summaryrefslogtreecommitdiffstats
path: root/arch/blackfin/lib/udivdi3.S
blob: ad1ebee675e12fa83c6159970816ad72c9ec6bd4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
 * udivdi3.S - unsigned long long division
 *
 * Copyright 2003-2007 Analog Devices Inc.
 * Enter bugs at http://blackfin.uclinux.org/
 *
 * Licensed under the GPLv2 or later.
 */

#include <linux/linkage.h>

#define CARRY AC0

#ifdef CONFIG_ARITHMETIC_OPS_L1
.section .l1.text
#else
.text
#endif


ENTRY(___udivdi3)
   R3 = [SP + 12];
   [--SP] = (R7:4, P5:3);

   /* Attempt to use divide primitive first; these will handle
   **  most cases, and they're quick - avoids stalls incurred by
   ** testing for identities.
   */

   R4 = R2 | R3;
   CC = R4 == 0;
   IF CC JUMP .LDIV_BY_ZERO;

   R4.H = 0x8000;
   R4 >>>= 16;                  // R4 now 0xFFFF8000
   R5 = R0 | R2;                // If either dividend or
   R4 = R5 & R4;                // divisor have bits in
   CC = R4;                     // top half or low half's sign
   IF CC JUMP .LIDENTS;          // bit, skip builtins.
   R4 = R1 | R3;                // Also check top halves
   CC = R4;
   IF CC JUMP .LIDENTS;

   /* Can use the builtins. */

   AQ = CC;                     // Clear AQ (CC==0)
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   DIVQ(R0, R2);
   R0 = R0.L (Z);
   R1 = 0;
   (R7:4, P5:3) = [SP++];
   RTS;

.LIDENTS:
   /* Test for common identities. Value to be returned is
   ** placed in R6,R7.
   */
                                // Check for 0/y, return 0
   R4 = R0 | R1;
   CC = R4 == 0;
   IF CC JUMP .LRETURN_R0;

                                // Check for x/x, return 1
   R6 = R0 - R2;                // If x == y, then both R6 and R7 will be zero
   R7 = R1 - R3;
   R4 = R6 | R7;                // making R4 zero.
   R6 += 1;                     // which would now make R6:R7==1.
   CC = R4 == 0;
   IF CC JUMP .LRETURN_IDENT;

                                // Check for x/1, return x
   R6 = R0;
   R7 = R1;
   CC = R3 == 0;
   IF !CC JUMP .Lnexttest;
   CC = R2 == 1;
   IF CC JUMP .LRETURN_IDENT;

.Lnexttest:
   R4.L = ONES R2;              // check for div by power of two which
   R5.L = ONES R3;              // can be done using a shift
   R6 = PACK (R5.L, R4.L);
   CC = R6 == 1;
   IF CC JUMP .Lpower_of_two_upper_zero;
   R6 = PACK (R4.L, R5.L);
   CC = R6 == 1;
   IF CC JUMP .Lpower_of_two_lower_zero;

                                // Check for x < y, return 0
   R6 = 0;
   R7 = R6;
   CC = R1 < R3 (IU);
   IF CC JUMP .LRETURN_IDENT;
   CC = R1 == R3;
   IF !CC JUMP .Lno_idents;
   CC = R0 < R2 (IU);
   IF CC JUMP .LRETURN_IDENT;

.Lno_idents:                    // Idents don't match. Go for the full operation


   // If X, or X and Y have high bit set, it'll affect the
   // results, so shift right one to stop this. Note: we've already
   // checked that X >= Y, so Y's msb won't be set unless X's
   // is.

   R4 = 0;
   CC = R1 < 0;
   IF !CC JUMP .Lx_msb_clear;
   CC = !CC;                   // 1 -> 0;
   R1 = ROT R1 BY -1;          // Shift X >> 1
   R0 = ROT R0 BY -1;          // lsb -> CC
   BITSET(R4,31);              // to record only x msb was set
   CC = R3 < 0;
   IF !CC JUMP .Ly_msb_clear;
   CC = !CC;
   R3 = ROT R3 BY -1;          // Shift Y >> 1
   R2 = ROT R2 BY -1;
   BITCLR(R4,31);              // clear bit to record only x msb was set

.Ly_msb_clear:
.Lx_msb_clear:
   // Bit 31 in R4 indicates X msb set, but Y msb wasn't, and no bits
   // were lost, so we should shift result left by one.

   [--SP] = R4;                // save for later

   // In the loop that follows, each iteration we add
   // either Y' or -Y' to the Remainder. We compute the
   // negated Y', and store, for convenience. Y' goes
   // into P0:P1, while -Y' goes into P2:P3.

   P0 = R2;
   P1 = R3;
   R2 = -R2;
   CC = CARRY;
   CC = !CC;
   R4 = CC;
   R3 = -R3;
   R3 = R3 - R4;

   R6 = 0;                     // remainder = 0
   R7 = R6;

   [--SP] = R2; P2 = SP;
   [--SP] = R3; P3 = SP;
   [--SP] = R6; P5 = SP;       // AQ = 0
   [--SP] = P1;

   /* In the loop that follows, we use the following
   ** register assignments:
   ** R0,R1 X, workspace
   ** R2,R3 Y, workspace
   ** R4,R5 partial Div
   ** R6,R7 partial remainder
   ** P5 AQ
   ** The remainder and div form a 128-bit number, with
   ** the remainder in the high 64-bits.
   */
   R4 = R0;                    // Div = X'
   R5 = R1;
   R3 = 0;

   P4 = 64;                    // Iterate once per bit
   LSETUP(.LULST,.LULEND) LC0 = P4;
.LULST:
        /* Shift Div and remainder up by one. The bit shifted
        ** out of the top of the quotient is shifted into the bottom
        ** of the remainder.
        */
        CC = R3;
        R4 = ROT R4 BY 1;
        R5 = ROT R5 BY 1 ||        // low q to high q
             R2 = [P5];            // load saved AQ
        R6 = ROT R6 BY 1 ||        // high q to low r
             R0 = [P2];            // load -Y'
        R7 = ROT R7 BY 1 ||        // low r to high r
             R1 = [P3];

                                   // Assume add -Y'
        CC = R2 < 0;               // But if AQ is set...
        IF CC R0 = P0;             // then add Y' instead
        IF CC R1 = P1;

        R6 = R6 + R0;              // Rem += (Y' or -Y')
        CC = CARRY;
        R0 = CC;
        R7 = R7 + R1;
        R7 = R7 + R0 (NS) ||
             R1 = [SP];
                                   // Set the next AQ bit
        R1 = R7 ^ R1;              // from Remainder and Y'
        R1 = R1 >> 31 ||           // Negate AQ's value, and
             [P5] = R1;            // save next AQ
        BITTGL(R1, 0);             // add neg AQ  to the Div
.LULEND: R4 = R4 + R1;

   R6 = [SP + 16];

   R0 = R4;
   R1 = R5;
   CC = BITTST(R6,30);         // Just set CC=0
   R4 = ROT R0 BY 1;           // but if we had to shift X,
   R5 = ROT R1 BY 1;           // and didn't shift any bits out,
   CC = BITTST(R6,31);         // then the result will be half as
   IF CC R0 = R4;              // much as required, so shift left
   IF CC R1 = R5;              // one space.

   SP += 20;
   (R7:4, P5:3) = [SP++];
   RTS;

.Lpower_of_two:
   /* Y has a single bit set, which means it's a power of two.
   ** That means we can perform the division just by shifting
   ** X to the right the appropriate number of bits
   */

   /* signbits returns the number of sign bits, minus one.
   ** 1=>30, 2=>29, ..., 0x40000000=>0. Which means we need
   ** to shift right n-signbits spaces. It also means 0x80000000
   ** is a special case, because that *also* gives a signbits of 0
   */
.Lpower_of_two_lower_zero:
   R7 = 0;
   R6 = R1 >> 31;
   CC = R3 < 0;
   IF CC JUMP .LRETURN_IDENT;

   R2.L = SIGNBITS R3;
   R2 = R2.L (Z);
   R2 += -62;
   (R7:4, P5:3) = [SP++];
   JUMP ___lshftli;

.Lpower_of_two_upper_zero:
   CC = R2 < 0;
   IF CC JUMP .Lmaxint_shift;

   R2.L = SIGNBITS R2;
   R2 = R2.L (Z);
   R2 += -30;
   (R7:4, P5:3) = [SP++];
   JUMP ___lshftli;

.Lmaxint_shift:
   R2 = -31;
   (R7:4, P5:3) = [SP++];
   JUMP ___lshftli;

.LRETURN_IDENT:
   R0 = R6;
   R1 = R7;
.LRETURN_R0:
   (R7:4, P5:3) = [SP++];
   RTS;
.LDIV_BY_ZERO:
   R0 = ~R2;
   R1 = R0;
   (R7:4, P5:3) = [SP++];
   RTS;

ENDPROC(___udivdi3)


ENTRY(___lshftli)
	CC = R2 == 0;
	IF CC JUMP .Lfinished;	// nothing to do
	CC = R2 < 0;
	IF CC JUMP .Lrshift;
	R3 = 64;
	CC = R2 < R3;
	IF !CC JUMP .Lretzero;

	// We're shifting left, and it's less than 64 bits, so
	// a valid result will be returned.

	R3 >>= 1;	// R3 now 32
	CC = R2 < R3;

	IF !CC JUMP .Lzerohalf;

	// We're shifting left, between 1 and 31 bits, which means
	// some of the low half will be shifted into the high half.
	// Work out how much.

	R3 = R3 - R2;

	// Save that much data from the bottom half.

	P1 = R7;
	R7 = R0;
	R7 >>= R3;

	// Adjust both parts of the parameter.

	R0 <<= R2;
	R1 <<= R2;

	// And include the bits moved across.

	R1 = R1 | R7;
	R7 = P1;
	RTS;

.Lzerohalf:
	// We're shifting left, between 32 and 63 bits, so the
	// bottom half will become zero, and the top half will
	// lose some bits. How many?

	R2 = R2 - R3;	// N - 32
	R1 = LSHIFT R0 BY R2.L;
	R0 = R0 - R0;
	RTS;

.Lretzero:
	R0 = R0 - R0;
	R1 = R0;
.Lfinished:
	RTS;

.Lrshift:
	// We're shifting right, but by how much?
	R2 = -R2;
	R3 = 64;
	CC = R2 < R3;
	IF !CC JUMP .Lretzero;

	// Shifting right less than 64 bits, so some result bits will
	// be retained.

	R3 >>= 1;	// R3 now 32
	CC = R2 < R3;
	IF !CC JUMP .Lsignhalf;

	// Shifting right between 1 and 31 bits, so need to copy
	// data across words.

	P1 = R7;
	R3 = R3 - R2;
	R7 = R1;
	R7 <<= R3;
	R1 >>= R2;
	R0 >>= R2;
	R0 = R7 | R0;
	R7 = P1;
	RTS;

.Lsignhalf:
	// Shifting right between 32 and 63 bits, so the top half
	// will become all zero-bits, and the bottom half is some
	// of the top half. But how much?

	R2 = R2 - R3;
	R0 = R1;
	R0 >>= R2;
	R1 = 0;
	RTS;

ENDPROC(___lshftli)