// SPDX-License-Identifier: GPL-2.0 /* * KVM dirty page logging performance test * * Based on dirty_log_test.c * * Copyright (C) 2018, Red Hat, Inc. * Copyright (C) 2020, Google, Inc. */ #define _GNU_SOURCE /* for program_invocation_name */ #include #include #include #include #include #include #include #include "kvm_util.h" #include "perf_test_util.h" #include "processor.h" #include "test_util.h" /* How many host loops to run by default (one KVM_GET_DIRTY_LOG for each loop)*/ #define TEST_HOST_LOOP_N 2UL /* Host variables */ static u64 dirty_log_manual_caps; static bool host_quit; static uint64_t iteration; static uint64_t vcpu_last_completed_iteration[MAX_VCPUS]; static void *vcpu_worker(void *data) { int ret; struct kvm_vm *vm = perf_test_args.vm; uint64_t pages_count = 0; struct kvm_run *run; struct timespec start; struct timespec ts_diff; struct timespec total = (struct timespec){0}; struct timespec avg; struct vcpu_args *vcpu_args = (struct vcpu_args *)data; int vcpu_id = vcpu_args->vcpu_id; vcpu_args_set(vm, vcpu_id, 1, vcpu_id); run = vcpu_state(vm, vcpu_id); while (!READ_ONCE(host_quit)) { uint64_t current_iteration = READ_ONCE(iteration); clock_gettime(CLOCK_MONOTONIC, &start); ret = _vcpu_run(vm, vcpu_id); ts_diff = timespec_diff_now(start); TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret); TEST_ASSERT(get_ucall(vm, vcpu_id, NULL) == UCALL_SYNC, "Invalid guest sync status: exit_reason=%s\n", exit_reason_str(run->exit_reason)); pr_debug("Got sync event from vCPU %d\n", vcpu_id); vcpu_last_completed_iteration[vcpu_id] = current_iteration; pr_debug("vCPU %d updated last completed iteration to %lu\n", vcpu_id, vcpu_last_completed_iteration[vcpu_id]); if (current_iteration) { pages_count += vcpu_args->pages; total = timespec_add(total, ts_diff); pr_debug("vCPU %d iteration %lu dirty memory time: %ld.%.9lds\n", vcpu_id, current_iteration, ts_diff.tv_sec, ts_diff.tv_nsec); } else { pr_debug("vCPU %d iteration %lu populate memory time: %ld.%.9lds\n", vcpu_id, current_iteration, ts_diff.tv_sec, ts_diff.tv_nsec); } while (current_iteration == READ_ONCE(iteration) && !READ_ONCE(host_quit)) {} } avg = timespec_div(total, vcpu_last_completed_iteration[vcpu_id]); pr_debug("\nvCPU %d dirtied 0x%lx pages over %lu iterations in %ld.%.9lds. (Avg %ld.%.9lds/iteration)\n", vcpu_id, pages_count, vcpu_last_completed_iteration[vcpu_id], total.tv_sec, total.tv_nsec, avg.tv_sec, avg.tv_nsec); return NULL; } static void run_test(enum vm_guest_mode mode, unsigned long iterations, uint64_t phys_offset, int wr_fract) { pthread_t *vcpu_threads; struct kvm_vm *vm; unsigned long *bmap; uint64_t guest_num_pages; uint64_t host_num_pages; int vcpu_id; struct timespec start; struct timespec ts_diff; struct timespec get_dirty_log_total = (struct timespec){0}; struct timespec vcpu_dirty_total = (struct timespec){0}; struct timespec avg; struct kvm_enable_cap cap = {}; struct timespec clear_dirty_log_total = (struct timespec){0}; vm = create_vm(mode, nr_vcpus, guest_percpu_mem_size); perf_test_args.wr_fract = wr_fract; guest_num_pages = (nr_vcpus * guest_percpu_mem_size) >> vm_get_page_shift(vm); guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages); host_num_pages = vm_num_host_pages(mode, guest_num_pages); bmap = bitmap_alloc(host_num_pages); if (dirty_log_manual_caps) { cap.cap = KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2; cap.args[0] = dirty_log_manual_caps; vm_enable_cap(vm, &cap); } vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads)); TEST_ASSERT(vcpu_threads, "Memory allocation failed"); add_vcpus(vm, nr_vcpus, guest_percpu_mem_size); sync_global_to_guest(vm, perf_test_args); /* Start the iterations */ iteration = 0; host_quit = false; clock_gettime(CLOCK_MONOTONIC, &start); for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) { pthread_create(&vcpu_threads[vcpu_id], NULL, vcpu_worker, &perf_test_args.vcpu_args[vcpu_id]); } /* Allow the vCPU to populate memory */ pr_debug("Starting iteration %lu - Populating\n", iteration); while (READ_ONCE(vcpu_last_completed_iteration[vcpu_id]) != iteration) pr_debug("Waiting for vcpu_last_completed_iteration == %lu\n", iteration); ts_diff = timespec_diff_now(start); pr_info("Populate memory time: %ld.%.9lds\n", ts_diff.tv_sec, ts_diff.tv_nsec); /* Enable dirty logging */ clock_gettime(CLOCK_MONOTONIC, &start); vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, KVM_MEM_LOG_DIRTY_PAGES); ts_diff = timespec_diff_now(start); pr_info("Enabling dirty logging time: %ld.%.9lds\n\n", ts_diff.tv_sec, ts_diff.tv_nsec); while (iteration < iterations) { /* * Incrementing the iteration number will start the vCPUs * dirtying memory again. */ clock_gettime(CLOCK_MONOTONIC, &start); iteration++; pr_debug("Starting iteration %lu\n", iteration); for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) { while (READ_ONCE(vcpu_last_completed_iteration[vcpu_id]) != iteration) pr_debug("Waiting for vCPU %d vcpu_last_completed_iteration == %lu\n", vcpu_id, iteration); } ts_diff = timespec_diff_now(start); vcpu_dirty_total = timespec_add(vcpu_dirty_total, ts_diff); pr_info("Iteration %lu dirty memory time: %ld.%.9lds\n", iteration, ts_diff.tv_sec, ts_diff.tv_nsec); clock_gettime(CLOCK_MONOTONIC, &start); kvm_vm_get_dirty_log(vm, TEST_MEM_SLOT_INDEX, bmap); ts_diff = timespec_diff_now(start); get_dirty_log_total = timespec_add(get_dirty_log_total, ts_diff); pr_info("Iteration %lu get dirty log time: %ld.%.9lds\n", iteration, ts_diff.tv_sec, ts_diff.tv_nsec); if (dirty_log_manual_caps) { clock_gettime(CLOCK_MONOTONIC, &start); kvm_vm_clear_dirty_log(vm, TEST_MEM_SLOT_INDEX, bmap, 0, host_num_pages); ts_diff = timespec_diff_now(start); clear_dirty_log_total = timespec_add(clear_dirty_log_total, ts_diff); pr_info("Iteration %lu clear dirty log time: %ld.%.9lds\n", iteration, ts_diff.tv_sec, ts_diff.tv_nsec); } } /* Tell the vcpu thread to quit */ host_quit = true; for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) pthread_join(vcpu_threads[vcpu_id], NULL); /* Disable dirty logging */ clock_gettime(CLOCK_MONOTONIC, &start); vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, 0); ts_diff = timespec_diff_now(start); pr_info("Disabling dirty logging time: %ld.%.9lds\n", ts_diff.tv_sec, ts_diff.tv_nsec); avg = timespec_div(get_dirty_log_total, iterations); pr_info("Get dirty log over %lu iterations took %ld.%.9lds. (Avg %ld.%.9lds/iteration)\n", iterations, get_dirty_log_total.tv_sec, get_dirty_log_total.tv_nsec, avg.tv_sec, avg.tv_nsec); if (dirty_log_manual_caps) { avg = timespec_div(clear_dirty_log_total, iterations); pr_info("Clear dirty log over %lu iterations took %ld.%.9lds. (Avg %ld.%.9lds/iteration)\n", iterations, clear_dirty_log_total.tv_sec, clear_dirty_log_total.tv_nsec, avg.tv_sec, avg.tv_nsec); } free(bmap); free(vcpu_threads); ucall_uninit(vm); kvm_vm_free(vm); } struct guest_mode { bool supported; bool enabled; }; static struct guest_mode guest_modes[NUM_VM_MODES]; #define guest_mode_init(mode, supported, enabled) ({ \ guest_modes[mode] = (struct guest_mode){ supported, enabled }; \ }) static void help(char *name) { int i; puts(""); printf("usage: %s [-h] [-i iterations] [-p offset] " "[-m mode] [-b vcpu bytes] [-v vcpus]\n", name); puts(""); printf(" -i: specify iteration counts (default: %"PRIu64")\n", TEST_HOST_LOOP_N); printf(" -p: specify guest physical test memory offset\n" " Warning: a low offset can conflict with the loaded test code.\n"); printf(" -m: specify the guest mode ID to test " "(default: test all supported modes)\n" " This option may be used multiple times.\n" " Guest mode IDs:\n"); for (i = 0; i < NUM_VM_MODES; ++i) { printf(" %d: %s%s\n", i, vm_guest_mode_string(i), guest_modes[i].supported ? " (supported)" : ""); } printf(" -b: specify the size of the memory region which should be\n" " dirtied by each vCPU. e.g. 10M or 3G.\n" " (default: 1G)\n"); printf(" -f: specify the fraction of pages which should be written to\n" " as opposed to simply read, in the form\n" " 1/.\n" " (default: 1 i.e. all pages are written to.)\n"); printf(" -v: specify the number of vCPUs to run.\n"); puts(""); exit(0); } int main(int argc, char *argv[]) { unsigned long iterations = TEST_HOST_LOOP_N; bool mode_selected = false; uint64_t phys_offset = 0; unsigned int mode; int opt, i; int wr_fract = 1; dirty_log_manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | KVM_DIRTY_LOG_INITIALLY_SET); #ifdef __x86_64__ guest_mode_init(VM_MODE_PXXV48_4K, true, true); #endif #ifdef __aarch64__ guest_mode_init(VM_MODE_P40V48_4K, true, true); guest_mode_init(VM_MODE_P40V48_64K, true, true); { unsigned int limit = kvm_check_cap(KVM_CAP_ARM_VM_IPA_SIZE); if (limit >= 52) guest_mode_init(VM_MODE_P52V48_64K, true, true); if (limit >= 48) { guest_mode_init(VM_MODE_P48V48_4K, true, true); guest_mode_init(VM_MODE_P48V48_64K, true, true); } } #endif #ifdef __s390x__ guest_mode_init(VM_MODE_P40V48_4K, true, true); #endif while ((opt = getopt(argc, argv, "hi:p:m:b:f:v:")) != -1) { switch (opt) { case 'i': iterations = strtol(optarg, NULL, 10); break; case 'p': phys_offset = strtoull(optarg, NULL, 0); break; case 'm': if (!mode_selected) { for (i = 0; i < NUM_VM_MODES; ++i) guest_modes[i].enabled = false; mode_selected = true; } mode = strtoul(optarg, NULL, 10); TEST_ASSERT(mode < NUM_VM_MODES, "Guest mode ID %d too big", mode); guest_modes[mode].enabled = true; break; case 'b': guest_percpu_mem_size = parse_size(optarg); break; case 'f': wr_fract = atoi(optarg); TEST_ASSERT(wr_fract >= 1, "Write fraction cannot be less than one"); break; case 'v': nr_vcpus = atoi(optarg); TEST_ASSERT(nr_vcpus > 0, "Must have a positive number of vCPUs"); TEST_ASSERT(nr_vcpus <= MAX_VCPUS, "This test does not currently support\n" "more than %d vCPUs.", MAX_VCPUS); break; case 'h': default: help(argv[0]); break; } } TEST_ASSERT(iterations >= 2, "The test should have at least two iterations"); pr_info("Test iterations: %"PRIu64"\n", iterations); for (i = 0; i < NUM_VM_MODES; ++i) { if (!guest_modes[i].enabled) continue; TEST_ASSERT(guest_modes[i].supported, "Guest mode ID %d (%s) not supported.", i, vm_guest_mode_string(i)); run_test(i, iterations, phys_offset, wr_fract); } return 0; }