summaryrefslogtreecommitdiffstats
path: root/arch/frv/mm/dma-alloc.c
blob: 342823aad758c13087c0f20c8c06e6ccc3d1dffd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/* dma-alloc.c: consistent DMA memory allocation
 *
 * Derived from arch/ppc/mm/cachemap.c
 *
 *  PowerPC version derived from arch/arm/mm/consistent.c
 *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
 *
 *  linux/arch/arm/mm/consistent.c
 *
 *  Copyright (C) 2000 Russell King
 *
 * Consistent memory allocators.  Used for DMA devices that want to
 * share uncached memory with the processor core.  The function return
 * is the virtual address and 'dma_handle' is the physical address.
 * Mostly stolen from the ARM port, with some changes for PowerPC.
 *						-- Dan
 * Modified for 36-bit support.  -Matt
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/config.h>
#include <linux/module.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/pci.h>

#include <asm/pgalloc.h>
#include <asm/io.h>
#include <asm/hardirq.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/uaccess.h>
#include <asm/smp.h>

static int map_page(unsigned long va, unsigned long pa, pgprot_t prot)
{
	pgd_t *pge;
	pud_t *pue;
	pmd_t *pme;
	pte_t *pte;
	int err = -ENOMEM;

	/* Use upper 10 bits of VA to index the first level map */
	pge = pgd_offset_k(va);
	pue = pud_offset(pge, va);
	pme = pmd_offset(pue, va);

	/* Use middle 10 bits of VA to index the second-level map */
	pte = pte_alloc_kernel(pme, va);
	if (pte != 0) {
		err = 0;
		set_pte(pte, mk_pte_phys(pa & PAGE_MASK, prot));
	}

	return err;
}

/*
 * This function will allocate the requested contiguous pages and
 * map them into the kernel's vmalloc() space.  This is done so we
 * get unique mapping for these pages, outside of the kernel's 1:1
 * virtual:physical mapping.  This is necessary so we can cover large
 * portions of the kernel with single large page TLB entries, and
 * still get unique uncached pages for consistent DMA.
 */
void *consistent_alloc(gfp_t gfp, size_t size, dma_addr_t *dma_handle)
{
	struct vm_struct *area;
	unsigned long page, va, pa;
	void *ret;
	int order, err, i;

	if (in_interrupt())
		BUG();

	/* only allocate page size areas */
	size = PAGE_ALIGN(size);
	order = get_order(size);

	page = __get_free_pages(gfp, order);
	if (!page) {
		BUG();
		return NULL;
	}

	/* allocate some common virtual space to map the new pages */
	area = get_vm_area(size, VM_ALLOC);
	if (area == 0) {
		free_pages(page, order);
		return NULL;
	}
	va = VMALLOC_VMADDR(area->addr);
	ret = (void *) va;

	/* this gives us the real physical address of the first page */
	*dma_handle = pa = virt_to_bus((void *) page);

	/* set refcount=1 on all pages in an order>0 allocation so that vfree() will actually free
	 * all pages that were allocated.
	 */
	if (order > 0) {
		struct page *rpage = virt_to_page(page);

		for (i = 1; i < (1 << order); i++)
			set_page_count(rpage + i, 1);
	}

	err = 0;
	for (i = 0; i < size && err == 0; i += PAGE_SIZE)
		err = map_page(va + i, pa + i, PAGE_KERNEL_NOCACHE);

	if (err) {
		vfree((void *) va);
		return NULL;
	}

	/* we need to ensure that there are no cachelines in use, or worse dirty in this area
	 * - can't do until after virtual address mappings are created
	 */
	frv_cache_invalidate(va, va + size);

	return ret;
}

/*
 * free page(s) as defined by the above mapping.
 */
void consistent_free(void *vaddr)
{
	if (in_interrupt())
		BUG();
	vfree(vaddr);
}

/*
 * make an area consistent.
 */
void consistent_sync(void *vaddr, size_t size, int direction)
{
	unsigned long start = (unsigned long) vaddr;
	unsigned long end   = start + size;

	switch (direction) {
	case PCI_DMA_NONE:
		BUG();
	case PCI_DMA_FROMDEVICE:	/* invalidate only */
		frv_cache_invalidate(start, end);
		break;
	case PCI_DMA_TODEVICE:		/* writeback only */
		frv_dcache_writeback(start, end);
		break;
	case PCI_DMA_BIDIRECTIONAL:	/* writeback and invalidate */
		frv_dcache_writeback(start, end);
		break;
	}
}

/*
 * consistent_sync_page make a page are consistent. identical
 * to consistent_sync, but takes a struct page instead of a virtual address
 */

void consistent_sync_page(struct page *page, unsigned long offset,
			  size_t size, int direction)
{
	void *start;

	start = page_address(page) + offset;
	consistent_sync(start, size, direction);
}