summaryrefslogtreecommitdiffstats
path: root/drivers/clk/pxa/clk-pxa.c
blob: b80dc9d5855c9a041957cb7f067d072d868466b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*
 * Marvell PXA family clocks
 *
 * Copyright (C) 2014 Robert Jarzmik
 *
 * Common clock code for PXA clocks ("CKEN" type clocks + DT)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; version 2 of the License.
 *
 */
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/of.h>

#include <dt-bindings/clock/pxa-clock.h>
#include "clk-pxa.h"

#define KHz 1000
#define MHz (1000 * 1000)

#define MDREFR_K0DB4	(1 << 29)	/* SDCLK0 Divide by 4 Control/Status */
#define MDREFR_K2FREE	(1 << 25)	/* SDRAM Free-Running Control */
#define MDREFR_K1FREE	(1 << 24)	/* SDRAM Free-Running Control */
#define MDREFR_K0FREE	(1 << 23)	/* SDRAM Free-Running Control */
#define MDREFR_SLFRSH	(1 << 22)	/* SDRAM Self-Refresh Control/Status */
#define MDREFR_APD	(1 << 20)	/* SDRAM/SSRAM Auto-Power-Down Enable */
#define MDREFR_K2DB2	(1 << 19)	/* SDCLK2 Divide by 2 Control/Status */
#define MDREFR_K2RUN	(1 << 18)	/* SDCLK2 Run Control/Status */
#define MDREFR_K1DB2	(1 << 17)	/* SDCLK1 Divide by 2 Control/Status */
#define MDREFR_K1RUN	(1 << 16)	/* SDCLK1 Run Control/Status */
#define MDREFR_E1PIN	(1 << 15)	/* SDCKE1 Level Control/Status */
#define MDREFR_K0DB2	(1 << 14)	/* SDCLK0 Divide by 2 Control/Status */
#define MDREFR_K0RUN	(1 << 13)	/* SDCLK0 Run Control/Status */
#define MDREFR_E0PIN	(1 << 12)	/* SDCKE0 Level Control/Status */
#define MDREFR_DB2_MASK	(MDREFR_K2DB2 | MDREFR_K1DB2)
#define MDREFR_DRI_MASK	0xFFF

static DEFINE_SPINLOCK(pxa_clk_lock);

static struct clk *pxa_clocks[CLK_MAX];
static struct clk_onecell_data onecell_data = {
	.clks = pxa_clocks,
	.clk_num = CLK_MAX,
};

struct pxa_clk {
	struct clk_hw hw;
	struct clk_fixed_factor lp;
	struct clk_fixed_factor hp;
	struct clk_gate gate;
	bool (*is_in_low_power)(void);
};

#define to_pxa_clk(_hw) container_of(_hw, struct pxa_clk, hw)

static unsigned long cken_recalc_rate(struct clk_hw *hw,
				      unsigned long parent_rate)
{
	struct pxa_clk *pclk = to_pxa_clk(hw);
	struct clk_fixed_factor *fix;

	if (!pclk->is_in_low_power || pclk->is_in_low_power())
		fix = &pclk->lp;
	else
		fix = &pclk->hp;
	__clk_hw_set_clk(&fix->hw, hw);
	return clk_fixed_factor_ops.recalc_rate(&fix->hw, parent_rate);
}

static struct clk_ops cken_rate_ops = {
	.recalc_rate = cken_recalc_rate,
};

static u8 cken_get_parent(struct clk_hw *hw)
{
	struct pxa_clk *pclk = to_pxa_clk(hw);

	if (!pclk->is_in_low_power)
		return 0;
	return pclk->is_in_low_power() ? 0 : 1;
}

static struct clk_ops cken_mux_ops = {
	.get_parent = cken_get_parent,
	.set_parent = dummy_clk_set_parent,
};

void __init clkdev_pxa_register(int ckid, const char *con_id,
				const char *dev_id, struct clk *clk)
{
	if (!IS_ERR(clk) && (ckid != CLK_NONE))
		pxa_clocks[ckid] = clk;
	if (!IS_ERR(clk))
		clk_register_clkdev(clk, con_id, dev_id);
}

int __init clk_pxa_cken_init(const struct desc_clk_cken *clks, int nb_clks)
{
	int i;
	struct pxa_clk *pxa_clk;
	struct clk *clk;

	for (i = 0; i < nb_clks; i++) {
		pxa_clk = kzalloc(sizeof(*pxa_clk), GFP_KERNEL);
		pxa_clk->is_in_low_power = clks[i].is_in_low_power;
		pxa_clk->lp = clks[i].lp;
		pxa_clk->hp = clks[i].hp;
		pxa_clk->gate = clks[i].gate;
		pxa_clk->gate.lock = &pxa_clk_lock;
		clk = clk_register_composite(NULL, clks[i].name,
					     clks[i].parent_names, 2,
					     &pxa_clk->hw, &cken_mux_ops,
					     &pxa_clk->hw, &cken_rate_ops,
					     &pxa_clk->gate.hw, &clk_gate_ops,
					     clks[i].flags);
		clkdev_pxa_register(clks[i].ckid, clks[i].con_id,
				    clks[i].dev_id, clk);
	}
	return 0;
}

void __init clk_pxa_dt_common_init(struct device_node *np)
{
	of_clk_add_provider(np, of_clk_src_onecell_get, &onecell_data);
}

void pxa2xx_core_turbo_switch(bool on)
{
	unsigned long flags;
	unsigned int unused, clkcfg;

	local_irq_save(flags);

	asm("mrc p14, 0, %0, c6, c0, 0" : "=r" (clkcfg));
	clkcfg &= ~CLKCFG_TURBO & ~CLKCFG_HALFTURBO;
	if (on)
		clkcfg |= CLKCFG_TURBO;
	clkcfg |= CLKCFG_FCS;

	asm volatile(
	"	b	2f\n"
	"	.align	5\n"
	"1:	mcr	p14, 0, %1, c6, c0, 0\n"
	"	b	3f\n"
	"2:	b	1b\n"
	"3:	nop\n"
		: "=&r" (unused) : "r" (clkcfg));

	local_irq_restore(flags);
}

void pxa2xx_cpll_change(struct pxa2xx_freq *freq,
			u32 (*mdrefr_dri)(unsigned int), void __iomem *mdrefr,
			void __iomem *cccr)
{
	unsigned int clkcfg = freq->clkcfg;
	unsigned int unused, preset_mdrefr, postset_mdrefr;
	unsigned long flags;

	local_irq_save(flags);

	/* Calculate the next MDREFR.  If we're slowing down the SDRAM clock
	 * we need to preset the smaller DRI before the change.	 If we're
	 * speeding up we need to set the larger DRI value after the change.
	 */
	preset_mdrefr = postset_mdrefr = readl(mdrefr);
	if ((preset_mdrefr & MDREFR_DRI_MASK) > mdrefr_dri(freq->membus_khz)) {
		preset_mdrefr = (preset_mdrefr & ~MDREFR_DRI_MASK);
		preset_mdrefr |= mdrefr_dri(freq->membus_khz);
	}
	postset_mdrefr =
		(postset_mdrefr & ~MDREFR_DRI_MASK) |
		mdrefr_dri(freq->membus_khz);

	/* If we're dividing the memory clock by two for the SDRAM clock, this
	 * must be set prior to the change.  Clearing the divide must be done
	 * after the change.
	 */
	if (freq->div2) {
		preset_mdrefr  |= MDREFR_DB2_MASK;
		postset_mdrefr |= MDREFR_DB2_MASK;
	} else {
		postset_mdrefr &= ~MDREFR_DB2_MASK;
	}

	/* Set new the CCCR and prepare CLKCFG */
	writel(freq->cccr, cccr);

	asm volatile(
	"	ldr	r4, [%1]\n"
	"	b	2f\n"
	"	.align	5\n"
	"1:	str	%3, [%1]		/* preset the MDREFR */\n"
	"	mcr	p14, 0, %2, c6, c0, 0	/* set CLKCFG[FCS] */\n"
	"	str	%4, [%1]		/* postset the MDREFR */\n"
	"	b	3f\n"
	"2:	b	1b\n"
	"3:	nop\n"
	     : "=&r" (unused)
	     : "r" (mdrefr), "r" (clkcfg), "r" (preset_mdrefr),
	       "r" (postset_mdrefr)
	     : "r4", "r5");

	local_irq_restore(flags);
}

int pxa2xx_determine_rate(struct clk_rate_request *req,
			  struct pxa2xx_freq *freqs, int nb_freqs)
{
	int i, closest_below = -1, closest_above = -1;
	unsigned long rate;

	for (i = 0; i < nb_freqs; i++) {
		rate = freqs[i].cpll;
		if (rate == req->rate)
			break;
		if (rate < req->min_rate)
			continue;
		if (rate > req->max_rate)
			continue;
		if (rate <= req->rate)
			closest_below = i;
		if ((rate >= req->rate) && (closest_above == -1))
			closest_above = i;
	}

	req->best_parent_hw = NULL;

	if (i < nb_freqs) {
		rate = req->rate;
	} else if (closest_below >= 0) {
		rate = freqs[closest_below].cpll;
	} else if (closest_above >= 0) {
		rate = freqs[closest_above].cpll;
	} else {
		pr_debug("%s(rate=%lu) no match\n", __func__, req->rate);
		return -EINVAL;
	}

	pr_debug("%s(rate=%lu) rate=%lu\n", __func__, req->rate, rate);
	req->rate = rate;

	return 0;
}