// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2020 Intel Corporation. */ /* * Some functions in this program are taken from * Linux kernel samples/bpf/xdpsock* and modified * for use. * * See test_xsk.sh for detailed information on test topology * and prerequisite network setup. * * This test program contains two threads, each thread is single socket with * a unique UMEM. It validates in-order packet delivery and packet content * by sending packets to each other. * * Tests Information: * ------------------ * These selftests test AF_XDP SKB and Native/DRV modes using veth * Virtual Ethernet interfaces. * * The following tests are run: * * 1. AF_XDP SKB mode * Generic mode XDP is driver independent, used when the driver does * not have support for XDP. Works on any netdevice using sockets and * generic XDP path. XDP hook from netif_receive_skb(). * a. nopoll - soft-irq processing * b. poll - using poll() syscall * c. Socket Teardown * Create a Tx and a Rx socket, Tx from one socket, Rx on another. Destroy * both sockets, then repeat multiple times. Only nopoll mode is used * d. Bi-directional sockets * Configure sockets as bi-directional tx/rx sockets, sets up fill and * completion rings on each socket, tx/rx in both directions. Only nopoll * mode is used * * 2. AF_XDP DRV/Native mode * Works on any netdevice with XDP_REDIRECT support, driver dependent. Processes * packets before SKB allocation. Provides better performance than SKB. Driver * hook available just after DMA of buffer descriptor. * a. nopoll * b. poll * c. Socket Teardown * d. Bi-directional sockets * - Only copy mode is supported because veth does not currently support * zero-copy mode * * Total tests: 8 * * Flow: * ----- * - Single process spawns two threads: Tx and Rx * - Each of these two threads attach to a veth interface within their assigned * namespaces * - Each thread Creates one AF_XDP socket connected to a unique umem for each * veth interface * - Tx thread Transmits 10k packets from veth to veth * - Rx thread verifies if all 10k packets were received and delivered in-order, * and have the right content * * Enable/disable debug mode: * -------------------------- * To enable L2 - L4 headers and payload dump of each packet on STDOUT, add * parameter -D to params array in test_xsk.sh, i.e. params=("-S" "-D") */ #define _GNU_SOURCE #include #include #include #include typedef __u16 __sum16; #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "xdpxceiver.h" #include "../kselftest.h" static void __exit_with_error(int error, const char *file, const char *func, int line) { ksft_test_result_fail ("[%s:%s:%i]: ERROR: %d/\"%s\"\n", file, func, line, error, strerror(error)); ksft_exit_xfail(); } #define exit_with_error(error) __exit_with_error(error, __FILE__, __func__, __LINE__) #define print_ksft_result(void)\ (ksft_test_result_pass("PASS: %s %s %s%s\n", uut ? "DRV" : "SKB", opt_poll ? "POLL" :\ "NOPOLL", opt_teardown ? "Socket Teardown" : "",\ opt_bidi ? "Bi-directional Sockets" : "")) static void pthread_init_mutex(void) { pthread_mutex_init(&sync_mutex, NULL); pthread_mutex_init(&sync_mutex_tx, NULL); pthread_cond_init(&signal_rx_condition, NULL); pthread_cond_init(&signal_tx_condition, NULL); } static void pthread_destroy_mutex(void) { pthread_mutex_destroy(&sync_mutex); pthread_mutex_destroy(&sync_mutex_tx); pthread_cond_destroy(&signal_rx_condition); pthread_cond_destroy(&signal_tx_condition); } static void *memset32_htonl(void *dest, u32 val, u32 size) { u32 *ptr = (u32 *)dest; int i; val = htonl(val); for (i = 0; i < (size & (~0x3)); i += 4) ptr[i >> 2] = val; for (; i < size; i++) ((char *)dest)[i] = ((char *)&val)[i & 3]; return dest; } /* * This function code has been taken from * Linux kernel lib/checksum.c */ static inline unsigned short from32to16(unsigned int x) { /* add up 16-bit and 16-bit for 16+c bit */ x = (x & 0xffff) + (x >> 16); /* add up carry.. */ x = (x & 0xffff) + (x >> 16); return x; } /* * Fold a partial checksum * This function code has been taken from * Linux kernel include/asm-generic/checksum.h */ static inline __u16 csum_fold(__u32 csum) { u32 sum = (__force u32)csum; sum = (sum & 0xffff) + (sum >> 16); sum = (sum & 0xffff) + (sum >> 16); return (__force __u16)~sum; } /* * This function code has been taken from * Linux kernel lib/checksum.c */ static inline u32 from64to32(u64 x) { /* add up 32-bit and 32-bit for 32+c bit */ x = (x & 0xffffffff) + (x >> 32); /* add up carry.. */ x = (x & 0xffffffff) + (x >> 32); return (u32)x; } __u32 csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 sum); /* * This function code has been taken from * Linux kernel lib/checksum.c */ __u32 csum_tcpudp_nofold(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 sum) { unsigned long long s = (__force u32)sum; s += (__force u32)saddr; s += (__force u32)daddr; #ifdef __BIG_ENDIAN__ s += proto + len; #else s += (proto + len) << 8; #endif return (__force __u32)from64to32(s); } /* * This function has been taken from * Linux kernel include/asm-generic/checksum.h */ static inline __u16 csum_tcpudp_magic(__be32 saddr, __be32 daddr, __u32 len, __u8 proto, __u32 sum) { return csum_fold(csum_tcpudp_nofold(saddr, daddr, len, proto, sum)); } static inline u16 udp_csum(u32 saddr, u32 daddr, u32 len, u8 proto, u16 *udp_pkt) { u32 csum = 0; u32 cnt = 0; /* udp hdr and data */ for (; cnt < len; cnt += 2) csum += udp_pkt[cnt >> 1]; return csum_tcpudp_magic(saddr, daddr, len, proto, csum); } static void gen_eth_hdr(void *data, struct ethhdr *eth_hdr) { memcpy(eth_hdr->h_dest, ((struct ifobject *)data)->dst_mac, ETH_ALEN); memcpy(eth_hdr->h_source, ((struct ifobject *)data)->src_mac, ETH_ALEN); eth_hdr->h_proto = htons(ETH_P_IP); } static void gen_ip_hdr(void *data, struct iphdr *ip_hdr) { ip_hdr->version = IP_PKT_VER; ip_hdr->ihl = 0x5; ip_hdr->tos = IP_PKT_TOS; ip_hdr->tot_len = htons(IP_PKT_SIZE); ip_hdr->id = 0; ip_hdr->frag_off = 0; ip_hdr->ttl = IPDEFTTL; ip_hdr->protocol = IPPROTO_UDP; ip_hdr->saddr = ((struct ifobject *)data)->src_ip; ip_hdr->daddr = ((struct ifobject *)data)->dst_ip; ip_hdr->check = 0; } static void gen_udp_hdr(void *data, void *arg, struct udphdr *udp_hdr) { udp_hdr->source = htons(((struct ifobject *)arg)->src_port); udp_hdr->dest = htons(((struct ifobject *)arg)->dst_port); udp_hdr->len = htons(UDP_PKT_SIZE); memset32_htonl(pkt_data + PKT_HDR_SIZE, htonl(((struct generic_data *)data)->seqnum), UDP_PKT_DATA_SIZE); } static void gen_udp_csum(struct udphdr *udp_hdr, struct iphdr *ip_hdr) { udp_hdr->check = 0; udp_hdr->check = udp_csum(ip_hdr->saddr, ip_hdr->daddr, UDP_PKT_SIZE, IPPROTO_UDP, (u16 *)udp_hdr); } static void gen_eth_frame(struct xsk_umem_info *umem, u64 addr) { memcpy(xsk_umem__get_data(umem->buffer, addr), pkt_data, PKT_SIZE); } static void xsk_configure_umem(struct ifobject *data, void *buffer, u64 size) { int ret; data->umem = calloc(1, sizeof(struct xsk_umem_info)); if (!data->umem) exit_with_error(errno); ret = xsk_umem__create(&data->umem->umem, buffer, size, &data->umem->fq, &data->umem->cq, NULL); if (ret) exit_with_error(ret); data->umem->buffer = buffer; } static void xsk_populate_fill_ring(struct xsk_umem_info *umem) { int ret, i; u32 idx; ret = xsk_ring_prod__reserve(&umem->fq, XSK_RING_PROD__DEFAULT_NUM_DESCS, &idx); if (ret != XSK_RING_PROD__DEFAULT_NUM_DESCS) exit_with_error(ret); for (i = 0; i < XSK_RING_PROD__DEFAULT_NUM_DESCS; i++) *xsk_ring_prod__fill_addr(&umem->fq, idx++) = i * XSK_UMEM__DEFAULT_FRAME_SIZE; xsk_ring_prod__submit(&umem->fq, XSK_RING_PROD__DEFAULT_NUM_DESCS); } static int xsk_configure_socket(struct ifobject *ifobject) { struct xsk_socket_config cfg; struct xsk_ring_cons *rxr; struct xsk_ring_prod *txr; int ret; ifobject->xsk = calloc(1, sizeof(struct xsk_socket_info)); if (!ifobject->xsk) exit_with_error(errno); ifobject->xsk->umem = ifobject->umem; cfg.rx_size = XSK_RING_CONS__DEFAULT_NUM_DESCS; cfg.tx_size = XSK_RING_PROD__DEFAULT_NUM_DESCS; cfg.libbpf_flags = 0; cfg.xdp_flags = opt_xdp_flags; cfg.bind_flags = opt_xdp_bind_flags; if (!opt_bidi) { rxr = (ifobject->fv.vector == rx) ? &ifobject->xsk->rx : NULL; txr = (ifobject->fv.vector == tx) ? &ifobject->xsk->tx : NULL; } else { rxr = &ifobject->xsk->rx; txr = &ifobject->xsk->tx; } ret = xsk_socket__create(&ifobject->xsk->xsk, ifobject->ifname, opt_queue, ifobject->umem->umem, rxr, txr, &cfg); if (ret) return 1; return 0; } static struct option long_options[] = { {"interface", required_argument, 0, 'i'}, {"queue", optional_argument, 0, 'q'}, {"poll", no_argument, 0, 'p'}, {"xdp-skb", no_argument, 0, 'S'}, {"xdp-native", no_argument, 0, 'N'}, {"copy", no_argument, 0, 'c'}, {"tear-down", no_argument, 0, 'T'}, {"bidi", optional_argument, 0, 'B'}, {"debug", optional_argument, 0, 'D'}, {"tx-pkt-count", optional_argument, 0, 'C'}, {0, 0, 0, 0} }; static void usage(const char *prog) { const char *str = " Usage: %s [OPTIONS]\n" " Options:\n" " -i, --interface Use interface\n" " -q, --queue=n Use queue n (default 0)\n" " -p, --poll Use poll syscall\n" " -S, --xdp-skb=n Use XDP SKB mode\n" " -N, --xdp-native=n Enforce XDP DRV (native) mode\n" " -c, --copy Force copy mode\n" " -T, --tear-down Tear down sockets by repeatedly recreating them\n" " -B, --bidi Bi-directional sockets test\n" " -D, --debug Debug mode - dump packets L2 - L5\n" " -C, --tx-pkt-count=n Number of packets to send\n"; ksft_print_msg(str, prog); } static bool switch_namespace(int idx) { char fqns[26] = "/var/run/netns/"; int nsfd; strncat(fqns, ifdict[idx]->nsname, sizeof(fqns) - strlen(fqns) - 1); nsfd = open(fqns, O_RDONLY); if (nsfd == -1) exit_with_error(errno); if (setns(nsfd, 0) == -1) exit_with_error(errno); return true; } static void *nsswitchthread(void *args) { if (switch_namespace(((struct targs *)args)->idx)) { ifdict[((struct targs *)args)->idx]->ifindex = if_nametoindex(ifdict[((struct targs *)args)->idx]->ifname); if (!ifdict[((struct targs *)args)->idx]->ifindex) { ksft_test_result_fail ("ERROR: [%s] interface \"%s\" does not exist\n", __func__, ifdict[((struct targs *)args)->idx]->ifname); ((struct targs *)args)->retptr = false; } else { ksft_print_msg("Interface found: %s\n", ifdict[((struct targs *)args)->idx]->ifname); ((struct targs *)args)->retptr = true; } } else { ((struct targs *)args)->retptr = false; } pthread_exit(NULL); } static int validate_interfaces(void) { bool ret = true; for (int i = 0; i < MAX_INTERFACES; i++) { if (!strcmp(ifdict[i]->ifname, "")) { ret = false; ksft_test_result_fail("ERROR: interfaces: -i , -i ,."); } if (strcmp(ifdict[i]->nsname, "")) { struct targs *targs; targs = (struct targs *)malloc(sizeof(struct targs)); if (!targs) exit_with_error(errno); targs->idx = i; if (pthread_create(&ns_thread, NULL, nsswitchthread, (void *)targs)) exit_with_error(errno); pthread_join(ns_thread, NULL); if (targs->retptr) ksft_print_msg("NS switched: %s\n", ifdict[i]->nsname); free(targs); } else { ifdict[i]->ifindex = if_nametoindex(ifdict[i]->ifname); if (!ifdict[i]->ifindex) { ksft_test_result_fail ("ERROR: interface \"%s\" does not exist\n", ifdict[i]->ifname); ret = false; } else { ksft_print_msg("Interface found: %s\n", ifdict[i]->ifname); } } } return ret; } static void parse_command_line(int argc, char **argv) { int option_index, interface_index = 0, c; opterr = 0; for (;;) { c = getopt_long(argc, argv, "i:q:pSNcTBDC:", long_options, &option_index); if (c == -1) break; switch (c) { case 'i': if (interface_index == MAX_INTERFACES) break; char *sptr, *token; sptr = strndupa(optarg, strlen(optarg)); memcpy(ifdict[interface_index]->ifname, strsep(&sptr, ","), MAX_INTERFACE_NAME_CHARS); token = strsep(&sptr, ","); if (token) memcpy(ifdict[interface_index]->nsname, token, MAX_INTERFACES_NAMESPACE_CHARS); interface_index++; break; case 'q': opt_queue = atoi(optarg); break; case 'p': opt_poll = 1; break; case 'S': opt_xdp_flags |= XDP_FLAGS_SKB_MODE; opt_xdp_bind_flags |= XDP_COPY; uut = ORDER_CONTENT_VALIDATE_XDP_SKB; break; case 'N': opt_xdp_flags |= XDP_FLAGS_DRV_MODE; opt_xdp_bind_flags |= XDP_COPY; uut = ORDER_CONTENT_VALIDATE_XDP_DRV; break; case 'c': opt_xdp_bind_flags |= XDP_COPY; break; case 'T': opt_teardown = 1; break; case 'B': opt_bidi = 1; break; case 'D': debug_pkt_dump = 1; break; case 'C': opt_pkt_count = atoi(optarg); break; default: usage(basename(argv[0])); ksft_exit_xfail(); } } if (!validate_interfaces()) { usage(basename(argv[0])); ksft_exit_xfail(); } } static void kick_tx(struct xsk_socket_info *xsk) { int ret; ret = sendto(xsk_socket__fd(xsk->xsk), NULL, 0, MSG_DONTWAIT, NULL, 0); if (ret >= 0 || errno == ENOBUFS || errno == EAGAIN || errno == EBUSY || errno == ENETDOWN) return; exit_with_error(errno); } static inline void complete_tx_only(struct xsk_socket_info *xsk, int batch_size) { unsigned int rcvd; u32 idx; if (!xsk->outstanding_tx) return; if (!NEED_WAKEUP || xsk_ring_prod__needs_wakeup(&xsk->tx)) kick_tx(xsk); rcvd = xsk_ring_cons__peek(&xsk->umem->cq, batch_size, &idx); if (rcvd) { xsk_ring_cons__release(&xsk->umem->cq, rcvd); xsk->outstanding_tx -= rcvd; xsk->tx_npkts += rcvd; } } static void rx_pkt(struct xsk_socket_info *xsk, struct pollfd *fds) { unsigned int rcvd, i; u32 idx_rx = 0, idx_fq = 0; int ret; rcvd = xsk_ring_cons__peek(&xsk->rx, BATCH_SIZE, &idx_rx); if (!rcvd) { if (xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) { ret = poll(fds, 1, POLL_TMOUT); if (ret < 0) exit_with_error(ret); } return; } ret = xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq); while (ret != rcvd) { if (ret < 0) exit_with_error(ret); if (xsk_ring_prod__needs_wakeup(&xsk->umem->fq)) { ret = poll(fds, 1, POLL_TMOUT); if (ret < 0) exit_with_error(ret); } ret = xsk_ring_prod__reserve(&xsk->umem->fq, rcvd, &idx_fq); } for (i = 0; i < rcvd; i++) { u64 addr = xsk_ring_cons__rx_desc(&xsk->rx, idx_rx)->addr; (void)xsk_ring_cons__rx_desc(&xsk->rx, idx_rx++)->len; u64 orig = xsk_umem__extract_addr(addr); addr = xsk_umem__add_offset_to_addr(addr); pkt_node_rx = malloc(sizeof(struct pkt) + PKT_SIZE); if (!pkt_node_rx) exit_with_error(errno); pkt_node_rx->pkt_frame = (char *)malloc(PKT_SIZE); if (!pkt_node_rx->pkt_frame) exit_with_error(errno); memcpy(pkt_node_rx->pkt_frame, xsk_umem__get_data(xsk->umem->buffer, addr), PKT_SIZE); TAILQ_INSERT_HEAD(&head, pkt_node_rx, pkt_nodes); *xsk_ring_prod__fill_addr(&xsk->umem->fq, idx_fq++) = orig; } xsk_ring_prod__submit(&xsk->umem->fq, rcvd); xsk_ring_cons__release(&xsk->rx, rcvd); xsk->rx_npkts += rcvd; } static void tx_only(struct xsk_socket_info *xsk, u32 *frameptr, int batch_size) { u32 idx; unsigned int i; while (xsk_ring_prod__reserve(&xsk->tx, batch_size, &idx) < batch_size) complete_tx_only(xsk, batch_size); for (i = 0; i < batch_size; i++) { struct xdp_desc *tx_desc = xsk_ring_prod__tx_desc(&xsk->tx, idx + i); tx_desc->addr = (*frameptr + i) << XSK_UMEM__DEFAULT_FRAME_SHIFT; tx_desc->len = PKT_SIZE; } xsk_ring_prod__submit(&xsk->tx, batch_size); xsk->outstanding_tx += batch_size; *frameptr += batch_size; *frameptr %= num_frames; complete_tx_only(xsk, batch_size); } static inline int get_batch_size(int pkt_cnt) { if (!opt_pkt_count) return BATCH_SIZE; if (pkt_cnt + BATCH_SIZE <= opt_pkt_count) return BATCH_SIZE; return opt_pkt_count - pkt_cnt; } static void complete_tx_only_all(void *arg) { bool pending; do { pending = false; if (((struct ifobject *)arg)->xsk->outstanding_tx) { complete_tx_only(((struct ifobject *) arg)->xsk, BATCH_SIZE); pending = !!((struct ifobject *)arg)->xsk->outstanding_tx; } } while (pending); } static void tx_only_all(void *arg) { struct pollfd fds[MAX_SOCKS] = { }; u32 frame_nb = 0; int pkt_cnt = 0; int ret; fds[0].fd = xsk_socket__fd(((struct ifobject *)arg)->xsk->xsk); fds[0].events = POLLOUT; while ((opt_pkt_count && pkt_cnt < opt_pkt_count) || !opt_pkt_count) { int batch_size = get_batch_size(pkt_cnt); if (opt_poll) { ret = poll(fds, 1, POLL_TMOUT); if (ret <= 0) continue; if (!(fds[0].revents & POLLOUT)) continue; } tx_only(((struct ifobject *)arg)->xsk, &frame_nb, batch_size); pkt_cnt += batch_size; } if (opt_pkt_count) complete_tx_only_all(arg); } static void worker_pkt_dump(void) { struct in_addr ipaddr; fprintf(stdout, "---------------------------------------\n"); for (int iter = 0; iter < num_frames - 1; iter++) { /*extract L2 frame */ fprintf(stdout, "DEBUG>> L2: dst mac: "); for (int i = 0; i < ETH_ALEN; i++) fprintf(stdout, "%02X", ((struct ethhdr *) pkt_buf[iter]->payload)->h_dest[i]); fprintf(stdout, "\nDEBUG>> L2: src mac: "); for (int i = 0; i < ETH_ALEN; i++) fprintf(stdout, "%02X", ((struct ethhdr *) pkt_buf[iter]->payload)->h_source[i]); /*extract L3 frame */ fprintf(stdout, "\nDEBUG>> L3: ip_hdr->ihl: %02X\n", ((struct iphdr *)(pkt_buf[iter]->payload + sizeof(struct ethhdr)))->ihl); ipaddr.s_addr = ((struct iphdr *)(pkt_buf[iter]->payload + sizeof(struct ethhdr)))->saddr; fprintf(stdout, "DEBUG>> L3: ip_hdr->saddr: %s\n", inet_ntoa(ipaddr)); ipaddr.s_addr = ((struct iphdr *)(pkt_buf[iter]->payload + sizeof(struct ethhdr)))->daddr; fprintf(stdout, "DEBUG>> L3: ip_hdr->daddr: %s\n", inet_ntoa(ipaddr)); /*extract L4 frame */ fprintf(stdout, "DEBUG>> L4: udp_hdr->src: %d\n", ntohs(((struct udphdr *)(pkt_buf[iter]->payload + sizeof(struct ethhdr) + sizeof(struct iphdr)))->source)); fprintf(stdout, "DEBUG>> L4: udp_hdr->dst: %d\n", ntohs(((struct udphdr *)(pkt_buf[iter]->payload + sizeof(struct ethhdr) + sizeof(struct iphdr)))->dest)); /*extract L5 frame */ int payload = *((uint32_t *)(pkt_buf[iter]->payload + PKT_HDR_SIZE)); if (payload == EOT) { ksft_print_msg("End-of-transmission frame received\n"); fprintf(stdout, "---------------------------------------\n"); break; } fprintf(stdout, "DEBUG>> L5: payload: %d\n", payload); fprintf(stdout, "---------------------------------------\n"); } } static void worker_pkt_validate(void) { u32 payloadseqnum = -2; while (1) { pkt_node_rx_q = malloc(sizeof(struct pkt)); pkt_node_rx_q = TAILQ_LAST(&head, head_s); if (!pkt_node_rx_q) break; /*do not increment pktcounter if !(tos=0x9 and ipv4) */ if ((((struct iphdr *)(pkt_node_rx_q->pkt_frame + sizeof(struct ethhdr)))->version == IP_PKT_VER) && (((struct iphdr *)(pkt_node_rx_q->pkt_frame + sizeof(struct ethhdr)))->tos == IP_PKT_TOS)) { payloadseqnum = *((uint32_t *) (pkt_node_rx_q->pkt_frame + PKT_HDR_SIZE)); if (debug_pkt_dump && payloadseqnum != EOT) { pkt_obj = (struct pkt_frame *)malloc(sizeof(struct pkt_frame)); pkt_obj->payload = (char *)malloc(PKT_SIZE); memcpy(pkt_obj->payload, pkt_node_rx_q->pkt_frame, PKT_SIZE); pkt_buf[payloadseqnum] = pkt_obj; } if (payloadseqnum == EOT) { ksft_print_msg("End-of-transmission frame received: PASS\n"); sigvar = 1; break; } if (prev_pkt + 1 != payloadseqnum) { ksft_test_result_fail ("ERROR: [%s] prev_pkt [%d], payloadseqnum [%d]\n", __func__, prev_pkt, payloadseqnum); ksft_exit_xfail(); } TAILQ_REMOVE(&head, pkt_node_rx_q, pkt_nodes); free(pkt_node_rx_q->pkt_frame); free(pkt_node_rx_q); pkt_node_rx_q = NULL; prev_pkt = payloadseqnum; pkt_counter++; } else { ksft_print_msg("Invalid frame received: "); ksft_print_msg("[IP_PKT_VER: %02X], [IP_PKT_TOS: %02X]\n", ((struct iphdr *)(pkt_node_rx_q->pkt_frame + sizeof(struct ethhdr)))->version, ((struct iphdr *)(pkt_node_rx_q->pkt_frame + sizeof(struct ethhdr)))->tos); TAILQ_REMOVE(&head, pkt_node_rx_q, pkt_nodes); free(pkt_node_rx_q->pkt_frame); free(pkt_node_rx_q); pkt_node_rx_q = NULL; } } } static void thread_common_ops(void *arg, void *bufs, pthread_mutex_t *mutexptr, atomic_int *spinningptr) { int ctr = 0; int ret; xsk_configure_umem((struct ifobject *)arg, bufs, num_frames * XSK_UMEM__DEFAULT_FRAME_SIZE); ret = xsk_configure_socket((struct ifobject *)arg); /* Retry Create Socket if it fails as xsk_socket__create() * is asynchronous * * Essential to lock Mutex here to prevent Tx thread from * entering before Rx and causing a deadlock */ pthread_mutex_lock(mutexptr); while (ret && ctr < SOCK_RECONF_CTR) { atomic_store(spinningptr, 1); xsk_configure_umem((struct ifobject *)arg, bufs, num_frames * XSK_UMEM__DEFAULT_FRAME_SIZE); ret = xsk_configure_socket((struct ifobject *)arg); usleep(USLEEP_MAX); ctr++; } atomic_store(spinningptr, 0); pthread_mutex_unlock(mutexptr); if (ctr >= SOCK_RECONF_CTR) exit_with_error(ret); } static void *worker_testapp_validate(void *arg) { struct udphdr *udp_hdr = (struct udphdr *)(pkt_data + sizeof(struct ethhdr) + sizeof(struct iphdr)); struct generic_data *data = (struct generic_data *)malloc(sizeof(struct generic_data)); struct iphdr *ip_hdr = (struct iphdr *)(pkt_data + sizeof(struct ethhdr)); struct ethhdr *eth_hdr = (struct ethhdr *)pkt_data; void *bufs = NULL; pthread_attr_setstacksize(&attr, THREAD_STACK); if (!bidi_pass) { bufs = mmap(NULL, num_frames * XSK_UMEM__DEFAULT_FRAME_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (bufs == MAP_FAILED) exit_with_error(errno); if (strcmp(((struct ifobject *)arg)->nsname, "")) switch_namespace(((struct ifobject *)arg)->ifdict_index); } if (((struct ifobject *)arg)->fv.vector == tx) { int spinningrxctr = 0; if (!bidi_pass) thread_common_ops(arg, bufs, &sync_mutex_tx, &spinning_tx); while (atomic_load(&spinning_rx) && spinningrxctr < SOCK_RECONF_CTR) { spinningrxctr++; usleep(USLEEP_MAX); } ksft_print_msg("Interface [%s] vector [Tx]\n", ((struct ifobject *)arg)->ifname); for (int i = 0; i < num_frames; i++) { /*send EOT frame */ if (i == (num_frames - 1)) data->seqnum = -1; else data->seqnum = i; gen_udp_hdr((void *)data, (void *)arg, udp_hdr); gen_ip_hdr((void *)arg, ip_hdr); gen_udp_csum(udp_hdr, ip_hdr); gen_eth_hdr((void *)arg, eth_hdr); gen_eth_frame(((struct ifobject *)arg)->umem, i * XSK_UMEM__DEFAULT_FRAME_SIZE); } free(data); ksft_print_msg("Sending %d packets on interface %s\n", (opt_pkt_count - 1), ((struct ifobject *)arg)->ifname); tx_only_all(arg); } else if (((struct ifobject *)arg)->fv.vector == rx) { struct pollfd fds[MAX_SOCKS] = { }; int ret; if (!bidi_pass) thread_common_ops(arg, bufs, &sync_mutex_tx, &spinning_rx); ksft_print_msg("Interface [%s] vector [Rx]\n", ((struct ifobject *)arg)->ifname); xsk_populate_fill_ring(((struct ifobject *)arg)->umem); TAILQ_INIT(&head); if (debug_pkt_dump) { pkt_buf = malloc(sizeof(struct pkt_frame **) * num_frames); if (!pkt_buf) exit_with_error(errno); } fds[0].fd = xsk_socket__fd(((struct ifobject *)arg)->xsk->xsk); fds[0].events = POLLIN; pthread_mutex_lock(&sync_mutex); pthread_cond_signal(&signal_rx_condition); pthread_mutex_unlock(&sync_mutex); while (1) { if (opt_poll) { ret = poll(fds, 1, POLL_TMOUT); if (ret <= 0) continue; } rx_pkt(((struct ifobject *)arg)->xsk, fds); worker_pkt_validate(); if (sigvar) break; } ksft_print_msg("Received %d packets on interface %s\n", pkt_counter, ((struct ifobject *)arg)->ifname); if (opt_teardown) ksft_print_msg("Destroying socket\n"); } if (!opt_bidi || (opt_bidi && bidi_pass)) { xsk_socket__delete(((struct ifobject *)arg)->xsk->xsk); (void)xsk_umem__delete(((struct ifobject *)arg)->umem->umem); } pthread_exit(NULL); } static void testapp_validate(void) { pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, THREAD_STACK); if (opt_bidi && bidi_pass) { pthread_init_mutex(); if (!switching_notify) { ksft_print_msg("Switching Tx/Rx vectors\n"); switching_notify++; } } pthread_mutex_lock(&sync_mutex); /*Spawn RX thread */ if (!opt_bidi || (opt_bidi && !bidi_pass)) { if (pthread_create(&t0, &attr, worker_testapp_validate, (void *)ifdict[1])) exit_with_error(errno); } else if (opt_bidi && bidi_pass) { /*switch Tx/Rx vectors */ ifdict[0]->fv.vector = rx; if (pthread_create(&t0, &attr, worker_testapp_validate, (void *)ifdict[0])) exit_with_error(errno); } struct timespec max_wait = { 0, 0 }; if (clock_gettime(CLOCK_REALTIME, &max_wait)) exit_with_error(errno); max_wait.tv_sec += TMOUT_SEC; if (pthread_cond_timedwait(&signal_rx_condition, &sync_mutex, &max_wait) == ETIMEDOUT) exit_with_error(errno); pthread_mutex_unlock(&sync_mutex); /*Spawn TX thread */ if (!opt_bidi || (opt_bidi && !bidi_pass)) { if (pthread_create(&t1, &attr, worker_testapp_validate, (void *)ifdict[0])) exit_with_error(errno); } else if (opt_bidi && bidi_pass) { /*switch Tx/Rx vectors */ ifdict[1]->fv.vector = tx; if (pthread_create(&t1, &attr, worker_testapp_validate, (void *)ifdict[1])) exit_with_error(errno); } pthread_join(t1, NULL); pthread_join(t0, NULL); if (debug_pkt_dump) { worker_pkt_dump(); for (int iter = 0; iter < num_frames - 1; iter++) { free(pkt_buf[iter]->payload); free(pkt_buf[iter]); } free(pkt_buf); } if (!opt_teardown && !opt_bidi) print_ksft_result(); } static void testapp_sockets(void) { for (int i = 0; i < (opt_teardown ? MAX_TEARDOWN_ITER : MAX_BIDI_ITER); i++) { pkt_counter = 0; prev_pkt = -1; sigvar = 0; ksft_print_msg("Creating socket\n"); testapp_validate(); opt_bidi ? bidi_pass++ : bidi_pass; } print_ksft_result(); } static void init_iface_config(void *ifaceconfig) { /*Init interface0 */ ifdict[0]->fv.vector = tx; memcpy(ifdict[0]->dst_mac, ((struct ifaceconfigobj *)ifaceconfig)->dst_mac, ETH_ALEN); memcpy(ifdict[0]->src_mac, ((struct ifaceconfigobj *)ifaceconfig)->src_mac, ETH_ALEN); ifdict[0]->dst_ip = ((struct ifaceconfigobj *)ifaceconfig)->dst_ip.s_addr; ifdict[0]->src_ip = ((struct ifaceconfigobj *)ifaceconfig)->src_ip.s_addr; ifdict[0]->dst_port = ((struct ifaceconfigobj *)ifaceconfig)->dst_port; ifdict[0]->src_port = ((struct ifaceconfigobj *)ifaceconfig)->src_port; /*Init interface1 */ ifdict[1]->fv.vector = rx; memcpy(ifdict[1]->dst_mac, ((struct ifaceconfigobj *)ifaceconfig)->src_mac, ETH_ALEN); memcpy(ifdict[1]->src_mac, ((struct ifaceconfigobj *)ifaceconfig)->dst_mac, ETH_ALEN); ifdict[1]->dst_ip = ((struct ifaceconfigobj *)ifaceconfig)->src_ip.s_addr; ifdict[1]->src_ip = ((struct ifaceconfigobj *)ifaceconfig)->dst_ip.s_addr; ifdict[1]->dst_port = ((struct ifaceconfigobj *)ifaceconfig)->src_port; ifdict[1]->src_port = ((struct ifaceconfigobj *)ifaceconfig)->dst_port; } int main(int argc, char **argv) { struct rlimit _rlim = { RLIM_INFINITY, RLIM_INFINITY }; if (setrlimit(RLIMIT_MEMLOCK, &_rlim)) exit_with_error(errno); const char *MAC1 = "\x00\x0A\x56\x9E\xEE\x62"; const char *MAC2 = "\x00\x0A\x56\x9E\xEE\x61"; const char *IP1 = "192.168.100.162"; const char *IP2 = "192.168.100.161"; u16 UDP_DST_PORT = 2020; u16 UDP_SRC_PORT = 2121; ifaceconfig = (struct ifaceconfigobj *)malloc(sizeof(struct ifaceconfigobj)); memcpy(ifaceconfig->dst_mac, MAC1, ETH_ALEN); memcpy(ifaceconfig->src_mac, MAC2, ETH_ALEN); inet_aton(IP1, &ifaceconfig->dst_ip); inet_aton(IP2, &ifaceconfig->src_ip); ifaceconfig->dst_port = UDP_DST_PORT; ifaceconfig->src_port = UDP_SRC_PORT; for (int i = 0; i < MAX_INTERFACES; i++) { ifdict[i] = (struct ifobject *)malloc(sizeof(struct ifobject)); if (!ifdict[i]) exit_with_error(errno); ifdict[i]->ifdict_index = i; } setlocale(LC_ALL, ""); parse_command_line(argc, argv); num_frames = ++opt_pkt_count; init_iface_config((void *)ifaceconfig); pthread_init_mutex(); ksft_set_plan(1); if (!opt_teardown && !opt_bidi) { testapp_validate(); } else if (opt_teardown && opt_bidi) { ksft_test_result_fail("ERROR: parameters -T and -B cannot be used together\n"); ksft_exit_xfail(); } else { testapp_sockets(); } for (int i = 0; i < MAX_INTERFACES; i++) free(ifdict[i]); pthread_destroy_mutex(); ksft_exit_pass(); return 0; }