summaryrefslogtreecommitdiffstats
path: root/drivers/clk/bcm/clk-kona-setup.c
blob: c37a7f0e83aafc881e54f32a82f868ae346f6eb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
/*
 * Copyright (C) 2013 Broadcom Corporation
 * Copyright 2013 Linaro Limited
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/io.h>
#include <linux/of_address.h>

#include "clk-kona.h"

/* These are used when a selector or trigger is found to be unneeded */
#define selector_clear_exists(sel)	((sel)->width = 0)
#define trigger_clear_exists(trig)	FLAG_CLEAR(trig, TRIG, EXISTS)

/* Validity checking */

static bool ccu_data_offsets_valid(struct ccu_data *ccu)
{
	struct ccu_policy *ccu_policy = &ccu->policy;
	u32 limit;

	limit = ccu->range - sizeof(u32);
	limit = round_down(limit, sizeof(u32));
	if (ccu_policy_exists(ccu_policy)) {
		if (ccu_policy->enable.offset > limit) {
			pr_err("%s: bad policy enable offset for %s "
					"(%u > %u)\n", __func__,
				ccu->name, ccu_policy->enable.offset, limit);
			return false;
		}
		if (ccu_policy->control.offset > limit) {
			pr_err("%s: bad policy control offset for %s "
					"(%u > %u)\n", __func__,
				ccu->name, ccu_policy->control.offset, limit);
			return false;
		}
	}

	return true;
}

static bool clk_requires_trigger(struct kona_clk *bcm_clk)
{
	struct peri_clk_data *peri = bcm_clk->u.peri;
	struct bcm_clk_sel *sel;
	struct bcm_clk_div *div;

	if (bcm_clk->type != bcm_clk_peri)
		return false;

	sel = &peri->sel;
	if (sel->parent_count && selector_exists(sel))
		return true;

	div = &peri->div;
	if (!divider_exists(div))
		return false;

	/* Fixed dividers don't need triggers */
	if (!divider_is_fixed(div))
		return true;

	div = &peri->pre_div;

	return divider_exists(div) && !divider_is_fixed(div);
}

static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
{
	struct peri_clk_data *peri;
	struct bcm_clk_policy *policy;
	struct bcm_clk_gate *gate;
	struct bcm_clk_hyst *hyst;
	struct bcm_clk_div *div;
	struct bcm_clk_sel *sel;
	struct bcm_clk_trig *trig;
	const char *name;
	u32 range;
	u32 limit;

	BUG_ON(bcm_clk->type != bcm_clk_peri);
	peri = bcm_clk->u.peri;
	name = bcm_clk->init_data.name;
	range = bcm_clk->ccu->range;

	limit = range - sizeof(u32);
	limit = round_down(limit, sizeof(u32));

	policy = &peri->policy;
	if (policy_exists(policy)) {
		if (policy->offset > limit) {
			pr_err("%s: bad policy offset for %s (%u > %u)\n",
				__func__, name, policy->offset, limit);
			return false;
		}
	}

	gate = &peri->gate;
	hyst = &peri->hyst;
	if (gate_exists(gate)) {
		if (gate->offset > limit) {
			pr_err("%s: bad gate offset for %s (%u > %u)\n",
				__func__, name, gate->offset, limit);
			return false;
		}

		if (hyst_exists(hyst)) {
			if (hyst->offset > limit) {
				pr_err("%s: bad hysteresis offset for %s "
					"(%u > %u)\n", __func__,
					name, hyst->offset, limit);
				return false;
			}
		}
	} else if (hyst_exists(hyst)) {
		pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
		return false;
	}

	div = &peri->div;
	if (divider_exists(div)) {
		if (div->u.s.offset > limit) {
			pr_err("%s: bad divider offset for %s (%u > %u)\n",
				__func__, name, div->u.s.offset, limit);
			return false;
		}
	}

	div = &peri->pre_div;
	if (divider_exists(div)) {
		if (div->u.s.offset > limit) {
			pr_err("%s: bad pre-divider offset for %s "
					"(%u > %u)\n",
				__func__, name, div->u.s.offset, limit);
			return false;
		}
	}

	sel = &peri->sel;
	if (selector_exists(sel)) {
		if (sel->offset > limit) {
			pr_err("%s: bad selector offset for %s (%u > %u)\n",
				__func__, name, sel->offset, limit);
			return false;
		}
	}

	trig = &peri->trig;
	if (trigger_exists(trig)) {
		if (trig->offset > limit) {
			pr_err("%s: bad trigger offset for %s (%u > %u)\n",
				__func__, name, trig->offset, limit);
			return false;
		}
	}

	trig = &peri->pre_trig;
	if (trigger_exists(trig)) {
		if (trig->offset > limit) {
			pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
				__func__, name, trig->offset, limit);
			return false;
		}
	}

	return true;
}

/* A bit position must be less than the number of bits in a 32-bit register. */
static bool bit_posn_valid(u32 bit_posn, const char *field_name,
			const char *clock_name)
{
	u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;

	if (bit_posn > limit) {
		pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
			field_name, clock_name, bit_posn, limit);
		return false;
	}
	return true;
}

/*
 * A bitfield must be at least 1 bit wide.  Both the low-order and
 * high-order bits must lie within a 32-bit register.  We require
 * fields to be less than 32 bits wide, mainly because we use
 * shifting to produce field masks, and shifting a full word width
 * is not well-defined by the C standard.
 */
static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
			const char *clock_name)
{
	u32 limit = BITS_PER_BYTE * sizeof(u32);

	if (!width) {
		pr_err("%s: bad %s field width 0 for %s\n", __func__,
			field_name, clock_name);
		return false;
	}
	if (shift + width > limit) {
		pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
			field_name, clock_name, shift, width, limit);
		return false;
	}
	return true;
}

static bool
ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
{
	struct bcm_lvm_en *enable = &ccu_policy->enable;
	struct bcm_policy_ctl *control;

	if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
		return false;

	control = &ccu_policy->control;
	if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
		return false;

	if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
		return false;

	if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
		return false;

	return true;
}

static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
{
	if (!bit_posn_valid(policy->bit, "policy", clock_name))
		return false;

	return true;
}

/*
 * All gates, if defined, have a status bit, and for hardware-only
 * gates, that's it.  Gates that can be software controlled also
 * have an enable bit.  And a gate that can be hardware or software
 * controlled will have a hardware/software select bit.
 */
static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
			const char *clock_name)
{
	if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
		return false;

	if (gate_is_sw_controllable(gate)) {
		if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
			return false;

		if (gate_is_hw_controllable(gate)) {
			if (!bit_posn_valid(gate->hw_sw_sel_bit,
						"gate hw/sw select",
						clock_name))
				return false;
		}
	} else {
		BUG_ON(!gate_is_hw_controllable(gate));
	}

	return true;
}

static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
{
	if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
		return false;

	if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
		return false;

	return true;
}

/*
 * A selector bitfield must be valid.  Its parent_sel array must
 * also be reasonable for the field.
 */
static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
			const char *clock_name)
{
	if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
		return false;

	if (sel->parent_count) {
		u32 max_sel;
		u32 limit;

		/*
		 * Make sure the selector field can hold all the
		 * selector values we expect to be able to use.  A
		 * clock only needs to have a selector defined if it
		 * has more than one parent.  And in that case the
		 * highest selector value will be in the last entry
		 * in the array.
		 */
		max_sel = sel->parent_sel[sel->parent_count - 1];
		limit = (1 << sel->width) - 1;
		if (max_sel > limit) {
			pr_err("%s: bad selector for %s "
					"(%u needs > %u bits)\n",
				__func__, clock_name, max_sel,
				sel->width);
			return false;
		}
	} else {
		pr_warn("%s: ignoring selector for %s (no parents)\n",
			__func__, clock_name);
		selector_clear_exists(sel);
		kfree(sel->parent_sel);
		sel->parent_sel = NULL;
	}

	return true;
}

/*
 * A fixed divider just needs to be non-zero.  A variable divider
 * has to have a valid divider bitfield, and if it has a fraction,
 * the width of the fraction must not be no more than the width of
 * the divider as a whole.
 */
static bool div_valid(struct bcm_clk_div *div, const char *field_name,
			const char *clock_name)
{
	if (divider_is_fixed(div)) {
		/* Any fixed divider value but 0 is OK */
		if (div->u.fixed == 0) {
			pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
				field_name, clock_name);
			return false;
		}
		return true;
	}
	if (!bitfield_valid(div->u.s.shift, div->u.s.width,
				field_name, clock_name))
		return false;

	if (divider_has_fraction(div))
		if (div->u.s.frac_width > div->u.s.width) {
			pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
				__func__, field_name, clock_name,
				div->u.s.frac_width, div->u.s.width);
			return false;
		}

	return true;
}

/*
 * If a clock has two dividers, the combined number of fractional
 * bits must be representable in a 32-bit unsigned value.  This
 * is because we scale up a dividend using both dividers before
 * dividing to improve accuracy, and we need to avoid overflow.
 */
static bool kona_dividers_valid(struct kona_clk *bcm_clk)
{
	struct peri_clk_data *peri = bcm_clk->u.peri;
	struct bcm_clk_div *div;
	struct bcm_clk_div *pre_div;
	u32 limit;

	BUG_ON(bcm_clk->type != bcm_clk_peri);

	if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
		return true;

	div = &peri->div;
	pre_div = &peri->pre_div;
	if (divider_is_fixed(div) || divider_is_fixed(pre_div))
		return true;

	limit = BITS_PER_BYTE * sizeof(u32);

	return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
}


/* A trigger just needs to represent a valid bit position */
static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
			const char *clock_name)
{
	return bit_posn_valid(trig->bit, field_name, clock_name);
}

/* Determine whether the set of peripheral clock registers are valid. */
static bool
peri_clk_data_valid(struct kona_clk *bcm_clk)
{
	struct peri_clk_data *peri;
	struct bcm_clk_policy *policy;
	struct bcm_clk_gate *gate;
	struct bcm_clk_hyst *hyst;
	struct bcm_clk_sel *sel;
	struct bcm_clk_div *div;
	struct bcm_clk_div *pre_div;
	struct bcm_clk_trig *trig;
	const char *name;

	BUG_ON(bcm_clk->type != bcm_clk_peri);

	/*
	 * First validate register offsets.  This is the only place
	 * where we need something from the ccu, so we do these
	 * together.
	 */
	if (!peri_clk_data_offsets_valid(bcm_clk))
		return false;

	peri = bcm_clk->u.peri;
	name = bcm_clk->init_data.name;

	policy = &peri->policy;
	if (policy_exists(policy) && !policy_valid(policy, name))
		return false;

	gate = &peri->gate;
	if (gate_exists(gate) && !gate_valid(gate, "gate", name))
		return false;

	hyst = &peri->hyst;
	if (hyst_exists(hyst) && !hyst_valid(hyst, name))
		return false;

	sel = &peri->sel;
	if (selector_exists(sel)) {
		if (!sel_valid(sel, "selector", name))
			return false;

	} else if (sel->parent_count > 1) {
		pr_err("%s: multiple parents but no selector for %s\n",
			__func__, name);

		return false;
	}

	div = &peri->div;
	pre_div = &peri->pre_div;
	if (divider_exists(div)) {
		if (!div_valid(div, "divider", name))
			return false;

		if (divider_exists(pre_div))
			if (!div_valid(pre_div, "pre-divider", name))
				return false;
	} else if (divider_exists(pre_div)) {
		pr_err("%s: pre-divider but no divider for %s\n", __func__,
			name);
		return false;
	}

	trig = &peri->trig;
	if (trigger_exists(trig)) {
		if (!trig_valid(trig, "trigger", name))
			return false;

		if (trigger_exists(&peri->pre_trig)) {
			if (!trig_valid(trig, "pre-trigger", name)) {
				return false;
			}
		}
		if (!clk_requires_trigger(bcm_clk)) {
			pr_warn("%s: ignoring trigger for %s (not needed)\n",
				__func__, name);
			trigger_clear_exists(trig);
		}
	} else if (trigger_exists(&peri->pre_trig)) {
		pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
			name);
		return false;
	} else if (clk_requires_trigger(bcm_clk)) {
		pr_err("%s: required trigger missing for %s\n", __func__,
			name);
		return false;
	}

	return kona_dividers_valid(bcm_clk);
}

static bool kona_clk_valid(struct kona_clk *bcm_clk)
{
	switch (bcm_clk->type) {
	case bcm_clk_peri:
		if (!peri_clk_data_valid(bcm_clk))
			return false;
		break;
	default:
		pr_err("%s: unrecognized clock type (%d)\n", __func__,
			(int)bcm_clk->type);
		return false;
	}
	return true;
}

/*
 * Scan an array of parent clock names to determine whether there
 * are any entries containing BAD_CLK_NAME.  Such entries are
 * placeholders for non-supported clocks.  Keep track of the
 * position of each clock name in the original array.
 *
 * Allocates an array of pointers to to hold the names of all
 * non-null entries in the original array, and returns a pointer to
 * that array in *names.  This will be used for registering the
 * clock with the common clock code.  On successful return,
 * *count indicates how many entries are in that names array.
 *
 * If there is more than one entry in the resulting names array,
 * another array is allocated to record the parent selector value
 * for each (defined) parent clock.  This is the value that
 * represents this parent clock in the clock's source selector
 * register.  The position of the clock in the original parent array
 * defines that selector value.  The number of entries in this array
 * is the same as the number of entries in the parent names array.
 *
 * The array of selector values is returned.  If the clock has no
 * parents, no selector is required and a null pointer is returned.
 *
 * Returns a null pointer if the clock names array supplied was
 * null.  (This is not an error.)
 *
 * Returns a pointer-coded error if an error occurs.
 */
static u32 *parent_process(const char *clocks[],
			u32 *count, const char ***names)
{
	static const char **parent_names;
	static u32 *parent_sel;
	const char **clock;
	u32 parent_count;
	u32 bad_count = 0;
	u32 orig_count;
	u32 i;
	u32 j;

	*count = 0;	/* In case of early return */
	*names = NULL;
	if (!clocks)
		return NULL;

	/*
	 * Count the number of names in the null-terminated array,
	 * and find out how many of those are actually clock names.
	 */
	for (clock = clocks; *clock; clock++)
		if (*clock == BAD_CLK_NAME)
			bad_count++;
	orig_count = (u32)(clock - clocks);
	parent_count = orig_count - bad_count;

	/* If all clocks are unsupported, we treat it as no clock */
	if (!parent_count)
		return NULL;

	/* Avoid exceeding our parent clock limit */
	if (parent_count > PARENT_COUNT_MAX) {
		pr_err("%s: too many parents (%u > %u)\n", __func__,
			parent_count, PARENT_COUNT_MAX);
		return ERR_PTR(-EINVAL);
	}

	/*
	 * There is one parent name for each defined parent clock.
	 * We also maintain an array containing the selector value
	 * for each defined clock.  If there's only one clock, the
	 * selector is not required, but we allocate space for the
	 * array anyway to keep things simple.
	 */
	parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
			       GFP_KERNEL);
	if (!parent_names) {
		pr_err("%s: error allocating %u parent names\n", __func__,
				parent_count);
		return ERR_PTR(-ENOMEM);
	}

	/* There is at least one parent, so allocate a selector array */
	parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel),
				   GFP_KERNEL);
	if (!parent_sel) {
		pr_err("%s: error allocating %u parent selectors\n", __func__,
				parent_count);
		kfree(parent_names);

		return ERR_PTR(-ENOMEM);
	}

	/* Now fill in the parent names and selector arrays */
	for (i = 0, j = 0; i < orig_count; i++) {
		if (clocks[i] != BAD_CLK_NAME) {
			parent_names[j] = clocks[i];
			parent_sel[j] = i;
			j++;
		}
	}
	*names = parent_names;
	*count = parent_count;

	return parent_sel;
}

static int
clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
		struct clk_init_data *init_data)
{
	const char **parent_names = NULL;
	u32 parent_count = 0;
	u32 *parent_sel;

	/*
	 * If a peripheral clock has multiple parents, the value
	 * used by the hardware to select that parent is represented
	 * by the parent clock's position in the "clocks" list.  Some
	 * values don't have defined or supported clocks; these will
	 * have BAD_CLK_NAME entries in the parents[] array.  The
	 * list is terminated by a NULL entry.
	 *
	 * We need to supply (only) the names of defined parent
	 * clocks when registering a clock though, so we use an
	 * array of parent selector values to map between the
	 * indexes the common clock code uses and the selector
	 * values we need.
	 */
	parent_sel = parent_process(clocks, &parent_count, &parent_names);
	if (IS_ERR(parent_sel)) {
		int ret = PTR_ERR(parent_sel);

		pr_err("%s: error processing parent clocks for %s (%d)\n",
			__func__, init_data->name, ret);

		return ret;
	}

	init_data->parent_names = parent_names;
	init_data->num_parents = parent_count;

	sel->parent_count = parent_count;
	sel->parent_sel = parent_sel;

	return 0;
}

static void clk_sel_teardown(struct bcm_clk_sel *sel,
		struct clk_init_data *init_data)
{
	kfree(sel->parent_sel);
	sel->parent_sel = NULL;
	sel->parent_count = 0;

	init_data->num_parents = 0;
	kfree(init_data->parent_names);
	init_data->parent_names = NULL;
}

static void peri_clk_teardown(struct peri_clk_data *data,
				struct clk_init_data *init_data)
{
	clk_sel_teardown(&data->sel, init_data);
}

/*
 * Caller is responsible for freeing the parent_names[] and
 * parent_sel[] arrays in the peripheral clock's "data" structure
 * that can be assigned if the clock has one or more parent clocks
 * associated with it.
 */
static int
peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
{
	init_data->flags = CLK_IGNORE_UNUSED;

	return clk_sel_setup(data->clocks, &data->sel, init_data);
}

static void bcm_clk_teardown(struct kona_clk *bcm_clk)
{
	switch (bcm_clk->type) {
	case bcm_clk_peri:
		peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
		break;
	default:
		break;
	}
	bcm_clk->u.data = NULL;
	bcm_clk->type = bcm_clk_none;
}

static void kona_clk_teardown(struct clk_hw *hw)
{
	struct kona_clk *bcm_clk;

	if (!hw)
		return;

	clk_hw_unregister(hw);

	bcm_clk = to_kona_clk(hw);
	bcm_clk_teardown(bcm_clk);
}

static int kona_clk_setup(struct kona_clk *bcm_clk)
{
	int ret;
	struct clk_init_data *init_data = &bcm_clk->init_data;

	switch (bcm_clk->type) {
	case bcm_clk_peri:
		ret = peri_clk_setup(bcm_clk->u.data, init_data);
		if (ret)
			return ret;
		break;
	default:
		pr_err("%s: clock type %d invalid for %s\n", __func__,
			(int)bcm_clk->type, init_data->name);
		return -EINVAL;
	}

	/* Make sure everything makes sense before we set it up */
	if (!kona_clk_valid(bcm_clk)) {
		pr_err("%s: clock data invalid for %s\n", __func__,
			init_data->name);
		ret = -EINVAL;
		goto out_teardown;
	}

	bcm_clk->hw.init = init_data;
	ret = clk_hw_register(NULL, &bcm_clk->hw);
	if (ret) {
		pr_err("%s: error registering clock %s (%d)\n", __func__,
			init_data->name, ret);
		goto out_teardown;
	}

	return 0;
out_teardown:
	bcm_clk_teardown(bcm_clk);

	return ret;
}

static void ccu_clks_teardown(struct ccu_data *ccu)
{
	u32 i;

	for (i = 0; i < ccu->clk_num; i++)
		kona_clk_teardown(&ccu->kona_clks[i].hw);
}

static void kona_ccu_teardown(struct ccu_data *ccu)
{
	if (!ccu->base)
		return;

	of_clk_del_provider(ccu->node);	/* safe if never added */
	ccu_clks_teardown(ccu);
	of_node_put(ccu->node);
	ccu->node = NULL;
	iounmap(ccu->base);
	ccu->base = NULL;
}

static bool ccu_data_valid(struct ccu_data *ccu)
{
	struct ccu_policy *ccu_policy;

	if (!ccu_data_offsets_valid(ccu))
		return false;

	ccu_policy = &ccu->policy;
	if (ccu_policy_exists(ccu_policy))
		if (!ccu_policy_valid(ccu_policy, ccu->name))
			return false;

	return true;
}

static struct clk_hw *
of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data)
{
	struct ccu_data *ccu = data;
	unsigned int idx = clkspec->args[0];

	if (idx >= ccu->clk_num) {
		pr_err("%s: invalid index %u\n", __func__, idx);
		return ERR_PTR(-EINVAL);
	}

	return &ccu->kona_clks[idx].hw;
}

/*
 * Set up a CCU.  Call the provided ccu_clks_setup callback to
 * initialize the array of clocks provided by the CCU.
 */
void __init kona_dt_ccu_setup(struct ccu_data *ccu,
			struct device_node *node)
{
	struct resource res = { 0 };
	resource_size_t range;
	unsigned int i;
	int ret;

	ret = of_address_to_resource(node, 0, &res);
	if (ret) {
		pr_err("%s: no valid CCU registers found for %s\n", __func__,
			node->name);
		goto out_err;
	}

	range = resource_size(&res);
	if (range > (resource_size_t)U32_MAX) {
		pr_err("%s: address range too large for %s\n", __func__,
			node->name);
		goto out_err;
	}

	ccu->range = (u32)range;

	if (!ccu_data_valid(ccu)) {
		pr_err("%s: ccu data not valid for %s\n", __func__, node->name);
		goto out_err;
	}

	ccu->base = ioremap(res.start, ccu->range);
	if (!ccu->base) {
		pr_err("%s: unable to map CCU registers for %s\n", __func__,
			node->name);
		goto out_err;
	}
	ccu->node = of_node_get(node);

	/*
	 * Set up each defined kona clock and save the result in
	 * the clock framework clock array (in ccu->data).  Then
	 * register as a provider for these clocks.
	 */
	for (i = 0; i < ccu->clk_num; i++) {
		if (!ccu->kona_clks[i].ccu)
			continue;
		kona_clk_setup(&ccu->kona_clks[i]);
	}

	ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu);
	if (ret) {
		pr_err("%s: error adding ccu %s as provider (%d)\n", __func__,
				node->name, ret);
		goto out_err;
	}

	if (!kona_ccu_init(ccu))
		pr_err("Broadcom %s initialization had errors\n", node->name);

	return;
out_err:
	kona_ccu_teardown(ccu);
	pr_err("Broadcom %s setup aborted\n", node->name);
}