summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu/tdp_mmu.c
blob: 5a9e964e0178473316003dd8c98cfae3d8c38735 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
// SPDX-License-Identifier: GPL-2.0

#include "mmu.h"
#include "mmu_internal.h"
#include "mmutrace.h"
#include "tdp_iter.h"
#include "tdp_mmu.h"
#include "spte.h"

#include <trace/events/kvm.h>

#ifdef CONFIG_X86_64
static bool __read_mostly tdp_mmu_enabled = false;
module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
#endif

static bool is_tdp_mmu_enabled(void)
{
#ifdef CONFIG_X86_64
	return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
#else
	return false;
#endif /* CONFIG_X86_64 */
}

/* Initializes the TDP MMU for the VM, if enabled. */
void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
{
	if (!is_tdp_mmu_enabled())
		return;

	/* This should not be changed for the lifetime of the VM. */
	kvm->arch.tdp_mmu_enabled = true;

	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
}

void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
{
	if (!kvm->arch.tdp_mmu_enabled)
		return;

	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));

	/*
	 * Ensure that all the outstanding RCU callbacks to free shadow pages
	 * can run before the VM is torn down.
	 */
	rcu_barrier();
}

static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
{
	if (kvm_mmu_put_root(kvm, root))
		kvm_tdp_mmu_free_root(kvm, root);
}

static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
					   struct kvm_mmu_page *root)
{
	lockdep_assert_held_write(&kvm->mmu_lock);

	if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
		return false;

	kvm_mmu_get_root(kvm, root);
	return true;

}

static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
						     struct kvm_mmu_page *root)
{
	struct kvm_mmu_page *next_root;

	next_root = list_next_entry(root, link);
	tdp_mmu_put_root(kvm, root);
	return next_root;
}

/*
 * Note: this iterator gets and puts references to the roots it iterates over.
 * This makes it safe to release the MMU lock and yield within the loop, but
 * if exiting the loop early, the caller must drop the reference to the most
 * recent root. (Unless keeping a live reference is desirable.)
 */
#define for_each_tdp_mmu_root_yield_safe(_kvm, _root)				\
	for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots,	\
				      typeof(*_root), link);		\
	     tdp_mmu_next_root_valid(_kvm, _root);			\
	     _root = tdp_mmu_next_root(_kvm, _root))

#define for_each_tdp_mmu_root(_kvm, _root)				\
	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)

bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
{
	struct kvm_mmu_page *sp;

	if (!kvm->arch.tdp_mmu_enabled)
		return false;
	if (WARN_ON(!VALID_PAGE(hpa)))
		return false;

	sp = to_shadow_page(hpa);
	if (WARN_ON(!sp))
		return false;

	return sp->tdp_mmu_page && sp->root_count;
}

static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
			  gfn_t start, gfn_t end, bool can_yield);

void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
{
	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);

	lockdep_assert_held_write(&kvm->mmu_lock);

	WARN_ON(root->root_count);
	WARN_ON(!root->tdp_mmu_page);

	list_del(&root->link);

	zap_gfn_range(kvm, root, 0, max_gfn, false);

	free_page((unsigned long)root->spt);
	kmem_cache_free(mmu_page_header_cache, root);
}

static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
						   int level)
{
	union kvm_mmu_page_role role;

	role = vcpu->arch.mmu->mmu_role.base;
	role.level = level;
	role.direct = true;
	role.gpte_is_8_bytes = true;
	role.access = ACC_ALL;

	return role;
}

static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
					       int level)
{
	struct kvm_mmu_page *sp;

	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);

	sp->role.word = page_role_for_level(vcpu, level).word;
	sp->gfn = gfn;
	sp->tdp_mmu_page = true;

	trace_kvm_mmu_get_page(sp, true);

	return sp;
}

static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
{
	union kvm_mmu_page_role role;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_mmu_page *root;

	role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);

	write_lock(&kvm->mmu_lock);

	/* Check for an existing root before allocating a new one. */
	for_each_tdp_mmu_root(kvm, root) {
		if (root->role.word == role.word) {
			kvm_mmu_get_root(kvm, root);
			write_unlock(&kvm->mmu_lock);
			return root;
		}
	}

	root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
	root->root_count = 1;

	list_add(&root->link, &kvm->arch.tdp_mmu_roots);

	write_unlock(&kvm->mmu_lock);

	return root;
}

hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
{
	struct kvm_mmu_page *root;

	root = get_tdp_mmu_vcpu_root(vcpu);
	if (!root)
		return INVALID_PAGE;

	return __pa(root->spt);
}

static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
{
	free_page((unsigned long)sp->spt);
	kmem_cache_free(mmu_page_header_cache, sp);
}

/*
 * This is called through call_rcu in order to free TDP page table memory
 * safely with respect to other kernel threads that may be operating on
 * the memory.
 * By only accessing TDP MMU page table memory in an RCU read critical
 * section, and freeing it after a grace period, lockless access to that
 * memory won't use it after it is freed.
 */
static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
{
	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
					       rcu_head);

	tdp_mmu_free_sp(sp);
}

static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
				u64 old_spte, u64 new_spte, int level);

static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
{
	return sp->role.smm ? 1 : 0;
}

static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
{
	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);

	if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
		return;

	if (is_accessed_spte(old_spte) &&
	    (!is_accessed_spte(new_spte) || pfn_changed))
		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
}

static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
					  u64 old_spte, u64 new_spte, int level)
{
	bool pfn_changed;
	struct kvm_memory_slot *slot;

	if (level > PG_LEVEL_4K)
		return;

	pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);

	if ((!is_writable_pte(old_spte) || pfn_changed) &&
	    is_writable_pte(new_spte)) {
		slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
		mark_page_dirty_in_slot(kvm, slot, gfn);
	}
}

/**
 * tdp_mmu_link_page - Add a new page to the list of pages used by the TDP MMU
 *
 * @kvm: kvm instance
 * @sp: the new page
 * @account_nx: This page replaces a NX large page and should be marked for
 *		eventual reclaim.
 */
static void tdp_mmu_link_page(struct kvm *kvm, struct kvm_mmu_page *sp,
			      bool account_nx)
{
	lockdep_assert_held_write(&kvm->mmu_lock);

	list_add(&sp->link, &kvm->arch.tdp_mmu_pages);
	if (account_nx)
		account_huge_nx_page(kvm, sp);
}

/**
 * tdp_mmu_unlink_page - Remove page from the list of pages used by the TDP MMU
 *
 * @kvm: kvm instance
 * @sp: the page to be removed
 */
static void tdp_mmu_unlink_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
	lockdep_assert_held_write(&kvm->mmu_lock);

	list_del(&sp->link);
	if (sp->lpage_disallowed)
		unaccount_huge_nx_page(kvm, sp);
}

/**
 * handle_removed_tdp_mmu_page - handle a pt removed from the TDP structure
 *
 * @kvm: kvm instance
 * @pt: the page removed from the paging structure
 *
 * Given a page table that has been removed from the TDP paging structure,
 * iterates through the page table to clear SPTEs and free child page tables.
 */
static void handle_removed_tdp_mmu_page(struct kvm *kvm, u64 *pt)
{
	struct kvm_mmu_page *sp = sptep_to_sp(pt);
	int level = sp->role.level;
	gfn_t gfn = sp->gfn;
	u64 old_child_spte;
	int i;

	trace_kvm_mmu_prepare_zap_page(sp);

	tdp_mmu_unlink_page(kvm, sp);

	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
		old_child_spte = READ_ONCE(*(pt + i));
		WRITE_ONCE(*(pt + i), 0);
		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp),
			gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
			old_child_spte, 0, level - 1);
	}

	kvm_flush_remote_tlbs_with_address(kvm, gfn,
					   KVM_PAGES_PER_HPAGE(level));

	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
}

/**
 * handle_changed_spte - handle bookkeeping associated with an SPTE change
 * @kvm: kvm instance
 * @as_id: the address space of the paging structure the SPTE was a part of
 * @gfn: the base GFN that was mapped by the SPTE
 * @old_spte: The value of the SPTE before the change
 * @new_spte: The value of the SPTE after the change
 * @level: the level of the PT the SPTE is part of in the paging structure
 *
 * Handle bookkeeping that might result from the modification of a SPTE.
 * This function must be called for all TDP SPTE modifications.
 */
static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
				u64 old_spte, u64 new_spte, int level)
{
	bool was_present = is_shadow_present_pte(old_spte);
	bool is_present = is_shadow_present_pte(new_spte);
	bool was_leaf = was_present && is_last_spte(old_spte, level);
	bool is_leaf = is_present && is_last_spte(new_spte, level);
	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);

	WARN_ON(level > PT64_ROOT_MAX_LEVEL);
	WARN_ON(level < PG_LEVEL_4K);
	WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));

	/*
	 * If this warning were to trigger it would indicate that there was a
	 * missing MMU notifier or a race with some notifier handler.
	 * A present, leaf SPTE should never be directly replaced with another
	 * present leaf SPTE pointing to a differnt PFN. A notifier handler
	 * should be zapping the SPTE before the main MM's page table is
	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
	 * thread before replacement.
	 */
	if (was_leaf && is_leaf && pfn_changed) {
		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
		       "SPTE with another present leaf SPTE mapping a\n"
		       "different PFN!\n"
		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
		       as_id, gfn, old_spte, new_spte, level);

		/*
		 * Crash the host to prevent error propagation and guest data
		 * courruption.
		 */
		BUG();
	}

	if (old_spte == new_spte)
		return;

	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);

	/*
	 * The only times a SPTE should be changed from a non-present to
	 * non-present state is when an MMIO entry is installed/modified/
	 * removed. In that case, there is nothing to do here.
	 */
	if (!was_present && !is_present) {
		/*
		 * If this change does not involve a MMIO SPTE, it is
		 * unexpected. Log the change, though it should not impact the
		 * guest since both the former and current SPTEs are nonpresent.
		 */
		if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
			       "should not be replaced with another,\n"
			       "different nonpresent SPTE, unless one or both\n"
			       "are MMIO SPTEs.\n"
			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
			       as_id, gfn, old_spte, new_spte, level);
		return;
	}


	if (was_leaf && is_dirty_spte(old_spte) &&
	    (!is_dirty_spte(new_spte) || pfn_changed))
		kvm_set_pfn_dirty(spte_to_pfn(old_spte));

	/*
	 * Recursively handle child PTs if the change removed a subtree from
	 * the paging structure.
	 */
	if (was_present && !was_leaf && (pfn_changed || !is_present))
		handle_removed_tdp_mmu_page(kvm,
				spte_to_child_pt(old_spte, level));
}

static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
				u64 old_spte, u64 new_spte, int level)
{
	__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
	handle_changed_spte_acc_track(old_spte, new_spte, level);
	handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
				      new_spte, level);
}

/*
 * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
 * @kvm: kvm instance
 * @iter: a tdp_iter instance currently on the SPTE that should be set
 * @new_spte: The value the SPTE should be set to
 * @record_acc_track: Notify the MM subsystem of changes to the accessed state
 *		      of the page. Should be set unless handling an MMU
 *		      notifier for access tracking. Leaving record_acc_track
 *		      unset in that case prevents page accesses from being
 *		      double counted.
 * @record_dirty_log: Record the page as dirty in the dirty bitmap if
 *		      appropriate for the change being made. Should be set
 *		      unless performing certain dirty logging operations.
 *		      Leaving record_dirty_log unset in that case prevents page
 *		      writes from being double counted.
 */
static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
				      u64 new_spte, bool record_acc_track,
				      bool record_dirty_log)
{
	tdp_ptep_t root_pt = tdp_iter_root_pt(iter);
	struct kvm_mmu_page *root = sptep_to_sp(root_pt);
	int as_id = kvm_mmu_page_as_id(root);

	lockdep_assert_held_write(&kvm->mmu_lock);

	WRITE_ONCE(*rcu_dereference(iter->sptep), new_spte);

	__handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
			      iter->level);
	if (record_acc_track)
		handle_changed_spte_acc_track(iter->old_spte, new_spte,
					      iter->level);
	if (record_dirty_log)
		handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
					      iter->old_spte, new_spte,
					      iter->level);
}

static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
				    u64 new_spte)
{
	__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
}

static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
						 struct tdp_iter *iter,
						 u64 new_spte)
{
	__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
}

static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
						 struct tdp_iter *iter,
						 u64 new_spte)
{
	__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
}

#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
	for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)

#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
		if (!is_shadow_present_pte(_iter.old_spte) ||		\
		    !is_last_spte(_iter.old_spte, _iter.level))		\
			continue;					\
		else

#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
	for_each_tdp_pte(_iter, __va(_mmu->root_hpa),		\
			 _mmu->shadow_root_level, _start, _end)

/*
 * Yield if the MMU lock is contended or this thread needs to return control
 * to the scheduler.
 *
 * If this function should yield and flush is set, it will perform a remote
 * TLB flush before yielding.
 *
 * If this function yields, it will also reset the tdp_iter's walk over the
 * paging structure and the calling function should skip to the next
 * iteration to allow the iterator to continue its traversal from the
 * paging structure root.
 *
 * Return true if this function yielded and the iterator's traversal was reset.
 * Return false if a yield was not needed.
 */
static inline bool tdp_mmu_iter_cond_resched(struct kvm *kvm,
					     struct tdp_iter *iter, bool flush)
{
	/* Ensure forward progress has been made before yielding. */
	if (iter->next_last_level_gfn == iter->yielded_gfn)
		return false;

	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
		rcu_read_unlock();

		if (flush)
			kvm_flush_remote_tlbs(kvm);

		cond_resched_rwlock_write(&kvm->mmu_lock);
		rcu_read_lock();

		WARN_ON(iter->gfn > iter->next_last_level_gfn);

		tdp_iter_start(iter, iter->pt_path[iter->root_level - 1],
			       iter->root_level, iter->min_level,
			       iter->next_last_level_gfn);

		return true;
	}

	return false;
}

/*
 * Tears down the mappings for the range of gfns, [start, end), and frees the
 * non-root pages mapping GFNs strictly within that range. Returns true if
 * SPTEs have been cleared and a TLB flush is needed before releasing the
 * MMU lock.
 * If can_yield is true, will release the MMU lock and reschedule if the
 * scheduler needs the CPU or there is contention on the MMU lock. If this
 * function cannot yield, it will not release the MMU lock or reschedule and
 * the caller must ensure it does not supply too large a GFN range, or the
 * operation can cause a soft lockup.
 */
static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
			  gfn_t start, gfn_t end, bool can_yield)
{
	struct tdp_iter iter;
	bool flush_needed = false;

	rcu_read_lock();

	tdp_root_for_each_pte(iter, root, start, end) {
		if (can_yield &&
		    tdp_mmu_iter_cond_resched(kvm, &iter, flush_needed)) {
			flush_needed = false;
			continue;
		}

		if (!is_shadow_present_pte(iter.old_spte))
			continue;

		/*
		 * If this is a non-last-level SPTE that covers a larger range
		 * than should be zapped, continue, and zap the mappings at a
		 * lower level.
		 */
		if ((iter.gfn < start ||
		     iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
		    !is_last_spte(iter.old_spte, iter.level))
			continue;

		tdp_mmu_set_spte(kvm, &iter, 0);
		flush_needed = true;
	}

	rcu_read_unlock();
	return flush_needed;
}

/*
 * Tears down the mappings for the range of gfns, [start, end), and frees the
 * non-root pages mapping GFNs strictly within that range. Returns true if
 * SPTEs have been cleared and a TLB flush is needed before releasing the
 * MMU lock.
 */
bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
{
	struct kvm_mmu_page *root;
	bool flush = false;

	for_each_tdp_mmu_root_yield_safe(kvm, root)
		flush |= zap_gfn_range(kvm, root, start, end, true);

	return flush;
}

void kvm_tdp_mmu_zap_all(struct kvm *kvm)
{
	gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
	bool flush;

	flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
	if (flush)
		kvm_flush_remote_tlbs(kvm);
}

/*
 * Installs a last-level SPTE to handle a TDP page fault.
 * (NPT/EPT violation/misconfiguration)
 */
static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
					  int map_writable,
					  struct tdp_iter *iter,
					  kvm_pfn_t pfn, bool prefault)
{
	u64 new_spte;
	int ret = 0;
	int make_spte_ret = 0;

	if (unlikely(is_noslot_pfn(pfn))) {
		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
				     new_spte);
	} else {
		make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
					 pfn, iter->old_spte, prefault, true,
					 map_writable, !shadow_accessed_mask,
					 &new_spte);
		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
				       rcu_dereference(iter->sptep));
	}

	if (new_spte == iter->old_spte)
		ret = RET_PF_SPURIOUS;
	else
		tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);

	/*
	 * If the page fault was caused by a write but the page is write
	 * protected, emulation is needed. If the emulation was skipped,
	 * the vCPU would have the same fault again.
	 */
	if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
		if (write)
			ret = RET_PF_EMULATE;
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
	}

	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
	if (unlikely(is_mmio_spte(new_spte)))
		ret = RET_PF_EMULATE;

	trace_kvm_mmu_set_spte(iter->level, iter->gfn,
			       rcu_dereference(iter->sptep));
	if (!prefault)
		vcpu->stat.pf_fixed++;

	return ret;
}

/*
 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
 * page tables and SPTEs to translate the faulting guest physical address.
 */
int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
		    int map_writable, int max_level, kvm_pfn_t pfn,
		    bool prefault)
{
	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
	bool write = error_code & PFERR_WRITE_MASK;
	bool exec = error_code & PFERR_FETCH_MASK;
	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	struct tdp_iter iter;
	struct kvm_mmu_page *sp;
	u64 *child_pt;
	u64 new_spte;
	int ret;
	gfn_t gfn = gpa >> PAGE_SHIFT;
	int level;
	int req_level;

	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
		return RET_PF_RETRY;
	if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
		return RET_PF_RETRY;

	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
					huge_page_disallowed, &req_level);

	trace_kvm_mmu_spte_requested(gpa, level, pfn);

	rcu_read_lock();

	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
		if (nx_huge_page_workaround_enabled)
			disallowed_hugepage_adjust(iter.old_spte, gfn,
						   iter.level, &pfn, &level);

		if (iter.level == level)
			break;

		/*
		 * If there is an SPTE mapping a large page at a higher level
		 * than the target, that SPTE must be cleared and replaced
		 * with a non-leaf SPTE.
		 */
		if (is_shadow_present_pte(iter.old_spte) &&
		    is_large_pte(iter.old_spte)) {
			tdp_mmu_set_spte(vcpu->kvm, &iter, 0);

			kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
					KVM_PAGES_PER_HPAGE(iter.level));

			/*
			 * The iter must explicitly re-read the spte here
			 * because the new value informs the !present
			 * path below.
			 */
			iter.old_spte = READ_ONCE(*rcu_dereference(iter.sptep));
		}

		if (!is_shadow_present_pte(iter.old_spte)) {
			sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
			child_pt = sp->spt;

			tdp_mmu_link_page(vcpu->kvm, sp,
					  huge_page_disallowed &&
					  req_level >= iter.level);

			new_spte = make_nonleaf_spte(child_pt,
						     !shadow_accessed_mask);

			trace_kvm_mmu_get_page(sp, true);
			tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
		}
	}

	if (WARN_ON(iter.level != level)) {
		rcu_read_unlock();
		return RET_PF_RETRY;
	}

	ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
					      pfn, prefault);
	rcu_read_unlock();

	return ret;
}

static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
		unsigned long end, unsigned long data,
		int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
			       struct kvm_mmu_page *root, gfn_t start,
			       gfn_t end, unsigned long data))
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	struct kvm_mmu_page *root;
	int ret = 0;
	int as_id;

	for_each_tdp_mmu_root_yield_safe(kvm, root) {
		as_id = kvm_mmu_page_as_id(root);
		slots = __kvm_memslots(kvm, as_id);
		kvm_for_each_memslot(memslot, slots) {
			unsigned long hva_start, hva_end;
			gfn_t gfn_start, gfn_end;

			hva_start = max(start, memslot->userspace_addr);
			hva_end = min(end, memslot->userspace_addr +
				      (memslot->npages << PAGE_SHIFT));
			if (hva_start >= hva_end)
				continue;
			/*
			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
			 */
			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);

			ret |= handler(kvm, memslot, root, gfn_start,
				       gfn_end, data);
		}
	}

	return ret;
}

static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
				     struct kvm_memory_slot *slot,
				     struct kvm_mmu_page *root, gfn_t start,
				     gfn_t end, unsigned long unused)
{
	return zap_gfn_range(kvm, root, start, end, false);
}

int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
			      unsigned long end)
{
	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
					    zap_gfn_range_hva_wrapper);
}

/*
 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
 * if any of the GFNs in the range have been accessed.
 */
static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
			 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
			 unsigned long unused)
{
	struct tdp_iter iter;
	int young = 0;
	u64 new_spte = 0;

	rcu_read_lock();

	tdp_root_for_each_leaf_pte(iter, root, start, end) {
		/*
		 * If we have a non-accessed entry we don't need to change the
		 * pte.
		 */
		if (!is_accessed_spte(iter.old_spte))
			continue;

		new_spte = iter.old_spte;

		if (spte_ad_enabled(new_spte)) {
			clear_bit((ffs(shadow_accessed_mask) - 1),
				  (unsigned long *)&new_spte);
		} else {
			/*
			 * Capture the dirty status of the page, so that it doesn't get
			 * lost when the SPTE is marked for access tracking.
			 */
			if (is_writable_pte(new_spte))
				kvm_set_pfn_dirty(spte_to_pfn(new_spte));

			new_spte = mark_spte_for_access_track(new_spte);
		}
		new_spte &= ~shadow_dirty_mask;

		tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
		young = 1;

		trace_kvm_age_page(iter.gfn, iter.level, slot, young);
	}

	rcu_read_unlock();

	return young;
}

int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
			      unsigned long end)
{
	return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
					    age_gfn_range);
}

static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
			unsigned long unused2)
{
	struct tdp_iter iter;

	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
		if (is_accessed_spte(iter.old_spte))
			return 1;

	return 0;
}

int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
{
	return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
					    test_age_gfn);
}

/*
 * Handle the changed_pte MMU notifier for the TDP MMU.
 * data is a pointer to the new pte_t mapping the HVA specified by the MMU
 * notifier.
 * Returns non-zero if a flush is needed before releasing the MMU lock.
 */
static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
			struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
			unsigned long data)
{
	struct tdp_iter iter;
	pte_t *ptep = (pte_t *)data;
	kvm_pfn_t new_pfn;
	u64 new_spte;
	int need_flush = 0;

	rcu_read_lock();

	WARN_ON(pte_huge(*ptep));

	new_pfn = pte_pfn(*ptep);

	tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
		if (iter.level != PG_LEVEL_4K)
			continue;

		if (!is_shadow_present_pte(iter.old_spte))
			break;

		tdp_mmu_set_spte(kvm, &iter, 0);

		kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);

		if (!pte_write(*ptep)) {
			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
					iter.old_spte, new_pfn);

			tdp_mmu_set_spte(kvm, &iter, new_spte);
		}

		need_flush = 1;
	}

	if (need_flush)
		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);

	rcu_read_unlock();

	return 0;
}

int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
			     pte_t *host_ptep)
{
	return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
					    (unsigned long)host_ptep,
					    set_tdp_spte);
}

/*
 * Remove write access from all the SPTEs mapping GFNs [start, end). If
 * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
 */
static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
			     gfn_t start, gfn_t end, int min_level)
{
	struct tdp_iter iter;
	u64 new_spte;
	bool spte_set = false;

	rcu_read_lock();

	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);

	for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
				   min_level, start, end) {
		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
			continue;

		if (!is_shadow_present_pte(iter.old_spte) ||
		    !is_last_spte(iter.old_spte, iter.level) ||
		    !(iter.old_spte & PT_WRITABLE_MASK))
			continue;

		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;

		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
		spte_set = true;
	}

	rcu_read_unlock();
	return spte_set;
}

/*
 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
 * only affect leaf SPTEs down to min_level.
 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
 */
bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
			     int min_level)
{
	struct kvm_mmu_page *root;
	int root_as_id;
	bool spte_set = false;

	for_each_tdp_mmu_root_yield_safe(kvm, root) {
		root_as_id = kvm_mmu_page_as_id(root);
		if (root_as_id != slot->as_id)
			continue;

		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
			     slot->base_gfn + slot->npages, min_level);
	}

	return spte_set;
}

/*
 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
 * If AD bits are not enabled, this will require clearing the writable bit on
 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
 * be flushed.
 */
static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
			   gfn_t start, gfn_t end)
{
	struct tdp_iter iter;
	u64 new_spte;
	bool spte_set = false;

	rcu_read_lock();

	tdp_root_for_each_leaf_pte(iter, root, start, end) {
		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
			continue;

		if (spte_ad_need_write_protect(iter.old_spte)) {
			if (is_writable_pte(iter.old_spte))
				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
			else
				continue;
		} else {
			if (iter.old_spte & shadow_dirty_mask)
				new_spte = iter.old_spte & ~shadow_dirty_mask;
			else
				continue;
		}

		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
		spte_set = true;
	}

	rcu_read_unlock();
	return spte_set;
}

/*
 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
 * If AD bits are not enabled, this will require clearing the writable bit on
 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
 * be flushed.
 */
bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
	struct kvm_mmu_page *root;
	int root_as_id;
	bool spte_set = false;

	for_each_tdp_mmu_root_yield_safe(kvm, root) {
		root_as_id = kvm_mmu_page_as_id(root);
		if (root_as_id != slot->as_id)
			continue;

		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
				slot->base_gfn + slot->npages);
	}

	return spte_set;
}

/*
 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
 * set in mask, starting at gfn. The given memslot is expected to contain all
 * the GFNs represented by set bits in the mask. If AD bits are enabled,
 * clearing the dirty status will involve clearing the dirty bit on each SPTE
 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
 */
static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
				  gfn_t gfn, unsigned long mask, bool wrprot)
{
	struct tdp_iter iter;
	u64 new_spte;

	rcu_read_lock();

	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
				    gfn + BITS_PER_LONG) {
		if (!mask)
			break;

		if (iter.level > PG_LEVEL_4K ||
		    !(mask & (1UL << (iter.gfn - gfn))))
			continue;

		mask &= ~(1UL << (iter.gfn - gfn));

		if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
			if (is_writable_pte(iter.old_spte))
				new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
			else
				continue;
		} else {
			if (iter.old_spte & shadow_dirty_mask)
				new_spte = iter.old_spte & ~shadow_dirty_mask;
			else
				continue;
		}

		tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
	}

	rcu_read_unlock();
}

/*
 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
 * set in mask, starting at gfn. The given memslot is expected to contain all
 * the GFNs represented by set bits in the mask. If AD bits are enabled,
 * clearing the dirty status will involve clearing the dirty bit on each SPTE
 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
 */
void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
				       struct kvm_memory_slot *slot,
				       gfn_t gfn, unsigned long mask,
				       bool wrprot)
{
	struct kvm_mmu_page *root;
	int root_as_id;

	lockdep_assert_held_write(&kvm->mmu_lock);
	for_each_tdp_mmu_root(kvm, root) {
		root_as_id = kvm_mmu_page_as_id(root);
		if (root_as_id != slot->as_id)
			continue;

		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
	}
}

/*
 * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
 * only used for PML, and so will involve setting the dirty bit on each SPTE.
 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
 */
static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
				gfn_t start, gfn_t end)
{
	struct tdp_iter iter;
	u64 new_spte;
	bool spte_set = false;

	rcu_read_lock();

	tdp_root_for_each_pte(iter, root, start, end) {
		if (tdp_mmu_iter_cond_resched(kvm, &iter, false))
			continue;

		if (!is_shadow_present_pte(iter.old_spte) ||
		    iter.old_spte & shadow_dirty_mask)
			continue;

		new_spte = iter.old_spte | shadow_dirty_mask;

		tdp_mmu_set_spte(kvm, &iter, new_spte);
		spte_set = true;
	}

	rcu_read_unlock();
	return spte_set;
}

/*
 * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
 * only used for PML, and so will involve setting the dirty bit on each SPTE.
 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
 */
bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
{
	struct kvm_mmu_page *root;
	int root_as_id;
	bool spte_set = false;

	for_each_tdp_mmu_root_yield_safe(kvm, root) {
		root_as_id = kvm_mmu_page_as_id(root);
		if (root_as_id != slot->as_id)
			continue;

		spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
				slot->base_gfn + slot->npages);
	}
	return spte_set;
}

/*
 * Clear leaf entries which could be replaced by large mappings, for
 * GFNs within the slot.
 */
static void zap_collapsible_spte_range(struct kvm *kvm,
				       struct kvm_mmu_page *root,
				       gfn_t start, gfn_t end)
{
	struct tdp_iter iter;
	kvm_pfn_t pfn;
	bool spte_set = false;

	rcu_read_lock();

	tdp_root_for_each_pte(iter, root, start, end) {
		if (tdp_mmu_iter_cond_resched(kvm, &iter, spte_set)) {
			spte_set = false;
			continue;
		}

		if (!is_shadow_present_pte(iter.old_spte) ||
		    !is_last_spte(iter.old_spte, iter.level))
			continue;

		pfn = spte_to_pfn(iter.old_spte);
		if (kvm_is_reserved_pfn(pfn) ||
		    !PageTransCompoundMap(pfn_to_page(pfn)))
			continue;

		tdp_mmu_set_spte(kvm, &iter, 0);

		spte_set = true;
	}

	rcu_read_unlock();
	if (spte_set)
		kvm_flush_remote_tlbs(kvm);
}

/*
 * Clear non-leaf entries (and free associated page tables) which could
 * be replaced by large mappings, for GFNs within the slot.
 */
void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
				       const struct kvm_memory_slot *slot)
{
	struct kvm_mmu_page *root;
	int root_as_id;

	for_each_tdp_mmu_root_yield_safe(kvm, root) {
		root_as_id = kvm_mmu_page_as_id(root);
		if (root_as_id != slot->as_id)
			continue;

		zap_collapsible_spte_range(kvm, root, slot->base_gfn,
					   slot->base_gfn + slot->npages);
	}
}

/*
 * Removes write access on the last level SPTE mapping this GFN and unsets the
 * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
 * Returns true if an SPTE was set and a TLB flush is needed.
 */
static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
			      gfn_t gfn)
{
	struct tdp_iter iter;
	u64 new_spte;
	bool spte_set = false;

	rcu_read_lock();

	tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
		if (!is_writable_pte(iter.old_spte))
			break;

		new_spte = iter.old_spte &
			~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);

		tdp_mmu_set_spte(kvm, &iter, new_spte);
		spte_set = true;
	}

	rcu_read_unlock();

	return spte_set;
}

/*
 * Removes write access on the last level SPTE mapping this GFN and unsets the
 * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
 * Returns true if an SPTE was set and a TLB flush is needed.
 */
bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
				   struct kvm_memory_slot *slot, gfn_t gfn)
{
	struct kvm_mmu_page *root;
	int root_as_id;
	bool spte_set = false;

	lockdep_assert_held_write(&kvm->mmu_lock);
	for_each_tdp_mmu_root(kvm, root) {
		root_as_id = kvm_mmu_page_as_id(root);
		if (root_as_id != slot->as_id)
			continue;

		spte_set |= write_protect_gfn(kvm, root, gfn);
	}
	return spte_set;
}

/*
 * Return the level of the lowest level SPTE added to sptes.
 * That SPTE may be non-present.
 */
int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
			 int *root_level)
{
	struct tdp_iter iter;
	struct kvm_mmu *mmu = vcpu->arch.mmu;
	gfn_t gfn = addr >> PAGE_SHIFT;
	int leaf = -1;

	*root_level = vcpu->arch.mmu->shadow_root_level;

	rcu_read_lock();

	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
		leaf = iter.level;
		sptes[leaf] = iter.old_spte;
	}

	rcu_read_unlock();

	return leaf;
}