// SPDX-License-Identifier: GPL-2.0 /* * page_fault_test.c - Test stage 2 faults. * * This test tries different combinations of guest accesses (e.g., write, * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on * hugetlbfs with a hole). It checks that the expected handling method is * called (e.g., uffd faults with the right address and write/read flag). */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include "guest_modes.h" #include "userfaultfd_util.h" /* Guest virtual addresses that point to the test page and its PTE. */ #define TEST_GVA 0xc0000000 #define TEST_EXEC_GVA (TEST_GVA + 0x8) #define TEST_PTE_GVA 0xb0000000 #define TEST_DATA 0x0123456789ABCDEF static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA; #define CMD_NONE (0) #define CMD_SKIP_TEST (1ULL << 1) #define CMD_HOLE_PT (1ULL << 2) #define CMD_HOLE_DATA (1ULL << 3) #define CMD_CHECK_WRITE_IN_DIRTY_LOG (1ULL << 4) #define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG (1ULL << 5) #define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG (1ULL << 6) #define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG (1ULL << 7) #define CMD_SET_PTE_AF (1ULL << 8) #define PREPARE_FN_NR 10 #define CHECK_FN_NR 10 static struct event_cnt { int mmio_exits; int fail_vcpu_runs; int uffd_faults; /* uffd_faults is incremented from multiple threads. */ pthread_mutex_t uffd_faults_mutex; } events; struct test_desc { const char *name; uint64_t mem_mark_cmd; /* Skip the test if any prepare function returns false */ bool (*guest_prepare[PREPARE_FN_NR])(void); void (*guest_test)(void); void (*guest_test_check[CHECK_FN_NR])(void); uffd_handler_t uffd_pt_handler; uffd_handler_t uffd_data_handler; void (*dabt_handler)(struct ex_regs *regs); void (*iabt_handler)(struct ex_regs *regs); void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run); void (*fail_vcpu_run_handler)(int ret); uint32_t pt_memslot_flags; uint32_t data_memslot_flags; bool skip; struct event_cnt expected_events; }; struct test_params { enum vm_mem_backing_src_type src_type; struct test_desc *test_desc; }; static inline void flush_tlb_page(uint64_t vaddr) { uint64_t page = vaddr >> 12; dsb(ishst); asm volatile("tlbi vaae1is, %0" :: "r" (page)); dsb(ish); isb(); } static void guest_write64(void) { uint64_t val; WRITE_ONCE(*guest_test_memory, TEST_DATA); val = READ_ONCE(*guest_test_memory); GUEST_ASSERT_EQ(val, TEST_DATA); } /* Check the system for atomic instructions. */ static bool guest_check_lse(void) { uint64_t isar0 = read_sysreg(id_aa64isar0_el1); uint64_t atomic; atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_ATOMICS), isar0); return atomic >= 2; } static bool guest_check_dc_zva(void) { uint64_t dczid = read_sysreg(dczid_el0); uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_DZP), dczid); return dzp == 0; } /* Compare and swap instruction. */ static void guest_cas(void) { uint64_t val; GUEST_ASSERT(guest_check_lse()); asm volatile(".arch_extension lse\n" "casal %0, %1, [%2]\n" :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory)); val = READ_ONCE(*guest_test_memory); GUEST_ASSERT_EQ(val, TEST_DATA); } static void guest_read64(void) { uint64_t val; val = READ_ONCE(*guest_test_memory); GUEST_ASSERT_EQ(val, 0); } /* Address translation instruction */ static void guest_at(void) { uint64_t par; asm volatile("at s1e1r, %0" :: "r" (guest_test_memory)); par = read_sysreg(par_el1); isb(); /* Bit 1 indicates whether the AT was successful */ GUEST_ASSERT_EQ(par & 1, 0); } /* * The size of the block written by "dc zva" is guaranteed to be between (2 << * 0) and (2 << 9), which is safe in our case as we need the write to happen * for at least a word, and not more than a page. */ static void guest_dc_zva(void) { uint16_t val; asm volatile("dc zva, %0" :: "r" (guest_test_memory)); dsb(ish); val = READ_ONCE(*guest_test_memory); GUEST_ASSERT_EQ(val, 0); } /* * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0). * And that's special because KVM must take special care with those: they * should still count as accesses for dirty logging or user-faulting, but * should be handled differently on mmio. */ static void guest_ld_preidx(void) { uint64_t val; uint64_t addr = TEST_GVA - 8; /* * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is * in a gap between memslots not backing by anything. */ asm volatile("ldr %0, [%1, #8]!" : "=r" (val), "+r" (addr)); GUEST_ASSERT_EQ(val, 0); GUEST_ASSERT_EQ(addr, TEST_GVA); } static void guest_st_preidx(void) { uint64_t val = TEST_DATA; uint64_t addr = TEST_GVA - 8; asm volatile("str %0, [%1, #8]!" : "+r" (val), "+r" (addr)); GUEST_ASSERT_EQ(addr, TEST_GVA); val = READ_ONCE(*guest_test_memory); } static bool guest_set_ha(void) { uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1); uint64_t hadbs, tcr; /* Skip if HA is not supported. */ hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_HADBS), mmfr1); if (hadbs == 0) return false; tcr = read_sysreg(tcr_el1) | TCR_EL1_HA; write_sysreg(tcr, tcr_el1); isb(); return true; } static bool guest_clear_pte_af(void) { *((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF; flush_tlb_page(TEST_GVA); return true; } static void guest_check_pte_af(void) { dsb(ish); GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF); } static void guest_check_write_in_dirty_log(void) { GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG); } static void guest_check_no_write_in_dirty_log(void) { GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG); } static void guest_check_s1ptw_wr_in_dirty_log(void) { GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG); } static void guest_exec(void) { int (*code)(void) = (int (*)(void))TEST_EXEC_GVA; int ret; ret = code(); GUEST_ASSERT_EQ(ret, 0x77); } static bool guest_prepare(struct test_desc *test) { bool (*prepare_fn)(void); int i; for (i = 0; i < PREPARE_FN_NR; i++) { prepare_fn = test->guest_prepare[i]; if (prepare_fn && !prepare_fn()) return false; } return true; } static void guest_test_check(struct test_desc *test) { void (*check_fn)(void); int i; for (i = 0; i < CHECK_FN_NR; i++) { check_fn = test->guest_test_check[i]; if (check_fn) check_fn(); } } static void guest_code(struct test_desc *test) { if (!guest_prepare(test)) GUEST_SYNC(CMD_SKIP_TEST); GUEST_SYNC(test->mem_mark_cmd); if (test->guest_test) test->guest_test(); guest_test_check(test); GUEST_DONE(); } static void no_dabt_handler(struct ex_regs *regs) { GUEST_ASSERT_1(false, read_sysreg(far_el1)); } static void no_iabt_handler(struct ex_regs *regs) { GUEST_ASSERT_1(false, regs->pc); } static struct uffd_args { char *copy; void *hva; uint64_t paging_size; } pt_args, data_args; /* Returns true to continue the test, and false if it should be skipped. */ static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg, struct uffd_args *args, bool expect_write) { uint64_t addr = msg->arg.pagefault.address; uint64_t flags = msg->arg.pagefault.flags; struct uffdio_copy copy; int ret; TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING, "The only expected UFFD mode is MISSING"); ASSERT_EQ(!!(flags & UFFD_PAGEFAULT_FLAG_WRITE), expect_write); ASSERT_EQ(addr, (uint64_t)args->hva); pr_debug("uffd fault: addr=%p write=%d\n", (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE)); copy.src = (uint64_t)args->copy; copy.dst = addr; copy.len = args->paging_size; copy.mode = 0; ret = ioctl(uffd, UFFDIO_COPY, ©); if (ret == -1) { pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n", addr, errno); return ret; } pthread_mutex_lock(&events.uffd_faults_mutex); events.uffd_faults += 1; pthread_mutex_unlock(&events.uffd_faults_mutex); return 0; } static int uffd_pt_write_handler(int mode, int uffd, struct uffd_msg *msg) { return uffd_generic_handler(mode, uffd, msg, &pt_args, true); } static int uffd_data_write_handler(int mode, int uffd, struct uffd_msg *msg) { return uffd_generic_handler(mode, uffd, msg, &data_args, true); } static int uffd_data_read_handler(int mode, int uffd, struct uffd_msg *msg) { return uffd_generic_handler(mode, uffd, msg, &data_args, false); } static void setup_uffd_args(struct userspace_mem_region *region, struct uffd_args *args) { args->hva = (void *)region->region.userspace_addr; args->paging_size = region->region.memory_size; args->copy = malloc(args->paging_size); TEST_ASSERT(args->copy, "Failed to allocate data copy."); memcpy(args->copy, args->hva, args->paging_size); } static void setup_uffd(struct kvm_vm *vm, struct test_params *p, struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd) { struct test_desc *test = p->test_desc; int uffd_mode = UFFDIO_REGISTER_MODE_MISSING; setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args); setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args); *pt_uffd = NULL; if (test->uffd_pt_handler) *pt_uffd = uffd_setup_demand_paging(uffd_mode, 0, pt_args.hva, pt_args.paging_size, test->uffd_pt_handler); *data_uffd = NULL; if (test->uffd_data_handler) *data_uffd = uffd_setup_demand_paging(uffd_mode, 0, data_args.hva, data_args.paging_size, test->uffd_data_handler); } static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd, struct uffd_desc *data_uffd) { if (test->uffd_pt_handler) uffd_stop_demand_paging(pt_uffd); if (test->uffd_data_handler) uffd_stop_demand_paging(data_uffd); free(pt_args.copy); free(data_args.copy); } static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg) { TEST_FAIL("There was no UFFD fault expected."); return -1; } /* Returns false if the test should be skipped. */ static bool punch_hole_in_backing_store(struct kvm_vm *vm, struct userspace_mem_region *region) { void *hva = (void *)region->region.userspace_addr; uint64_t paging_size = region->region.memory_size; int ret, fd = region->fd; if (fd != -1) { ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, paging_size); TEST_ASSERT(ret == 0, "fallocate failed\n"); } else { ret = madvise(hva, paging_size, MADV_DONTNEED); TEST_ASSERT(ret == 0, "madvise failed\n"); } return true; } static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run) { struct userspace_mem_region *region; void *hva; region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); hva = (void *)region->region.userspace_addr; ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr); memcpy(hva, run->mmio.data, run->mmio.len); events.mmio_exits += 1; } static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run) { uint64_t data; memcpy(&data, run->mmio.data, sizeof(data)); pr_debug("addr=%lld len=%d w=%d data=%lx\n", run->mmio.phys_addr, run->mmio.len, run->mmio.is_write, data); TEST_FAIL("There was no MMIO exit expected."); } static bool check_write_in_dirty_log(struct kvm_vm *vm, struct userspace_mem_region *region, uint64_t host_pg_nr) { unsigned long *bmap; bool first_page_dirty; uint64_t size = region->region.memory_size; /* getpage_size() is not always equal to vm->page_size */ bmap = bitmap_zalloc(size / getpagesize()); kvm_vm_get_dirty_log(vm, region->region.slot, bmap); first_page_dirty = test_bit(host_pg_nr, bmap); free(bmap); return first_page_dirty; } /* Returns true to continue the test, and false if it should be skipped. */ static bool handle_cmd(struct kvm_vm *vm, int cmd) { struct userspace_mem_region *data_region, *pt_region; bool continue_test = true; data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); pt_region = vm_get_mem_region(vm, MEM_REGION_PT); if (cmd == CMD_SKIP_TEST) continue_test = false; if (cmd & CMD_HOLE_PT) continue_test = punch_hole_in_backing_store(vm, pt_region); if (cmd & CMD_HOLE_DATA) continue_test = punch_hole_in_backing_store(vm, data_region); if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG) TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0), "Missing write in dirty log"); if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG) TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, 0), "Missing s1ptw write in dirty log"); if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG) TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0), "Unexpected write in dirty log"); if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG) TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, 0), "Unexpected s1ptw write in dirty log"); return continue_test; } void fail_vcpu_run_no_handler(int ret) { TEST_FAIL("Unexpected vcpu run failure\n"); } void fail_vcpu_run_mmio_no_syndrome_handler(int ret) { TEST_ASSERT(errno == ENOSYS, "The mmio handler should have returned not implemented."); events.fail_vcpu_runs += 1; } typedef uint32_t aarch64_insn_t; extern aarch64_insn_t __exec_test[2]; noinline void __return_0x77(void) { asm volatile("__exec_test: mov x0, #0x77\n" "ret\n"); } /* * Note that this function runs on the host before the test VM starts: there's * no need to sync the D$ and I$ caches. */ static void load_exec_code_for_test(struct kvm_vm *vm) { uint64_t *code; struct userspace_mem_region *region; void *hva; region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); hva = (void *)region->region.userspace_addr; assert(TEST_EXEC_GVA > TEST_GVA); code = hva + TEST_EXEC_GVA - TEST_GVA; memcpy(code, __exec_test, sizeof(__exec_test)); } static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu, struct test_desc *test) { vm_init_descriptor_tables(vm); vcpu_init_descriptor_tables(vcpu); vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, ESR_EC_DABT, no_dabt_handler); vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, ESR_EC_IABT, no_iabt_handler); } static void setup_gva_maps(struct kvm_vm *vm) { struct userspace_mem_region *region; uint64_t pte_gpa; region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); /* Map TEST_GVA first. This will install a new PTE. */ virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr); /* Then map TEST_PTE_GVA to the above PTE. */ pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA)); virt_pg_map(vm, TEST_PTE_GVA, pte_gpa); } enum pf_test_memslots { CODE_AND_DATA_MEMSLOT, PAGE_TABLE_MEMSLOT, TEST_DATA_MEMSLOT, }; /* * Create a memslot for code and data at pfn=0, and test-data and PT ones * at max_gfn. */ static void setup_memslots(struct kvm_vm *vm, struct test_params *p) { uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type); uint64_t guest_page_size = vm->page_size; uint64_t max_gfn = vm_compute_max_gfn(vm); /* Enough for 2M of code when using 4K guest pages. */ uint64_t code_npages = 512; uint64_t pt_size, data_size, data_gpa; /* * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs. That's 13 * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use * twice that just in case. */ pt_size = 26 * guest_page_size; /* memslot sizes and gpa's must be aligned to the backing page size */ pt_size = align_up(pt_size, backing_src_pagesz); data_size = align_up(guest_page_size, backing_src_pagesz); data_gpa = (max_gfn * guest_page_size) - data_size; data_gpa = align_down(data_gpa, backing_src_pagesz); vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, CODE_AND_DATA_MEMSLOT, code_npages, 0); vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT; vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT; vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size, PAGE_TABLE_MEMSLOT, pt_size / guest_page_size, p->test_desc->pt_memslot_flags); vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT; vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT, data_size / guest_page_size, p->test_desc->data_memslot_flags); vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT; } static void setup_ucall(struct kvm_vm *vm) { struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA); ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size); } static void setup_default_handlers(struct test_desc *test) { if (!test->mmio_handler) test->mmio_handler = mmio_no_handler; if (!test->fail_vcpu_run_handler) test->fail_vcpu_run_handler = fail_vcpu_run_no_handler; } static void check_event_counts(struct test_desc *test) { ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults); ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits); ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs); } static void print_test_banner(enum vm_guest_mode mode, struct test_params *p) { struct test_desc *test = p->test_desc; pr_debug("Test: %s\n", test->name); pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode)); pr_debug("Testing memory backing src type: %s\n", vm_mem_backing_src_alias(p->src_type)->name); } static void reset_event_counts(void) { memset(&events, 0, sizeof(events)); } /* * This function either succeeds, skips the test (after setting test->skip), or * fails with a TEST_FAIL that aborts all tests. */ static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu, struct test_desc *test) { struct kvm_run *run; struct ucall uc; int ret; run = vcpu->run; for (;;) { ret = _vcpu_run(vcpu); if (ret) { test->fail_vcpu_run_handler(ret); goto done; } switch (get_ucall(vcpu, &uc)) { case UCALL_SYNC: if (!handle_cmd(vm, uc.args[1])) { test->skip = true; goto done; } break; case UCALL_ABORT: REPORT_GUEST_ASSERT_2(uc, "values: %#lx, %#lx"); break; case UCALL_DONE: goto done; case UCALL_NONE: if (run->exit_reason == KVM_EXIT_MMIO) test->mmio_handler(vm, run); break; default: TEST_FAIL("Unknown ucall %lu", uc.cmd); } } done: pr_debug(test->skip ? "Skipped.\n" : "Done.\n"); } static void run_test(enum vm_guest_mode mode, void *arg) { struct test_params *p = (struct test_params *)arg; struct test_desc *test = p->test_desc; struct kvm_vm *vm; struct kvm_vcpu *vcpu; struct uffd_desc *pt_uffd, *data_uffd; print_test_banner(mode, p); vm = ____vm_create(mode); setup_memslots(vm, p); kvm_vm_elf_load(vm, program_invocation_name); setup_ucall(vm); vcpu = vm_vcpu_add(vm, 0, guest_code); setup_gva_maps(vm); reset_event_counts(); /* * Set some code in the data memslot for the guest to execute (only * applicable to the EXEC tests). This has to be done before * setup_uffd() as that function copies the memslot data for the uffd * handler. */ load_exec_code_for_test(vm); setup_uffd(vm, p, &pt_uffd, &data_uffd); setup_abort_handlers(vm, vcpu, test); setup_default_handlers(test); vcpu_args_set(vcpu, 1, test); vcpu_run_loop(vm, vcpu, test); kvm_vm_free(vm); free_uffd(test, pt_uffd, data_uffd); /* * Make sure we check the events after the uffd threads have exited, * which means they updated their respective event counters. */ if (!test->skip) check_event_counts(test); } static void help(char *name) { puts(""); printf("usage: %s [-h] [-s mem-type]\n", name); puts(""); guest_modes_help(); backing_src_help("-s"); puts(""); } #define SNAME(s) #s #define SCAT2(a, b) SNAME(a ## _ ## b) #define SCAT3(a, b, c) SCAT2(a, SCAT2(b, c)) #define SCAT4(a, b, c, d) SCAT2(a, SCAT3(b, c, d)) #define _CHECK(_test) _CHECK_##_test #define _PREPARE(_test) _PREPARE_##_test #define _PREPARE_guest_read64 NULL #define _PREPARE_guest_ld_preidx NULL #define _PREPARE_guest_write64 NULL #define _PREPARE_guest_st_preidx NULL #define _PREPARE_guest_exec NULL #define _PREPARE_guest_at NULL #define _PREPARE_guest_dc_zva guest_check_dc_zva #define _PREPARE_guest_cas guest_check_lse /* With or without access flag checks */ #define _PREPARE_with_af guest_set_ha, guest_clear_pte_af #define _PREPARE_no_af NULL #define _CHECK_with_af guest_check_pte_af #define _CHECK_no_af NULL /* Performs an access and checks that no faults were triggered. */ #define TEST_ACCESS(_access, _with_af, _mark_cmd) \ { \ .name = SCAT3(_access, _with_af, #_mark_cmd), \ .guest_prepare = { _PREPARE(_with_af), \ _PREPARE(_access) }, \ .mem_mark_cmd = _mark_cmd, \ .guest_test = _access, \ .guest_test_check = { _CHECK(_with_af) }, \ .expected_events = { 0 }, \ } #define TEST_UFFD(_access, _with_af, _mark_cmd, \ _uffd_data_handler, _uffd_pt_handler, _uffd_faults) \ { \ .name = SCAT4(uffd, _access, _with_af, #_mark_cmd), \ .guest_prepare = { _PREPARE(_with_af), \ _PREPARE(_access) }, \ .guest_test = _access, \ .mem_mark_cmd = _mark_cmd, \ .guest_test_check = { _CHECK(_with_af) }, \ .uffd_data_handler = _uffd_data_handler, \ .uffd_pt_handler = _uffd_pt_handler, \ .expected_events = { .uffd_faults = _uffd_faults, }, \ } #define TEST_DIRTY_LOG(_access, _with_af, _test_check) \ { \ .name = SCAT3(dirty_log, _access, _with_af), \ .data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ .pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ .guest_prepare = { _PREPARE(_with_af), \ _PREPARE(_access) }, \ .guest_test = _access, \ .guest_test_check = { _CHECK(_with_af), _test_check, \ guest_check_s1ptw_wr_in_dirty_log}, \ .expected_events = { 0 }, \ } #define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler, \ _uffd_faults, _test_check) \ { \ .name = SCAT3(uffd_and_dirty_log, _access, _with_af), \ .data_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ .pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ .guest_prepare = { _PREPARE(_with_af), \ _PREPARE(_access) }, \ .guest_test = _access, \ .mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \ .guest_test_check = { _CHECK(_with_af), _test_check }, \ .uffd_data_handler = _uffd_data_handler, \ .uffd_pt_handler = uffd_pt_write_handler, \ .expected_events = { .uffd_faults = _uffd_faults, }, \ } #define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits) \ { \ .name = SCAT3(ro_memslot, _access, _with_af), \ .data_memslot_flags = KVM_MEM_READONLY, \ .guest_prepare = { _PREPARE(_access) }, \ .guest_test = _access, \ .mmio_handler = _mmio_handler, \ .expected_events = { .mmio_exits = _mmio_exits }, \ } #define TEST_RO_MEMSLOT_NO_SYNDROME(_access) \ { \ .name = SCAT2(ro_memslot_no_syndrome, _access), \ .data_memslot_flags = KVM_MEM_READONLY, \ .guest_test = _access, \ .fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \ .expected_events = { .fail_vcpu_runs = 1 }, \ } #define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits, \ _test_check) \ { \ .name = SCAT3(ro_memslot, _access, _with_af), \ .data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \ .pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ .guest_prepare = { _PREPARE(_access) }, \ .guest_test = _access, \ .guest_test_check = { _test_check }, \ .mmio_handler = _mmio_handler, \ .expected_events = { .mmio_exits = _mmio_exits}, \ } #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check) \ { \ .name = SCAT2(ro_memslot_no_syn_and_dlog, _access), \ .data_memslot_flags = KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES, \ .pt_memslot_flags = KVM_MEM_LOG_DIRTY_PAGES, \ .guest_test = _access, \ .guest_test_check = { _test_check }, \ .fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \ .expected_events = { .fail_vcpu_runs = 1 }, \ } #define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits, \ _uffd_data_handler, _uffd_faults) \ { \ .name = SCAT2(ro_memslot_uffd, _access), \ .data_memslot_flags = KVM_MEM_READONLY, \ .mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \ .guest_prepare = { _PREPARE(_access) }, \ .guest_test = _access, \ .uffd_data_handler = _uffd_data_handler, \ .uffd_pt_handler = uffd_pt_write_handler, \ .mmio_handler = _mmio_handler, \ .expected_events = { .mmio_exits = _mmio_exits, \ .uffd_faults = _uffd_faults }, \ } #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler, \ _uffd_faults) \ { \ .name = SCAT2(ro_memslot_no_syndrome, _access), \ .data_memslot_flags = KVM_MEM_READONLY, \ .mem_mark_cmd = CMD_HOLE_DATA | CMD_HOLE_PT, \ .guest_test = _access, \ .uffd_data_handler = _uffd_data_handler, \ .uffd_pt_handler = uffd_pt_write_handler, \ .fail_vcpu_run_handler = fail_vcpu_run_mmio_no_syndrome_handler, \ .expected_events = { .fail_vcpu_runs = 1, \ .uffd_faults = _uffd_faults }, \ } static struct test_desc tests[] = { /* Check that HW is setting the Access Flag (AF) (sanity checks). */ TEST_ACCESS(guest_read64, with_af, CMD_NONE), TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE), TEST_ACCESS(guest_cas, with_af, CMD_NONE), TEST_ACCESS(guest_write64, with_af, CMD_NONE), TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE), TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE), TEST_ACCESS(guest_exec, with_af, CMD_NONE), /* * Punch a hole in the data backing store, and then try multiple * accesses: reads should rturn zeroes, and writes should * re-populate the page. Moreover, the test also check that no * exception was generated in the guest. Note that this * reading/writing behavior is the same as reading/writing a * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from * userspace. */ TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA), TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA), TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA), TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA), TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA), TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA), TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA), /* * Punch holes in the data and PT backing stores and mark them for * userfaultfd handling. This should result in 2 faults: the access * on the data backing store, and its respective S1 page table walk * (S1PTW). */ TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_read_handler, uffd_pt_write_handler, 2), /* no_af should also lead to a PT write. */ TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_read_handler, uffd_pt_write_handler, 2), /* Note how that cas invokes the read handler. */ TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_read_handler, uffd_pt_write_handler, 2), /* * Can't test guest_at with_af as it's IMPDEF whether the AF is set. * The S1PTW fault should still be marked as a write. */ TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_read_handler, uffd_pt_write_handler, 1), TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_read_handler, uffd_pt_write_handler, 2), TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_write_handler, uffd_pt_write_handler, 2), TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_write_handler, uffd_pt_write_handler, 2), TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_write_handler, uffd_pt_write_handler, 2), TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT, uffd_data_read_handler, uffd_pt_write_handler, 2), /* * Try accesses when the data and PT memory regions are both * tracked for dirty logging. */ TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log), /* no_af should also lead to a PT write. */ TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log), TEST_DIRTY_LOG(guest_ld_preidx, with_af, guest_check_no_write_in_dirty_log), TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log), TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log), TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log), TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log), TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log), TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log), /* * Access when the data and PT memory regions are both marked for * dirty logging and UFFD at the same time. The expected result is * that writes should mark the dirty log and trigger a userfaultfd * write fault. Reads/execs should result in a read userfaultfd * fault, and nothing in the dirty log. Any S1PTW should result in * a write in the dirty log and a userfaultfd write. */ TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af, uffd_data_read_handler, 2, guest_check_no_write_in_dirty_log), /* no_af should also lead to a PT write. */ TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af, uffd_data_read_handler, 2, guest_check_no_write_in_dirty_log), TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af, uffd_data_read_handler, 2, guest_check_no_write_in_dirty_log), TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, 0, 1, guest_check_no_write_in_dirty_log), TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af, uffd_data_read_handler, 2, guest_check_no_write_in_dirty_log), TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af, uffd_data_write_handler, 2, guest_check_write_in_dirty_log), TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af, uffd_data_read_handler, 2, guest_check_write_in_dirty_log), TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af, uffd_data_write_handler, 2, guest_check_write_in_dirty_log), TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af, uffd_data_write_handler, 2, guest_check_write_in_dirty_log), /* * Try accesses when the data memory region is marked read-only * (with KVM_MEM_READONLY). Writes with a syndrome result in an * MMIO exit, writes with no syndrome (e.g., CAS) result in a * failed vcpu run, and reads/execs with and without syndroms do * not fault. */ TEST_RO_MEMSLOT(guest_read64, 0, 0), TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0), TEST_RO_MEMSLOT(guest_at, 0, 0), TEST_RO_MEMSLOT(guest_exec, 0, 0), TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1), TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva), TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas), TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx), /* * Access when both the data region is both read-only and marked * for dirty logging at the same time. The expected result is that * for writes there should be no write in the dirty log. The * readonly handling is the same as if the memslot was not marked * for dirty logging: writes with a syndrome result in an MMIO * exit, and writes with no syndrome result in a failed vcpu run. */ TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0, guest_check_no_write_in_dirty_log), TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0, guest_check_no_write_in_dirty_log), TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0, guest_check_no_write_in_dirty_log), TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0, guest_check_no_write_in_dirty_log), TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler, 1, guest_check_no_write_in_dirty_log), TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva, guest_check_no_write_in_dirty_log), TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas, guest_check_no_write_in_dirty_log), TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx, guest_check_no_write_in_dirty_log), /* * Access when the data region is both read-only and punched with * holes tracked with userfaultfd. The expected result is the * union of both userfaultfd and read-only behaviors. For example, * write accesses result in a userfaultfd write fault and an MMIO * exit. Writes with no syndrome result in a failed vcpu run and * no userfaultfd write fault. Reads result in userfaultfd getting * triggered. */ TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0, uffd_data_read_handler, 2), TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0, uffd_data_read_handler, 2), TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0, uffd_no_handler, 1), TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0, uffd_data_read_handler, 2), TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1, uffd_data_write_handler, 2), TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas, uffd_data_read_handler, 2), TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva, uffd_no_handler, 1), TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx, uffd_no_handler, 1), { 0 } }; static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type) { struct test_desc *t; for (t = &tests[0]; t->name; t++) { if (t->skip) continue; struct test_params p = { .src_type = src_type, .test_desc = t, }; for_each_guest_mode(run_test, &p); } } int main(int argc, char *argv[]) { enum vm_mem_backing_src_type src_type; int opt; setbuf(stdout, NULL); src_type = DEFAULT_VM_MEM_SRC; while ((opt = getopt(argc, argv, "hm:s:")) != -1) { switch (opt) { case 'm': guest_modes_cmdline(optarg); break; case 's': src_type = parse_backing_src_type(optarg); break; case 'h': default: help(argv[0]); exit(0); } } for_each_test_and_guest_mode(src_type); return 0; }