#include "util.h" #include <sys/types.h> #include <byteswap.h> #include <unistd.h> #include <stdio.h> #include <stdlib.h> #include <linux/list.h> #include <linux/kernel.h> #include <linux/bitops.h> #include <sys/utsname.h> #include "evlist.h" #include "evsel.h" #include "header.h" #include "../perf.h" #include "trace-event.h" #include "session.h" #include "symbol.h" #include "debug.h" #include "cpumap.h" #include "pmu.h" #include "vdso.h" #include "strbuf.h" #include "build-id.h" #include "data.h" static bool no_buildid_cache = false; static u32 header_argc; static const char **header_argv; /* * magic2 = "PERFILE2" * must be a numerical value to let the endianness * determine the memory layout. That way we are able * to detect endianness when reading the perf.data file * back. * * we check for legacy (PERFFILE) format. */ static const char *__perf_magic1 = "PERFFILE"; static const u64 __perf_magic2 = 0x32454c4946524550ULL; static const u64 __perf_magic2_sw = 0x50455246494c4532ULL; #define PERF_MAGIC __perf_magic2 struct perf_file_attr { struct perf_event_attr attr; struct perf_file_section ids; }; void perf_header__set_feat(struct perf_header *header, int feat) { set_bit(feat, header->adds_features); } void perf_header__clear_feat(struct perf_header *header, int feat) { clear_bit(feat, header->adds_features); } bool perf_header__has_feat(const struct perf_header *header, int feat) { return test_bit(feat, header->adds_features); } static int do_write(int fd, const void *buf, size_t size) { while (size) { int ret = write(fd, buf, size); if (ret < 0) return -errno; size -= ret; buf += ret; } return 0; } #define NAME_ALIGN 64 static int write_padded(int fd, const void *bf, size_t count, size_t count_aligned) { static const char zero_buf[NAME_ALIGN]; int err = do_write(fd, bf, count); if (!err) err = do_write(fd, zero_buf, count_aligned - count); return err; } static int do_write_string(int fd, const char *str) { u32 len, olen; int ret; olen = strlen(str) + 1; len = PERF_ALIGN(olen, NAME_ALIGN); /* write len, incl. \0 */ ret = do_write(fd, &len, sizeof(len)); if (ret < 0) return ret; return write_padded(fd, str, olen, len); } static char *do_read_string(int fd, struct perf_header *ph) { ssize_t sz, ret; u32 len; char *buf; sz = readn(fd, &len, sizeof(len)); if (sz < (ssize_t)sizeof(len)) return NULL; if (ph->needs_swap) len = bswap_32(len); buf = malloc(len); if (!buf) return NULL; ret = readn(fd, buf, len); if (ret == (ssize_t)len) { /* * strings are padded by zeroes * thus the actual strlen of buf * may be less than len */ return buf; } free(buf); return NULL; } int perf_header__set_cmdline(int argc, const char **argv) { int i; /* * If header_argv has already been set, do not override it. * This allows a command to set the cmdline, parse args and * then call another builtin function that implements a * command -- e.g, cmd_kvm calling cmd_record. */ if (header_argv) return 0; header_argc = (u32)argc; /* do not include NULL termination */ header_argv = calloc(argc, sizeof(char *)); if (!header_argv) return -ENOMEM; /* * must copy argv contents because it gets moved * around during option parsing */ for (i = 0; i < argc ; i++) header_argv[i] = argv[i]; return 0; } #define dsos__for_each_with_build_id(pos, head) \ list_for_each_entry(pos, head, node) \ if (!pos->has_build_id) \ continue; \ else static int write_buildid(const char *name, size_t name_len, u8 *build_id, pid_t pid, u16 misc, int fd) { int err; struct build_id_event b; size_t len; len = name_len + 1; len = PERF_ALIGN(len, NAME_ALIGN); memset(&b, 0, sizeof(b)); memcpy(&b.build_id, build_id, BUILD_ID_SIZE); b.pid = pid; b.header.misc = misc; b.header.size = sizeof(b) + len; err = do_write(fd, &b, sizeof(b)); if (err < 0) return err; return write_padded(fd, name, name_len + 1, len); } static int __dsos__write_buildid_table(struct list_head *head, struct machine *machine, pid_t pid, u16 misc, int fd) { char nm[PATH_MAX]; struct dso *pos; dsos__for_each_with_build_id(pos, head) { int err; const char *name; size_t name_len; if (!pos->hit) continue; if (is_vdso_map(pos->short_name)) { name = (char *) VDSO__MAP_NAME; name_len = sizeof(VDSO__MAP_NAME) + 1; } else if (dso__is_kcore(pos)) { machine__mmap_name(machine, nm, sizeof(nm)); name = nm; name_len = strlen(nm) + 1; } else { name = pos->long_name; name_len = pos->long_name_len + 1; } err = write_buildid(name, name_len, pos->build_id, pid, misc, fd); if (err) return err; } return 0; } static int machine__write_buildid_table(struct machine *machine, int fd) { int err; u16 kmisc = PERF_RECORD_MISC_KERNEL, umisc = PERF_RECORD_MISC_USER; if (!machine__is_host(machine)) { kmisc = PERF_RECORD_MISC_GUEST_KERNEL; umisc = PERF_RECORD_MISC_GUEST_USER; } err = __dsos__write_buildid_table(&machine->kernel_dsos, machine, machine->pid, kmisc, fd); if (err == 0) err = __dsos__write_buildid_table(&machine->user_dsos, machine, machine->pid, umisc, fd); return err; } static int dsos__write_buildid_table(struct perf_header *header, int fd) { struct perf_session *session = container_of(header, struct perf_session, header); struct rb_node *nd; int err = machine__write_buildid_table(&session->machines.host, fd); if (err) return err; for (nd = rb_first(&session->machines.guests); nd; nd = rb_next(nd)) { struct machine *pos = rb_entry(nd, struct machine, rb_node); err = machine__write_buildid_table(pos, fd); if (err) break; } return err; } int build_id_cache__add_s(const char *sbuild_id, const char *debugdir, const char *name, bool is_kallsyms, bool is_vdso) { const size_t size = PATH_MAX; char *realname, *filename = zalloc(size), *linkname = zalloc(size), *targetname; int len, err = -1; bool slash = is_kallsyms || is_vdso; if (is_kallsyms) { if (symbol_conf.kptr_restrict) { pr_debug("Not caching a kptr_restrict'ed /proc/kallsyms\n"); err = 0; goto out_free; } realname = (char *) name; } else realname = realpath(name, NULL); if (realname == NULL || filename == NULL || linkname == NULL) goto out_free; len = scnprintf(filename, size, "%s%s%s", debugdir, slash ? "/" : "", is_vdso ? VDSO__MAP_NAME : realname); if (mkdir_p(filename, 0755)) goto out_free; snprintf(filename + len, size - len, "/%s", sbuild_id); if (access(filename, F_OK)) { if (is_kallsyms) { if (copyfile("/proc/kallsyms", filename)) goto out_free; } else if (link(realname, filename) && copyfile(name, filename)) goto out_free; } len = scnprintf(linkname, size, "%s/.build-id/%.2s", debugdir, sbuild_id); if (access(linkname, X_OK) && mkdir_p(linkname, 0755)) goto out_free; snprintf(linkname + len, size - len, "/%s", sbuild_id + 2); targetname = filename + strlen(debugdir) - 5; memcpy(targetname, "../..", 5); if (symlink(targetname, linkname) == 0) err = 0; out_free: if (!is_kallsyms) free(realname); free(filename); free(linkname); return err; } static int build_id_cache__add_b(const u8 *build_id, size_t build_id_size, const char *name, const char *debugdir, bool is_kallsyms, bool is_vdso) { char sbuild_id[BUILD_ID_SIZE * 2 + 1]; build_id__sprintf(build_id, build_id_size, sbuild_id); return build_id_cache__add_s(sbuild_id, debugdir, name, is_kallsyms, is_vdso); } int build_id_cache__remove_s(const char *sbuild_id, const char *debugdir) { const size_t size = PATH_MAX; char *filename = zalloc(size), *linkname = zalloc(size); int err = -1; if (filename == NULL || linkname == NULL) goto out_free; snprintf(linkname, size, "%s/.build-id/%.2s/%s", debugdir, sbuild_id, sbuild_id + 2); if (access(linkname, F_OK)) goto out_free; if (readlink(linkname, filename, size - 1) < 0) goto out_free; if (unlink(linkname)) goto out_free; /* * Since the link is relative, we must make it absolute: */ snprintf(linkname, size, "%s/.build-id/%.2s/%s", debugdir, sbuild_id, filename); if (unlink(linkname)) goto out_free; err = 0; out_free: free(filename); free(linkname); return err; } static int dso__cache_build_id(struct dso *dso, struct machine *machine, const char *debugdir) { bool is_kallsyms = dso->kernel && dso->long_name[0] != '/'; bool is_vdso = is_vdso_map(dso->short_name); const char *name = dso->long_name; char nm[PATH_MAX]; if (dso__is_kcore(dso)) { is_kallsyms = true; machine__mmap_name(machine, nm, sizeof(nm)); name = nm; } return build_id_cache__add_b(dso->build_id, sizeof(dso->build_id), name, debugdir, is_kallsyms, is_vdso); } static int __dsos__cache_build_ids(struct list_head *head, struct machine *machine, const char *debugdir) { struct dso *pos; int err = 0; dsos__for_each_with_build_id(pos, head) if (dso__cache_build_id(pos, machine, debugdir)) err = -1; return err; } static int machine__cache_build_ids(struct machine *machine, const char *debugdir) { int ret = __dsos__cache_build_ids(&machine->kernel_dsos, machine, debugdir); ret |= __dsos__cache_build_ids(&machine->user_dsos, machine, debugdir); return ret; } static int perf_session__cache_build_ids(struct perf_session *session) { struct rb_node *nd; int ret; char debugdir[PATH_MAX]; snprintf(debugdir, sizeof(debugdir), "%s", buildid_dir); if (mkdir(debugdir, 0755) != 0 && errno != EEXIST) return -1; ret = machine__cache_build_ids(&session->machines.host, debugdir); for (nd = rb_first(&session->machines.guests); nd; nd = rb_next(nd)) { struct machine *pos = rb_entry(nd, struct machine, rb_node); ret |= machine__cache_build_ids(pos, debugdir); } return ret ? -1 : 0; } static bool machine__read_build_ids(struct machine *machine, bool with_hits) { bool ret = __dsos__read_build_ids(&machine->kernel_dsos, with_hits); ret |= __dsos__read_build_ids(&machine->user_dsos, with_hits); return ret; } static bool perf_session__read_build_ids(struct perf_session *session, bool with_hits) { struct rb_node *nd; bool ret = machine__read_build_ids(&session->machines.host, with_hits); for (nd = rb_first(&session->machines.guests); nd; nd = rb_next(nd)) { struct machine *pos = rb_entry(nd, struct machine, rb_node); ret |= machine__read_build_ids(pos, with_hits); } return ret; } static int write_tracing_data(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist) { return read_tracing_data(fd, &evlist->entries); } static int write_build_id(int fd, struct perf_header *h, struct perf_evlist *evlist __maybe_unused) { struct perf_session *session; int err; session = container_of(h, struct perf_session, header); if (!perf_session__read_build_ids(session, true)) return -1; err = dsos__write_buildid_table(h, fd); if (err < 0) { pr_debug("failed to write buildid table\n"); return err; } if (!no_buildid_cache) perf_session__cache_build_ids(session); return 0; } static int write_hostname(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { struct utsname uts; int ret; ret = uname(&uts); if (ret < 0) return -1; return do_write_string(fd, uts.nodename); } static int write_osrelease(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { struct utsname uts; int ret; ret = uname(&uts); if (ret < 0) return -1; return do_write_string(fd, uts.release); } static int write_arch(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { struct utsname uts; int ret; ret = uname(&uts); if (ret < 0) return -1; return do_write_string(fd, uts.machine); } static int write_version(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { return do_write_string(fd, perf_version_string); } static int write_cpudesc(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { #ifndef CPUINFO_PROC #define CPUINFO_PROC NULL #endif FILE *file; char *buf = NULL; char *s, *p; const char *search = CPUINFO_PROC; size_t len = 0; int ret = -1; if (!search) return -1; file = fopen("/proc/cpuinfo", "r"); if (!file) return -1; while (getline(&buf, &len, file) > 0) { ret = strncmp(buf, search, strlen(search)); if (!ret) break; } if (ret) goto done; s = buf; p = strchr(buf, ':'); if (p && *(p+1) == ' ' && *(p+2)) s = p + 2; p = strchr(s, '\n'); if (p) *p = '\0'; /* squash extra space characters (branding string) */ p = s; while (*p) { if (isspace(*p)) { char *r = p + 1; char *q = r; *p = ' '; while (*q && isspace(*q)) q++; if (q != (p+1)) while ((*r++ = *q++)); } p++; } ret = do_write_string(fd, s); done: free(buf); fclose(file); return ret; } static int write_nrcpus(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { long nr; u32 nrc, nra; int ret; nr = sysconf(_SC_NPROCESSORS_CONF); if (nr < 0) return -1; nrc = (u32)(nr & UINT_MAX); nr = sysconf(_SC_NPROCESSORS_ONLN); if (nr < 0) return -1; nra = (u32)(nr & UINT_MAX); ret = do_write(fd, &nrc, sizeof(nrc)); if (ret < 0) return ret; return do_write(fd, &nra, sizeof(nra)); } static int write_event_desc(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist) { struct perf_evsel *evsel; u32 nre, nri, sz; int ret; nre = evlist->nr_entries; /* * write number of events */ ret = do_write(fd, &nre, sizeof(nre)); if (ret < 0) return ret; /* * size of perf_event_attr struct */ sz = (u32)sizeof(evsel->attr); ret = do_write(fd, &sz, sizeof(sz)); if (ret < 0) return ret; evlist__for_each(evlist, evsel) { ret = do_write(fd, &evsel->attr, sz); if (ret < 0) return ret; /* * write number of unique id per event * there is one id per instance of an event * * copy into an nri to be independent of the * type of ids, */ nri = evsel->ids; ret = do_write(fd, &nri, sizeof(nri)); if (ret < 0) return ret; /* * write event string as passed on cmdline */ ret = do_write_string(fd, perf_evsel__name(evsel)); if (ret < 0) return ret; /* * write unique ids for this event */ ret = do_write(fd, evsel->id, evsel->ids * sizeof(u64)); if (ret < 0) return ret; } return 0; } static int write_cmdline(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { char buf[MAXPATHLEN]; char proc[32]; u32 i, n; int ret; /* * actual atual path to perf binary */ sprintf(proc, "/proc/%d/exe", getpid()); ret = readlink(proc, buf, sizeof(buf)); if (ret <= 0) return -1; /* readlink() does not add null termination */ buf[ret] = '\0'; /* account for binary path */ n = header_argc + 1; ret = do_write(fd, &n, sizeof(n)); if (ret < 0) return ret; ret = do_write_string(fd, buf); if (ret < 0) return ret; for (i = 0 ; i < header_argc; i++) { ret = do_write_string(fd, header_argv[i]); if (ret < 0) return ret; } return 0; } #define CORE_SIB_FMT \ "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list" #define THRD_SIB_FMT \ "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list" struct cpu_topo { u32 core_sib; u32 thread_sib; char **core_siblings; char **thread_siblings; }; static int build_cpu_topo(struct cpu_topo *tp, int cpu) { FILE *fp; char filename[MAXPATHLEN]; char *buf = NULL, *p; size_t len = 0; ssize_t sret; u32 i = 0; int ret = -1; sprintf(filename, CORE_SIB_FMT, cpu); fp = fopen(filename, "r"); if (!fp) goto try_threads; sret = getline(&buf, &len, fp); fclose(fp); if (sret <= 0) goto try_threads; p = strchr(buf, '\n'); if (p) *p = '\0'; for (i = 0; i < tp->core_sib; i++) { if (!strcmp(buf, tp->core_siblings[i])) break; } if (i == tp->core_sib) { tp->core_siblings[i] = buf; tp->core_sib++; buf = NULL; len = 0; } ret = 0; try_threads: sprintf(filename, THRD_SIB_FMT, cpu); fp = fopen(filename, "r"); if (!fp) goto done; if (getline(&buf, &len, fp) <= 0) goto done; p = strchr(buf, '\n'); if (p) *p = '\0'; for (i = 0; i < tp->thread_sib; i++) { if (!strcmp(buf, tp->thread_siblings[i])) break; } if (i == tp->thread_sib) { tp->thread_siblings[i] = buf; tp->thread_sib++; buf = NULL; } ret = 0; done: if(fp) fclose(fp); free(buf); return ret; } static void free_cpu_topo(struct cpu_topo *tp) { u32 i; if (!tp) return; for (i = 0 ; i < tp->core_sib; i++) zfree(&tp->core_siblings[i]); for (i = 0 ; i < tp->thread_sib; i++) zfree(&tp->thread_siblings[i]); free(tp); } static struct cpu_topo *build_cpu_topology(void) { struct cpu_topo *tp; void *addr; u32 nr, i; size_t sz; long ncpus; int ret = -1; ncpus = sysconf(_SC_NPROCESSORS_CONF); if (ncpus < 0) return NULL; nr = (u32)(ncpus & UINT_MAX); sz = nr * sizeof(char *); addr = calloc(1, sizeof(*tp) + 2 * sz); if (!addr) return NULL; tp = addr; addr += sizeof(*tp); tp->core_siblings = addr; addr += sz; tp->thread_siblings = addr; for (i = 0; i < nr; i++) { ret = build_cpu_topo(tp, i); if (ret < 0) break; } if (ret) { free_cpu_topo(tp); tp = NULL; } return tp; } static int write_cpu_topology(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { struct cpu_topo *tp; u32 i; int ret; tp = build_cpu_topology(); if (!tp) return -1; ret = do_write(fd, &tp->core_sib, sizeof(tp->core_sib)); if (ret < 0) goto done; for (i = 0; i < tp->core_sib; i++) { ret = do_write_string(fd, tp->core_siblings[i]); if (ret < 0) goto done; } ret = do_write(fd, &tp->thread_sib, sizeof(tp->thread_sib)); if (ret < 0) goto done; for (i = 0; i < tp->thread_sib; i++) { ret = do_write_string(fd, tp->thread_siblings[i]); if (ret < 0) break; } done: free_cpu_topo(tp); return ret; } static int write_total_mem(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { char *buf = NULL; FILE *fp; size_t len = 0; int ret = -1, n; uint64_t mem; fp = fopen("/proc/meminfo", "r"); if (!fp) return -1; while (getline(&buf, &len, fp) > 0) { ret = strncmp(buf, "MemTotal:", 9); if (!ret) break; } if (!ret) { n = sscanf(buf, "%*s %"PRIu64, &mem); if (n == 1) ret = do_write(fd, &mem, sizeof(mem)); } free(buf); fclose(fp); return ret; } static int write_topo_node(int fd, int node) { char str[MAXPATHLEN]; char field[32]; char *buf = NULL, *p; size_t len = 0; FILE *fp; u64 mem_total, mem_free, mem; int ret = -1; sprintf(str, "/sys/devices/system/node/node%d/meminfo", node); fp = fopen(str, "r"); if (!fp) return -1; while (getline(&buf, &len, fp) > 0) { /* skip over invalid lines */ if (!strchr(buf, ':')) continue; if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2) goto done; if (!strcmp(field, "MemTotal:")) mem_total = mem; if (!strcmp(field, "MemFree:")) mem_free = mem; } fclose(fp); fp = NULL; ret = do_write(fd, &mem_total, sizeof(u64)); if (ret) goto done; ret = do_write(fd, &mem_free, sizeof(u64)); if (ret) goto done; ret = -1; sprintf(str, "/sys/devices/system/node/node%d/cpulist", node); fp = fopen(str, "r"); if (!fp) goto done; if (getline(&buf, &len, fp) <= 0) goto done; p = strchr(buf, '\n'); if (p) *p = '\0'; ret = do_write_string(fd, buf); done: free(buf); if (fp) fclose(fp); return ret; } static int write_numa_topology(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { char *buf = NULL; size_t len = 0; FILE *fp; struct cpu_map *node_map = NULL; char *c; u32 nr, i, j; int ret = -1; fp = fopen("/sys/devices/system/node/online", "r"); if (!fp) return -1; if (getline(&buf, &len, fp) <= 0) goto done; c = strchr(buf, '\n'); if (c) *c = '\0'; node_map = cpu_map__new(buf); if (!node_map) goto done; nr = (u32)node_map->nr; ret = do_write(fd, &nr, sizeof(nr)); if (ret < 0) goto done; for (i = 0; i < nr; i++) { j = (u32)node_map->map[i]; ret = do_write(fd, &j, sizeof(j)); if (ret < 0) break; ret = write_topo_node(fd, i); if (ret < 0) break; } done: free(buf); fclose(fp); free(node_map); return ret; } /* * File format: * * struct pmu_mappings { * u32 pmu_num; * struct pmu_map { * u32 type; * char name[]; * }[pmu_num]; * }; */ static int write_pmu_mappings(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { struct perf_pmu *pmu = NULL; off_t offset = lseek(fd, 0, SEEK_CUR); __u32 pmu_num = 0; int ret; /* write real pmu_num later */ ret = do_write(fd, &pmu_num, sizeof(pmu_num)); if (ret < 0) return ret; while ((pmu = perf_pmu__scan(pmu))) { if (!pmu->name) continue; pmu_num++; ret = do_write(fd, &pmu->type, sizeof(pmu->type)); if (ret < 0) return ret; ret = do_write_string(fd, pmu->name); if (ret < 0) return ret; } if (pwrite(fd, &pmu_num, sizeof(pmu_num), offset) != sizeof(pmu_num)) { /* discard all */ lseek(fd, offset, SEEK_SET); return -1; } return 0; } /* * File format: * * struct group_descs { * u32 nr_groups; * struct group_desc { * char name[]; * u32 leader_idx; * u32 nr_members; * }[nr_groups]; * }; */ static int write_group_desc(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist) { u32 nr_groups = evlist->nr_groups; struct perf_evsel *evsel; int ret; ret = do_write(fd, &nr_groups, sizeof(nr_groups)); if (ret < 0) return ret; evlist__for_each(evlist, evsel) { if (perf_evsel__is_group_leader(evsel) && evsel->nr_members > 1) { const char *name = evsel->group_name ?: "{anon_group}"; u32 leader_idx = evsel->idx; u32 nr_members = evsel->nr_members; ret = do_write_string(fd, name); if (ret < 0) return ret; ret = do_write(fd, &leader_idx, sizeof(leader_idx)); if (ret < 0) return ret; ret = do_write(fd, &nr_members, sizeof(nr_members)); if (ret < 0) return ret; } } return 0; } /* * default get_cpuid(): nothing gets recorded * actual implementation must be in arch/$(ARCH)/util/header.c */ int __attribute__ ((weak)) get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused) { return -1; } static int write_cpuid(int fd, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { char buffer[64]; int ret; ret = get_cpuid(buffer, sizeof(buffer)); if (!ret) goto write_it; return -1; write_it: return do_write_string(fd, buffer); } static int write_branch_stack(int fd __maybe_unused, struct perf_header *h __maybe_unused, struct perf_evlist *evlist __maybe_unused) { return 0; } static void print_hostname(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# hostname : %s\n", ph->env.hostname); } static void print_osrelease(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# os release : %s\n", ph->env.os_release); } static void print_arch(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# arch : %s\n", ph->env.arch); } static void print_cpudesc(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# cpudesc : %s\n", ph->env.cpu_desc); } static void print_nrcpus(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# nrcpus online : %u\n", ph->env.nr_cpus_online); fprintf(fp, "# nrcpus avail : %u\n", ph->env.nr_cpus_avail); } static void print_version(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# perf version : %s\n", ph->env.version); } static void print_cmdline(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { int nr, i; char *str; nr = ph->env.nr_cmdline; str = ph->env.cmdline; fprintf(fp, "# cmdline : "); for (i = 0; i < nr; i++) { fprintf(fp, "%s ", str); str += strlen(str) + 1; } fputc('\n', fp); } static void print_cpu_topology(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { int nr, i; char *str; nr = ph->env.nr_sibling_cores; str = ph->env.sibling_cores; for (i = 0; i < nr; i++) { fprintf(fp, "# sibling cores : %s\n", str); str += strlen(str) + 1; } nr = ph->env.nr_sibling_threads; str = ph->env.sibling_threads; for (i = 0; i < nr; i++) { fprintf(fp, "# sibling threads : %s\n", str); str += strlen(str) + 1; } } static void free_event_desc(struct perf_evsel *events) { struct perf_evsel *evsel; if (!events) return; for (evsel = events; evsel->attr.size; evsel++) { zfree(&evsel->name); zfree(&evsel->id); } free(events); } static struct perf_evsel * read_event_desc(struct perf_header *ph, int fd) { struct perf_evsel *evsel, *events = NULL; u64 *id; void *buf = NULL; u32 nre, sz, nr, i, j; ssize_t ret; size_t msz; /* number of events */ ret = readn(fd, &nre, sizeof(nre)); if (ret != (ssize_t)sizeof(nre)) goto error; if (ph->needs_swap) nre = bswap_32(nre); ret = readn(fd, &sz, sizeof(sz)); if (ret != (ssize_t)sizeof(sz)) goto error; if (ph->needs_swap) sz = bswap_32(sz); /* buffer to hold on file attr struct */ buf = malloc(sz); if (!buf) goto error; /* the last event terminates with evsel->attr.size == 0: */ events = calloc(nre + 1, sizeof(*events)); if (!events) goto error; msz = sizeof(evsel->attr); if (sz < msz) msz = sz; for (i = 0, evsel = events; i < nre; evsel++, i++) { evsel->idx = i; /* * must read entire on-file attr struct to * sync up with layout. */ ret = readn(fd, buf, sz); if (ret != (ssize_t)sz) goto error; if (ph->needs_swap) perf_event__attr_swap(buf); memcpy(&evsel->attr, buf, msz); ret = readn(fd, &nr, sizeof(nr)); if (ret != (ssize_t)sizeof(nr)) goto error; if (ph->needs_swap) { nr = bswap_32(nr); evsel->needs_swap = true; } evsel->name = do_read_string(fd, ph); if (!nr) continue; id = calloc(nr, sizeof(*id)); if (!id) goto error; evsel->ids = nr; evsel->id = id; for (j = 0 ; j < nr; j++) { ret = readn(fd, id, sizeof(*id)); if (ret != (ssize_t)sizeof(*id)) goto error; if (ph->needs_swap) *id = bswap_64(*id); id++; } } out: free(buf); return events; error: if (events) free_event_desc(events); events = NULL; goto out; } static void print_event_desc(struct perf_header *ph, int fd, FILE *fp) { struct perf_evsel *evsel, *events = read_event_desc(ph, fd); u32 j; u64 *id; if (!events) { fprintf(fp, "# event desc: not available or unable to read\n"); return; } for (evsel = events; evsel->attr.size; evsel++) { fprintf(fp, "# event : name = %s, ", evsel->name); fprintf(fp, "type = %d, config = 0x%"PRIx64 ", config1 = 0x%"PRIx64", config2 = 0x%"PRIx64, evsel->attr.type, (u64)evsel->attr.config, (u64)evsel->attr.config1, (u64)evsel->attr.config2); fprintf(fp, ", excl_usr = %d, excl_kern = %d", evsel->attr.exclude_user, evsel->attr.exclude_kernel); fprintf(fp, ", excl_host = %d, excl_guest = %d", evsel->attr.exclude_host, evsel->attr.exclude_guest); fprintf(fp, ", precise_ip = %d", evsel->attr.precise_ip); fprintf(fp, ", attr_mmap2 = %d", evsel->attr.mmap2); fprintf(fp, ", attr_mmap = %d", evsel->attr.mmap); fprintf(fp, ", attr_mmap_data = %d", evsel->attr.mmap_data); if (evsel->ids) { fprintf(fp, ", id = {"); for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) { if (j) fputc(',', fp); fprintf(fp, " %"PRIu64, *id); } fprintf(fp, " }"); } fputc('\n', fp); } free_event_desc(events); } static void print_total_mem(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# total memory : %Lu kB\n", ph->env.total_mem); } static void print_numa_topology(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { u32 nr, c, i; char *str, *tmp; uint64_t mem_total, mem_free; /* nr nodes */ nr = ph->env.nr_numa_nodes; str = ph->env.numa_nodes; for (i = 0; i < nr; i++) { /* node number */ c = strtoul(str, &tmp, 0); if (*tmp != ':') goto error; str = tmp + 1; mem_total = strtoull(str, &tmp, 0); if (*tmp != ':') goto error; str = tmp + 1; mem_free = strtoull(str, &tmp, 0); if (*tmp != ':') goto error; fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB," " free = %"PRIu64" kB\n", c, mem_total, mem_free); str = tmp + 1; fprintf(fp, "# node%u cpu list : %s\n", c, str); str += strlen(str) + 1; } return; error: fprintf(fp, "# numa topology : not available\n"); } static void print_cpuid(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# cpuid : %s\n", ph->env.cpuid); } static void print_branch_stack(struct perf_header *ph __maybe_unused, int fd __maybe_unused, FILE *fp) { fprintf(fp, "# contains samples with branch stack\n"); } static void print_pmu_mappings(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { const char *delimiter = "# pmu mappings: "; char *str, *tmp; u32 pmu_num; u32 type; pmu_num = ph->env.nr_pmu_mappings; if (!pmu_num) { fprintf(fp, "# pmu mappings: not available\n"); return; } str = ph->env.pmu_mappings; while (pmu_num) { type = strtoul(str, &tmp, 0); if (*tmp != ':') goto error; str = tmp + 1; fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type); delimiter = ", "; str += strlen(str) + 1; pmu_num--; } fprintf(fp, "\n"); if (!pmu_num) return; error: fprintf(fp, "# pmu mappings: unable to read\n"); } static void print_group_desc(struct perf_header *ph, int fd __maybe_unused, FILE *fp) { struct perf_session *session; struct perf_evsel *evsel; u32 nr = 0; session = container_of(ph, struct perf_session, header); evlist__for_each(session->evlist, evsel) { if (perf_evsel__is_group_leader(evsel) && evsel->nr_members > 1) { fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", perf_evsel__name(evsel)); nr = evsel->nr_members - 1; } else if (nr) { fprintf(fp, ",%s", perf_evsel__name(evsel)); if (--nr == 0) fprintf(fp, "}\n"); } } } static int __event_process_build_id(struct build_id_event *bev, char *filename, struct perf_session *session) { int err = -1; struct list_head *head; struct machine *machine; u16 misc; struct dso *dso; enum dso_kernel_type dso_type; machine = perf_session__findnew_machine(session, bev->pid); if (!machine) goto out; misc = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK; switch (misc) { case PERF_RECORD_MISC_KERNEL: dso_type = DSO_TYPE_KERNEL; head = &machine->kernel_dsos; break; case PERF_RECORD_MISC_GUEST_KERNEL: dso_type = DSO_TYPE_GUEST_KERNEL; head = &machine->kernel_dsos; break; case PERF_RECORD_MISC_USER: case PERF_RECORD_MISC_GUEST_USER: dso_type = DSO_TYPE_USER; head = &machine->user_dsos; break; default: goto out; } dso = __dsos__findnew(head, filename); if (dso != NULL) { char sbuild_id[BUILD_ID_SIZE * 2 + 1]; dso__set_build_id(dso, &bev->build_id); if (filename[0] == '[') dso->kernel = dso_type; build_id__sprintf(dso->build_id, sizeof(dso->build_id), sbuild_id); pr_debug("build id event received for %s: %s\n", dso->long_name, sbuild_id); } err = 0; out: return err; } static int perf_header__read_build_ids_abi_quirk(struct perf_header *header, int input, u64 offset, u64 size) { struct perf_session *session = container_of(header, struct perf_session, header); struct { struct perf_event_header header; u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))]; char filename[0]; } old_bev; struct build_id_event bev; char filename[PATH_MAX]; u64 limit = offset + size; while (offset < limit) { ssize_t len; if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev)) return -1; if (header->needs_swap) perf_event_header__bswap(&old_bev.header); len = old_bev.header.size - sizeof(old_bev); if (readn(input, filename, len) != len) return -1; bev.header = old_bev.header; /* * As the pid is the missing value, we need to fill * it properly. The header.misc value give us nice hint. */ bev.pid = HOST_KERNEL_ID; if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER || bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL) bev.pid = DEFAULT_GUEST_KERNEL_ID; memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id)); __event_process_build_id(&bev, filename, session); offset += bev.header.size; } return 0; } static int perf_header__read_build_ids(struct perf_header *header, int input, u64 offset, u64 size) { struct perf_session *session = container_of(header, struct perf_session, header); struct build_id_event bev; char filename[PATH_MAX]; u64 limit = offset + size, orig_offset = offset; int err = -1; while (offset < limit) { ssize_t len; if (readn(input, &bev, sizeof(bev)) != sizeof(bev)) goto out; if (header->needs_swap) perf_event_header__bswap(&bev.header); len = bev.header.size - sizeof(bev); if (readn(input, filename, len) != len) goto out; /* * The a1645ce1 changeset: * * "perf: 'perf kvm' tool for monitoring guest performance from host" * * Added a field to struct build_id_event that broke the file * format. * * Since the kernel build-id is the first entry, process the * table using the old format if the well known * '[kernel.kallsyms]' string for the kernel build-id has the * first 4 characters chopped off (where the pid_t sits). */ if (memcmp(filename, "nel.kallsyms]", 13) == 0) { if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1) return -1; return perf_header__read_build_ids_abi_quirk(header, input, offset, size); } __event_process_build_id(&bev, filename, session); offset += bev.header.size; } err = 0; out: return err; } static int process_tracing_data(struct perf_file_section *section __maybe_unused, struct perf_header *ph __maybe_unused, int fd, void *data) { ssize_t ret = trace_report(fd, data, false); return ret < 0 ? -1 : 0; } static int process_build_id(struct perf_file_section *section, struct perf_header *ph, int fd, void *data __maybe_unused) { if (perf_header__read_build_ids(ph, fd, section->offset, section->size)) pr_debug("Failed to read buildids, continuing...\n"); return 0; } static int process_hostname(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ph->env.hostname = do_read_string(fd, ph); return ph->env.hostname ? 0 : -ENOMEM; } static int process_osrelease(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ph->env.os_release = do_read_string(fd, ph); return ph->env.os_release ? 0 : -ENOMEM; } static int process_version(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ph->env.version = do_read_string(fd, ph); return ph->env.version ? 0 : -ENOMEM; } static int process_arch(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ph->env.arch = do_read_string(fd, ph); return ph->env.arch ? 0 : -ENOMEM; } static int process_nrcpus(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ssize_t ret; u32 nr; ret = readn(fd, &nr, sizeof(nr)); if (ret != sizeof(nr)) return -1; if (ph->needs_swap) nr = bswap_32(nr); ph->env.nr_cpus_online = nr; ret = readn(fd, &nr, sizeof(nr)); if (ret != sizeof(nr)) return -1; if (ph->needs_swap) nr = bswap_32(nr); ph->env.nr_cpus_avail = nr; return 0; } static int process_cpudesc(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ph->env.cpu_desc = do_read_string(fd, ph); return ph->env.cpu_desc ? 0 : -ENOMEM; } static int process_cpuid(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ph->env.cpuid = do_read_string(fd, ph); return ph->env.cpuid ? 0 : -ENOMEM; } static int process_total_mem(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { uint64_t mem; ssize_t ret; ret = readn(fd, &mem, sizeof(mem)); if (ret != sizeof(mem)) return -1; if (ph->needs_swap) mem = bswap_64(mem); ph->env.total_mem = mem; return 0; } static struct perf_evsel * perf_evlist__find_by_index(struct perf_evlist *evlist, int idx) { struct perf_evsel *evsel; evlist__for_each(evlist, evsel) { if (evsel->idx == idx) return evsel; } return NULL; } static void perf_evlist__set_event_name(struct perf_evlist *evlist, struct perf_evsel *event) { struct perf_evsel *evsel; if (!event->name) return; evsel = perf_evlist__find_by_index(evlist, event->idx); if (!evsel) return; if (evsel->name) return; evsel->name = strdup(event->name); } static int process_event_desc(struct perf_file_section *section __maybe_unused, struct perf_header *header, int fd, void *data __maybe_unused) { struct perf_session *session; struct perf_evsel *evsel, *events = read_event_desc(header, fd); if (!events) return 0; session = container_of(header, struct perf_session, header); for (evsel = events; evsel->attr.size; evsel++) perf_evlist__set_event_name(session->evlist, evsel); free_event_desc(events); return 0; } static int process_cmdline(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ssize_t ret; char *str; u32 nr, i; struct strbuf sb; ret = readn(fd, &nr, sizeof(nr)); if (ret != sizeof(nr)) return -1; if (ph->needs_swap) nr = bswap_32(nr); ph->env.nr_cmdline = nr; strbuf_init(&sb, 128); for (i = 0; i < nr; i++) { str = do_read_string(fd, ph); if (!str) goto error; /* include a NULL character at the end */ strbuf_add(&sb, str, strlen(str) + 1); free(str); } ph->env.cmdline = strbuf_detach(&sb, NULL); return 0; error: strbuf_release(&sb); return -1; } static int process_cpu_topology(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ssize_t ret; u32 nr, i; char *str; struct strbuf sb; ret = readn(fd, &nr, sizeof(nr)); if (ret != sizeof(nr)) return -1; if (ph->needs_swap) nr = bswap_32(nr); ph->env.nr_sibling_cores = nr; strbuf_init(&sb, 128); for (i = 0; i < nr; i++) { str = do_read_string(fd, ph); if (!str) goto error; /* include a NULL character at the end */ strbuf_add(&sb, str, strlen(str) + 1); free(str); } ph->env.sibling_cores = strbuf_detach(&sb, NULL); ret = readn(fd, &nr, sizeof(nr)); if (ret != sizeof(nr)) return -1; if (ph->needs_swap) nr = bswap_32(nr); ph->env.nr_sibling_threads = nr; for (i = 0; i < nr; i++) { str = do_read_string(fd, ph); if (!str) goto error; /* include a NULL character at the end */ strbuf_add(&sb, str, strlen(str) + 1); free(str); } ph->env.sibling_threads = strbuf_detach(&sb, NULL); return 0; error: strbuf_release(&sb); return -1; } static int process_numa_topology(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ssize_t ret; u32 nr, node, i; char *str; uint64_t mem_total, mem_free; struct strbuf sb; /* nr nodes */ ret = readn(fd, &nr, sizeof(nr)); if (ret != sizeof(nr)) goto error; if (ph->needs_swap) nr = bswap_32(nr); ph->env.nr_numa_nodes = nr; strbuf_init(&sb, 256); for (i = 0; i < nr; i++) { /* node number */ ret = readn(fd, &node, sizeof(node)); if (ret != sizeof(node)) goto error; ret = readn(fd, &mem_total, sizeof(u64)); if (ret != sizeof(u64)) goto error; ret = readn(fd, &mem_free, sizeof(u64)); if (ret != sizeof(u64)) goto error; if (ph->needs_swap) { node = bswap_32(node); mem_total = bswap_64(mem_total); mem_free = bswap_64(mem_free); } strbuf_addf(&sb, "%u:%"PRIu64":%"PRIu64":", node, mem_total, mem_free); str = do_read_string(fd, ph); if (!str) goto error; /* include a NULL character at the end */ strbuf_add(&sb, str, strlen(str) + 1); free(str); } ph->env.numa_nodes = strbuf_detach(&sb, NULL); return 0; error: strbuf_release(&sb); return -1; } static int process_pmu_mappings(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { ssize_t ret; char *name; u32 pmu_num; u32 type; struct strbuf sb; ret = readn(fd, &pmu_num, sizeof(pmu_num)); if (ret != sizeof(pmu_num)) return -1; if (ph->needs_swap) pmu_num = bswap_32(pmu_num); if (!pmu_num) { pr_debug("pmu mappings not available\n"); return 0; } ph->env.nr_pmu_mappings = pmu_num; strbuf_init(&sb, 128); while (pmu_num) { if (readn(fd, &type, sizeof(type)) != sizeof(type)) goto error; if (ph->needs_swap) type = bswap_32(type); name = do_read_string(fd, ph); if (!name) goto error; strbuf_addf(&sb, "%u:%s", type, name); /* include a NULL character at the end */ strbuf_add(&sb, "", 1); free(name); pmu_num--; } ph->env.pmu_mappings = strbuf_detach(&sb, NULL); return 0; error: strbuf_release(&sb); return -1; } static int process_group_desc(struct perf_file_section *section __maybe_unused, struct perf_header *ph, int fd, void *data __maybe_unused) { size_t ret = -1; u32 i, nr, nr_groups; struct perf_session *session; struct perf_evsel *evsel, *leader = NULL; struct group_desc { char *name; u32 leader_idx; u32 nr_members; } *desc; if (readn(fd, &nr_groups, sizeof(nr_groups)) != sizeof(nr_groups)) return -1; if (ph->needs_swap) nr_groups = bswap_32(nr_groups); ph->env.nr_groups = nr_groups; if (!nr_groups) { pr_debug("group desc not available\n"); return 0; } desc = calloc(nr_groups, sizeof(*desc)); if (!desc) return -1; for (i = 0; i < nr_groups; i++) { desc[i].name = do_read_string(fd, ph); if (!desc[i].name) goto out_free; if (readn(fd, &desc[i].leader_idx, sizeof(u32)) != sizeof(u32)) goto out_free; if (readn(fd, &desc[i].nr_members, sizeof(u32)) != sizeof(u32)) goto out_free; if (ph->needs_swap) { desc[i].leader_idx = bswap_32(desc[i].leader_idx); desc[i].nr_members = bswap_32(desc[i].nr_members); } } /* * Rebuild group relationship based on the group_desc */ session = container_of(ph, struct perf_session, header); session->evlist->nr_groups = nr_groups; i = nr = 0; evlist__for_each(session->evlist, evsel) { if (evsel->idx == (int) desc[i].leader_idx) { evsel->leader = evsel; /* {anon_group} is a dummy name */ if (strcmp(desc[i].name, "{anon_group}")) { evsel->group_name = desc[i].name; desc[i].name = NULL; } evsel->nr_members = desc[i].nr_members; if (i >= nr_groups || nr > 0) { pr_debug("invalid group desc\n"); goto out_free; } leader = evsel; nr = evsel->nr_members - 1; i++; } else if (nr) { /* This is a group member */ evsel->leader = leader; nr--; } } if (i != nr_groups || nr != 0) { pr_debug("invalid group desc\n"); goto out_free; } ret = 0; out_free: for (i = 0; i < nr_groups; i++) zfree(&desc[i].name); free(desc); return ret; } struct feature_ops { int (*write)(int fd, struct perf_header *h, struct perf_evlist *evlist); void (*print)(struct perf_header *h, int fd, FILE *fp); int (*process)(struct perf_file_section *section, struct perf_header *h, int fd, void *data); const char *name; bool full_only; }; #define FEAT_OPA(n, func) \ [n] = { .name = #n, .write = write_##func, .print = print_##func } #define FEAT_OPP(n, func) \ [n] = { .name = #n, .write = write_##func, .print = print_##func, \ .process = process_##func } #define FEAT_OPF(n, func) \ [n] = { .name = #n, .write = write_##func, .print = print_##func, \ .process = process_##func, .full_only = true } /* feature_ops not implemented: */ #define print_tracing_data NULL #define print_build_id NULL static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = { FEAT_OPP(HEADER_TRACING_DATA, tracing_data), FEAT_OPP(HEADER_BUILD_ID, build_id), FEAT_OPP(HEADER_HOSTNAME, hostname), FEAT_OPP(HEADER_OSRELEASE, osrelease), FEAT_OPP(HEADER_VERSION, version), FEAT_OPP(HEADER_ARCH, arch), FEAT_OPP(HEADER_NRCPUS, nrcpus), FEAT_OPP(HEADER_CPUDESC, cpudesc), FEAT_OPP(HEADER_CPUID, cpuid), FEAT_OPP(HEADER_TOTAL_MEM, total_mem), FEAT_OPP(HEADER_EVENT_DESC, event_desc), FEAT_OPP(HEADER_CMDLINE, cmdline), FEAT_OPF(HEADER_CPU_TOPOLOGY, cpu_topology), FEAT_OPF(HEADER_NUMA_TOPOLOGY, numa_topology), FEAT_OPA(HEADER_BRANCH_STACK, branch_stack), FEAT_OPP(HEADER_PMU_MAPPINGS, pmu_mappings), FEAT_OPP(HEADER_GROUP_DESC, group_desc), }; struct header_print_data { FILE *fp; bool full; /* extended list of headers */ }; static int perf_file_section__fprintf_info(struct perf_file_section *section, struct perf_header *ph, int feat, int fd, void *data) { struct header_print_data *hd = data; if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { pr_debug("Failed to lseek to %" PRIu64 " offset for feature " "%d, continuing...\n", section->offset, feat); return 0; } if (feat >= HEADER_LAST_FEATURE) { pr_warning("unknown feature %d\n", feat); return 0; } if (!feat_ops[feat].print) return 0; if (!feat_ops[feat].full_only || hd->full) feat_ops[feat].print(ph, fd, hd->fp); else fprintf(hd->fp, "# %s info available, use -I to display\n", feat_ops[feat].name); return 0; } int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full) { struct header_print_data hd; struct perf_header *header = &session->header; int fd = perf_data_file__fd(session->file); hd.fp = fp; hd.full = full; perf_header__process_sections(header, fd, &hd, perf_file_section__fprintf_info); return 0; } static int do_write_feat(int fd, struct perf_header *h, int type, struct perf_file_section **p, struct perf_evlist *evlist) { int err; int ret = 0; if (perf_header__has_feat(h, type)) { if (!feat_ops[type].write) return -1; (*p)->offset = lseek(fd, 0, SEEK_CUR); err = feat_ops[type].write(fd, h, evlist); if (err < 0) { pr_debug("failed to write feature %d\n", type); /* undo anything written */ lseek(fd, (*p)->offset, SEEK_SET); return -1; } (*p)->size = lseek(fd, 0, SEEK_CUR) - (*p)->offset; (*p)++; } return ret; } static int perf_header__adds_write(struct perf_header *header, struct perf_evlist *evlist, int fd) { int nr_sections; struct perf_file_section *feat_sec, *p; int sec_size; u64 sec_start; int feat; int err; nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); if (!nr_sections) return 0; feat_sec = p = calloc(nr_sections, sizeof(*feat_sec)); if (feat_sec == NULL) return -ENOMEM; sec_size = sizeof(*feat_sec) * nr_sections; sec_start = header->feat_offset; lseek(fd, sec_start + sec_size, SEEK_SET); for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) { if (do_write_feat(fd, header, feat, &p, evlist)) perf_header__clear_feat(header, feat); } lseek(fd, sec_start, SEEK_SET); /* * may write more than needed due to dropped feature, but * this is okay, reader will skip the mising entries */ err = do_write(fd, feat_sec, sec_size); if (err < 0) pr_debug("failed to write feature section\n"); free(feat_sec); return err; } int perf_header__write_pipe(int fd) { struct perf_pipe_file_header f_header; int err; f_header = (struct perf_pipe_file_header){ .magic = PERF_MAGIC, .size = sizeof(f_header), }; err = do_write(fd, &f_header, sizeof(f_header)); if (err < 0) { pr_debug("failed to write perf pipe header\n"); return err; } return 0; } int perf_session__write_header(struct perf_session *session, struct perf_evlist *evlist, int fd, bool at_exit) { struct perf_file_header f_header; struct perf_file_attr f_attr; struct perf_header *header = &session->header; struct perf_evsel *evsel; u64 attr_offset; int err; lseek(fd, sizeof(f_header), SEEK_SET); evlist__for_each(session->evlist, evsel) { evsel->id_offset = lseek(fd, 0, SEEK_CUR); err = do_write(fd, evsel->id, evsel->ids * sizeof(u64)); if (err < 0) { pr_debug("failed to write perf header\n"); return err; } } attr_offset = lseek(fd, 0, SEEK_CUR); evlist__for_each(evlist, evsel) { f_attr = (struct perf_file_attr){ .attr = evsel->attr, .ids = { .offset = evsel->id_offset, .size = evsel->ids * sizeof(u64), } }; err = do_write(fd, &f_attr, sizeof(f_attr)); if (err < 0) { pr_debug("failed to write perf header attribute\n"); return err; } } if (!header->data_offset) header->data_offset = lseek(fd, 0, SEEK_CUR); header->feat_offset = header->data_offset + header->data_size; if (at_exit) { err = perf_header__adds_write(header, evlist, fd); if (err < 0) return err; } f_header = (struct perf_file_header){ .magic = PERF_MAGIC, .size = sizeof(f_header), .attr_size = sizeof(f_attr), .attrs = { .offset = attr_offset, .size = evlist->nr_entries * sizeof(f_attr), }, .data = { .offset = header->data_offset, .size = header->data_size, }, /* event_types is ignored, store zeros */ }; memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features)); lseek(fd, 0, SEEK_SET); err = do_write(fd, &f_header, sizeof(f_header)); if (err < 0) { pr_debug("failed to write perf header\n"); return err; } lseek(fd, header->data_offset + header->data_size, SEEK_SET); return 0; } static int perf_header__getbuffer64(struct perf_header *header, int fd, void *buf, size_t size) { if (readn(fd, buf, size) <= 0) return -1; if (header->needs_swap) mem_bswap_64(buf, size); return 0; } int perf_header__process_sections(struct perf_header *header, int fd, void *data, int (*process)(struct perf_file_section *section, struct perf_header *ph, int feat, int fd, void *data)) { struct perf_file_section *feat_sec, *sec; int nr_sections; int sec_size; int feat; int err; nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS); if (!nr_sections) return 0; feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec)); if (!feat_sec) return -1; sec_size = sizeof(*feat_sec) * nr_sections; lseek(fd, header->feat_offset, SEEK_SET); err = perf_header__getbuffer64(header, fd, feat_sec, sec_size); if (err < 0) goto out_free; for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) { err = process(sec++, header, feat, fd, data); if (err < 0) goto out_free; } err = 0; out_free: free(feat_sec); return err; } static const int attr_file_abi_sizes[] = { [0] = PERF_ATTR_SIZE_VER0, [1] = PERF_ATTR_SIZE_VER1, [2] = PERF_ATTR_SIZE_VER2, [3] = PERF_ATTR_SIZE_VER3, 0, }; /* * In the legacy file format, the magic number is not used to encode endianness. * hdr_sz was used to encode endianness. But given that hdr_sz can vary based * on ABI revisions, we need to try all combinations for all endianness to * detect the endianness. */ static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph) { uint64_t ref_size, attr_size; int i; for (i = 0 ; attr_file_abi_sizes[i]; i++) { ref_size = attr_file_abi_sizes[i] + sizeof(struct perf_file_section); if (hdr_sz != ref_size) { attr_size = bswap_64(hdr_sz); if (attr_size != ref_size) continue; ph->needs_swap = true; } pr_debug("ABI%d perf.data file detected, need_swap=%d\n", i, ph->needs_swap); return 0; } /* could not determine endianness */ return -1; } #define PERF_PIPE_HDR_VER0 16 static const size_t attr_pipe_abi_sizes[] = { [0] = PERF_PIPE_HDR_VER0, 0, }; /* * In the legacy pipe format, there is an implicit assumption that endiannesss * between host recording the samples, and host parsing the samples is the * same. This is not always the case given that the pipe output may always be * redirected into a file and analyzed on a different machine with possibly a * different endianness and perf_event ABI revsions in the perf tool itself. */ static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph) { u64 attr_size; int i; for (i = 0 ; attr_pipe_abi_sizes[i]; i++) { if (hdr_sz != attr_pipe_abi_sizes[i]) { attr_size = bswap_64(hdr_sz); if (attr_size != hdr_sz) continue; ph->needs_swap = true; } pr_debug("Pipe ABI%d perf.data file detected\n", i); return 0; } return -1; } bool is_perf_magic(u64 magic) { if (!memcmp(&magic, __perf_magic1, sizeof(magic)) || magic == __perf_magic2 || magic == __perf_magic2_sw) return true; return false; } static int check_magic_endian(u64 magic, uint64_t hdr_sz, bool is_pipe, struct perf_header *ph) { int ret; /* check for legacy format */ ret = memcmp(&magic, __perf_magic1, sizeof(magic)); if (ret == 0) { ph->version = PERF_HEADER_VERSION_1; pr_debug("legacy perf.data format\n"); if (is_pipe) return try_all_pipe_abis(hdr_sz, ph); return try_all_file_abis(hdr_sz, ph); } /* * the new magic number serves two purposes: * - unique number to identify actual perf.data files * - encode endianness of file */ /* check magic number with one endianness */ if (magic == __perf_magic2) return 0; /* check magic number with opposite endianness */ if (magic != __perf_magic2_sw) return -1; ph->needs_swap = true; ph->version = PERF_HEADER_VERSION_2; return 0; } int perf_file_header__read(struct perf_file_header *header, struct perf_header *ph, int fd) { ssize_t ret; lseek(fd, 0, SEEK_SET); ret = readn(fd, header, sizeof(*header)); if (ret <= 0) return -1; if (check_magic_endian(header->magic, header->attr_size, false, ph) < 0) { pr_debug("magic/endian check failed\n"); return -1; } if (ph->needs_swap) { mem_bswap_64(header, offsetof(struct perf_file_header, adds_features)); } if (header->size != sizeof(*header)) { /* Support the previous format */ if (header->size == offsetof(typeof(*header), adds_features)) bitmap_zero(header->adds_features, HEADER_FEAT_BITS); else return -1; } else if (ph->needs_swap) { /* * feature bitmap is declared as an array of unsigned longs -- * not good since its size can differ between the host that * generated the data file and the host analyzing the file. * * We need to handle endianness, but we don't know the size of * the unsigned long where the file was generated. Take a best * guess at determining it: try 64-bit swap first (ie., file * created on a 64-bit host), and check if the hostname feature * bit is set (this feature bit is forced on as of fbe96f2). * If the bit is not, undo the 64-bit swap and try a 32-bit * swap. If the hostname bit is still not set (e.g., older data * file), punt and fallback to the original behavior -- * clearing all feature bits and setting buildid. */ mem_bswap_64(&header->adds_features, BITS_TO_U64(HEADER_FEAT_BITS)); if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { /* unswap as u64 */ mem_bswap_64(&header->adds_features, BITS_TO_U64(HEADER_FEAT_BITS)); /* unswap as u32 */ mem_bswap_32(&header->adds_features, BITS_TO_U32(HEADER_FEAT_BITS)); } if (!test_bit(HEADER_HOSTNAME, header->adds_features)) { bitmap_zero(header->adds_features, HEADER_FEAT_BITS); set_bit(HEADER_BUILD_ID, header->adds_features); } } memcpy(&ph->adds_features, &header->adds_features, sizeof(ph->adds_features)); ph->data_offset = header->data.offset; ph->data_size = header->data.size; ph->feat_offset = header->data.offset + header->data.size; return 0; } static int perf_file_section__process(struct perf_file_section *section, struct perf_header *ph, int feat, int fd, void *data) { if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) { pr_debug("Failed to lseek to %" PRIu64 " offset for feature " "%d, continuing...\n", section->offset, feat); return 0; } if (feat >= HEADER_LAST_FEATURE) { pr_debug("unknown feature %d, continuing...\n", feat); return 0; } if (!feat_ops[feat].process) return 0; return feat_ops[feat].process(section, ph, fd, data); } static int perf_file_header__read_pipe(struct perf_pipe_file_header *header, struct perf_header *ph, int fd, bool repipe) { ssize_t ret; ret = readn(fd, header, sizeof(*header)); if (ret <= 0) return -1; if (check_magic_endian(header->magic, header->size, true, ph) < 0) { pr_debug("endian/magic failed\n"); return -1; } if (ph->needs_swap) header->size = bswap_64(header->size); if (repipe && do_write(STDOUT_FILENO, header, sizeof(*header)) < 0) return -1; return 0; } static int perf_header__read_pipe(struct perf_session *session) { struct perf_header *header = &session->header; struct perf_pipe_file_header f_header; if (perf_file_header__read_pipe(&f_header, header, perf_data_file__fd(session->file), session->repipe) < 0) { pr_debug("incompatible file format\n"); return -EINVAL; } return 0; } static int read_attr(int fd, struct perf_header *ph, struct perf_file_attr *f_attr) { struct perf_event_attr *attr = &f_attr->attr; size_t sz, left; size_t our_sz = sizeof(f_attr->attr); ssize_t ret; memset(f_attr, 0, sizeof(*f_attr)); /* read minimal guaranteed structure */ ret = readn(fd, attr, PERF_ATTR_SIZE_VER0); if (ret <= 0) { pr_debug("cannot read %d bytes of header attr\n", PERF_ATTR_SIZE_VER0); return -1; } /* on file perf_event_attr size */ sz = attr->size; if (ph->needs_swap) sz = bswap_32(sz); if (sz == 0) { /* assume ABI0 */ sz = PERF_ATTR_SIZE_VER0; } else if (sz > our_sz) { pr_debug("file uses a more recent and unsupported ABI" " (%zu bytes extra)\n", sz - our_sz); return -1; } /* what we have not yet read and that we know about */ left = sz - PERF_ATTR_SIZE_VER0; if (left) { void *ptr = attr; ptr += PERF_ATTR_SIZE_VER0; ret = readn(fd, ptr, left); } /* read perf_file_section, ids are read in caller */ ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids)); return ret <= 0 ? -1 : 0; } static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel, struct pevent *pevent) { struct event_format *event; char bf[128]; /* already prepared */ if (evsel->tp_format) return 0; if (pevent == NULL) { pr_debug("broken or missing trace data\n"); return -1; } event = pevent_find_event(pevent, evsel->attr.config); if (event == NULL) return -1; if (!evsel->name) { snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name); evsel->name = strdup(bf); if (evsel->name == NULL) return -1; } evsel->tp_format = event; return 0; } static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist, struct pevent *pevent) { struct perf_evsel *pos; evlist__for_each(evlist, pos) { if (pos->attr.type == PERF_TYPE_TRACEPOINT && perf_evsel__prepare_tracepoint_event(pos, pevent)) return -1; } return 0; } int perf_session__read_header(struct perf_session *session) { struct perf_data_file *file = session->file; struct perf_header *header = &session->header; struct perf_file_header f_header; struct perf_file_attr f_attr; u64 f_id; int nr_attrs, nr_ids, i, j; int fd = perf_data_file__fd(file); session->evlist = perf_evlist__new(); if (session->evlist == NULL) return -ENOMEM; if (perf_data_file__is_pipe(file)) return perf_header__read_pipe(session); if (perf_file_header__read(&f_header, header, fd) < 0) return -EINVAL; /* * Sanity check that perf.data was written cleanly; data size is * initialized to 0 and updated only if the on_exit function is run. * If data size is still 0 then the file contains only partial * information. Just warn user and process it as much as it can. */ if (f_header.data.size == 0) { pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n" "Was the 'perf record' command properly terminated?\n", file->path); } nr_attrs = f_header.attrs.size / f_header.attr_size; lseek(fd, f_header.attrs.offset, SEEK_SET); for (i = 0; i < nr_attrs; i++) { struct perf_evsel *evsel; off_t tmp; if (read_attr(fd, header, &f_attr) < 0) goto out_errno; if (header->needs_swap) perf_event__attr_swap(&f_attr.attr); tmp = lseek(fd, 0, SEEK_CUR); evsel = perf_evsel__new(&f_attr.attr); if (evsel == NULL) goto out_delete_evlist; evsel->needs_swap = header->needs_swap; /* * Do it before so that if perf_evsel__alloc_id fails, this * entry gets purged too at perf_evlist__delete(). */ perf_evlist__add(session->evlist, evsel); nr_ids = f_attr.ids.size / sizeof(u64); /* * We don't have the cpu and thread maps on the header, so * for allocating the perf_sample_id table we fake 1 cpu and * hattr->ids threads. */ if (perf_evsel__alloc_id(evsel, 1, nr_ids)) goto out_delete_evlist; lseek(fd, f_attr.ids.offset, SEEK_SET); for (j = 0; j < nr_ids; j++) { if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id))) goto out_errno; perf_evlist__id_add(session->evlist, evsel, 0, j, f_id); } lseek(fd, tmp, SEEK_SET); } symbol_conf.nr_events = nr_attrs; perf_header__process_sections(header, fd, &session->tevent, perf_file_section__process); if (perf_evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent)) goto out_delete_evlist; return 0; out_errno: return -errno; out_delete_evlist: perf_evlist__delete(session->evlist); session->evlist = NULL; return -ENOMEM; } int perf_event__synthesize_attr(struct perf_tool *tool, struct perf_event_attr *attr, u32 ids, u64 *id, perf_event__handler_t process) { union perf_event *ev; size_t size; int err; size = sizeof(struct perf_event_attr); size = PERF_ALIGN(size, sizeof(u64)); size += sizeof(struct perf_event_header); size += ids * sizeof(u64); ev = malloc(size); if (ev == NULL) return -ENOMEM; ev->attr.attr = *attr; memcpy(ev->attr.id, id, ids * sizeof(u64)); ev->attr.header.type = PERF_RECORD_HEADER_ATTR; ev->attr.header.size = (u16)size; if (ev->attr.header.size == size) err = process(tool, ev, NULL, NULL); else err = -E2BIG; free(ev); return err; } int perf_event__synthesize_attrs(struct perf_tool *tool, struct perf_session *session, perf_event__handler_t process) { struct perf_evsel *evsel; int err = 0; evlist__for_each(session->evlist, evsel) { err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids, evsel->id, process); if (err) { pr_debug("failed to create perf header attribute\n"); return err; } } return err; } int perf_event__process_attr(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_evlist **pevlist) { u32 i, ids, n_ids; struct perf_evsel *evsel; struct perf_evlist *evlist = *pevlist; if (evlist == NULL) { *pevlist = evlist = perf_evlist__new(); if (evlist == NULL) return -ENOMEM; } evsel = perf_evsel__new(&event->attr.attr); if (evsel == NULL) return -ENOMEM; perf_evlist__add(evlist, evsel); ids = event->header.size; ids -= (void *)&event->attr.id - (void *)event; n_ids = ids / sizeof(u64); /* * We don't have the cpu and thread maps on the header, so * for allocating the perf_sample_id table we fake 1 cpu and * hattr->ids threads. */ if (perf_evsel__alloc_id(evsel, 1, n_ids)) return -ENOMEM; for (i = 0; i < n_ids; i++) { perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]); } symbol_conf.nr_events = evlist->nr_entries; return 0; } int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd, struct perf_evlist *evlist, perf_event__handler_t process) { union perf_event ev; struct tracing_data *tdata; ssize_t size = 0, aligned_size = 0, padding; int err __maybe_unused = 0; /* * We are going to store the size of the data followed * by the data contents. Since the fd descriptor is a pipe, * we cannot seek back to store the size of the data once * we know it. Instead we: * * - write the tracing data to the temp file * - get/write the data size to pipe * - write the tracing data from the temp file * to the pipe */ tdata = tracing_data_get(&evlist->entries, fd, true); if (!tdata) return -1; memset(&ev, 0, sizeof(ev)); ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA; size = tdata->size; aligned_size = PERF_ALIGN(size, sizeof(u64)); padding = aligned_size - size; ev.tracing_data.header.size = sizeof(ev.tracing_data); ev.tracing_data.size = aligned_size; process(tool, &ev, NULL, NULL); /* * The put function will copy all the tracing data * stored in temp file to the pipe. */ tracing_data_put(tdata); write_padded(fd, NULL, 0, padding); return aligned_size; } int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_session *session) { ssize_t size_read, padding, size = event->tracing_data.size; int fd = perf_data_file__fd(session->file); off_t offset = lseek(fd, 0, SEEK_CUR); char buf[BUFSIZ]; /* setup for reading amidst mmap */ lseek(fd, offset + sizeof(struct tracing_data_event), SEEK_SET); size_read = trace_report(fd, &session->tevent, session->repipe); padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read; if (readn(fd, buf, padding) < 0) { pr_err("%s: reading input file", __func__); return -1; } if (session->repipe) { int retw = write(STDOUT_FILENO, buf, padding); if (retw <= 0 || retw != padding) { pr_err("%s: repiping tracing data padding", __func__); return -1; } } if (size_read + padding != size) { pr_err("%s: tracing data size mismatch", __func__); return -1; } perf_evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent); return size_read + padding; } int perf_event__synthesize_build_id(struct perf_tool *tool, struct dso *pos, u16 misc, perf_event__handler_t process, struct machine *machine) { union perf_event ev; size_t len; int err = 0; if (!pos->hit) return err; memset(&ev, 0, sizeof(ev)); len = pos->long_name_len + 1; len = PERF_ALIGN(len, NAME_ALIGN); memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id)); ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID; ev.build_id.header.misc = misc; ev.build_id.pid = machine->pid; ev.build_id.header.size = sizeof(ev.build_id) + len; memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len); err = process(tool, &ev, NULL, machine); return err; } int perf_event__process_build_id(struct perf_tool *tool __maybe_unused, union perf_event *event, struct perf_session *session) { __event_process_build_id(&event->build_id, event->build_id.filename, session); return 0; } void disable_buildid_cache(void) { no_buildid_cache = true; }