfSEq_4 * gy;
		var SEqDot_omega_3 =  halfSEq_1 * gy - halfSEq_2 * gz + halfSEq_4 * gx;
		var SEqDot_omega_4 =  halfSEq_1 * gz + halfSEq_2 * gy - halfSEq_3 * gx;

		/* normalise the accelerometer measurement */
		var norm = Math.sqrt(ax * ax + ay * ay + az * az);
		ax /= norm;
		ay /= norm;
		az /= norm;

		/* compute the objective function and Jacobian */
		var f_1 = twoSEq_2 * SEq_4 - twoSEq_1 * SEq_3 - ax;
		var f_2 = twoSEq_1 * SEq_2 + twoSEq_3 * SEq_4 - ay;
		var f_3 = 1.0 - twoSEq_2 * SEq_2 - twoSEq_3 * SEq_3 - az;

		/* J_11 negated in matrix multiplication */
		var J_11or24 = twoSEq_3;
		var J_12or23 = 2 * SEq_4;

		/* J_12 negated in matrix multiplication */
		var J_13or22 = twoSEq_1;
		var J_14or21 = twoSEq_2;

		/* negated in matrix multiplication */
		var J_32 = 2 * J_14or21;

		/* negated in matrix multiplication */
		var J_33 = 2 * J_11or24;

		/* compute the gradient (matrix multiplication) */
		var nablaf_1 = J_14or21 * f_2 - J_11or24 * f_1;
		var nablaf_2 = J_12or23 * f_1 + J_13or22 * f_2 - J_32 * f_3;
		var nablaf_3 = J_12or23 * f_2 - J_33 * f_3 - J_13or22 * f_1;
		var nablaf_4 = J_14or21 * f_1 + J_11or24 * f_2;

		/* normalise the gradient */
		norm = Math.sqrt(nablaf_1 * nablaf_1 + nablaf_2 * nablaf_2 + nablaf_3 * nablaf_3 + nablaf_4 * nablaf_4);
		nablaf_1 /= norm;
		nablaf_2 /= norm;
		nablaf_3 /= norm;
		nablaf_4 /= norm;

		/* compute then integrate the estimated quaternion rate */
		SEq_1 += (SEqDot_omega_1 - (beta * nablaf_1)) * deltat;
		SEq_2 += (SEqDot_omega_2 - (beta * nablaf_2)) * deltat;
		SEq_3 += (SEqDot_omega_3 - (beta * nablaf_3)) * deltat;
		SEq_4 += (SEqDot_omega_4 - (beta * nablaf_4)) * deltat;

		/* normalise quaternion */
		norm = Math.sqrt(SEq_1 * SEq_1 + SEq_2 * SEq_2 + SEq_3 * SEq_3 + SEq_4 * SEq_4);
		SEq_1 /= norm;
		SEq_2 /= norm;
		SEq_3 /= norm;
		SEq_4 /= norm;

		if(firstUpdate) {
			/* store orientation of auxiliary frame. */
			AEq_1 = SEq_1;
			AEq_2 = SEq_2;
			AEq_3 = SEq_3;
			AEq_4 = SEq_4;
			firstUpdate = false;
		}

		compute_euler();
	}

	private void compute_euler() {
		/* compute the quaternion conjugate */
		var ESq_1 =  SEq_1;
		var ESq_2 = -SEq_2;
		var ESq_3 = -SEq_3;
		var ESq_4 = -SEq_4;

		/* compute the quaternion product */
		var ASq_1 = ESq_1 * AEq_1 - ESq_2 * AEq_2 - ESq_3 * AEq_3 - ESq_4 * AEq_4;
		var ASq_2 = ESq_1 * AEq_2 + ESq_2 * AEq_1 + ESq_3 * AEq_4 - ESq_4 * AEq_3;
		var ASq_3 = ESq_1 * AEq_3 - ESq_2 * AEq_4 + ESq_3 * AEq_1 + ESq_4 * AEq_2;
		var ASq_4 = ESq_1 * AEq_4 + ESq_2 * AEq_3 - ESq_3 * AEq_2 + ESq_4 * AEq_1;

		/* compute the Euler angles from the quaternion */
		var phi   = Math.atan2(2 * ASq_3 * ASq_4 - 2 * ASq_1 * ASq_2, 2 * ASq_1 * ASq_1 + 2 * ASq_4 * ASq_4 - 1);
		var theta = Math.asin(2 * ASq_2 * ASq_4 - 2 * ASq_1 * ASq_3);
		var psi   = Math.atan2(2 * ASq_2 * ASq_3 - 2 * ASq_1 * ASq_4, 2 * ASq_1 * ASq_1 + 2 * ASq_2 * ASq_2 - 1);

		result[AXIS.X] = phi;   /* roll */
		result[AXIS.Y] = theta; /* pitch */
		result[AXIS.Z] = psi;   /* yaw */

		stdout.printf(@"$i $(degree(result[AXIS.X]))\t$(degree(result[AXIS.Y]))\t$(degree(result[AXIS.Z]))\n");
	}

	public double[] get_data() {
		return result;
	}

	public void reset() {
		firstUpdate = true;

		/* Quaternion orientation of earth frame relative to auxiliary frame. */
		AEq_1 = 1;
		AEq_2 = 0;
		AEq_3 = 0;
		AEq_4 = 0;

		/* Estimated orientation quaternion elements with initial conditions. */
		SEq_1 = 1;
		SEq_2 = 0;
		SEq_3 = 0;
		SEq_4 = 0;
	}
}