/* * builtin-trace.c * * Builtin 'trace' command: * * Display a continuously updated trace of any workload, CPU, specific PID, * system wide, etc. Default format is loosely strace like, but any other * event may be specified using --event. * * Copyright (C) 2012, 2013, 2014, 2015 Red Hat Inc, Arnaldo Carvalho de Melo * * Initially based on the 'trace' prototype by Thomas Gleixner: * * http://lwn.net/Articles/415728/ ("Announcing a new utility: 'trace'") * * Released under the GPL v2. (and only v2, not any later version) */ #include #include #include #include "builtin.h" #include "util/cgroup.h" #include "util/color.h" #include "util/debug.h" #include "util/env.h" #include "util/event.h" #include "util/evlist.h" #include #include "util/machine.h" #include "util/path.h" #include "util/session.h" #include "util/thread.h" #include #include "util/strlist.h" #include "util/intlist.h" #include "util/thread_map.h" #include "util/stat.h" #include "trace/beauty/beauty.h" #include "trace-event.h" #include "util/parse-events.h" #include "util/bpf-loader.h" #include "callchain.h" #include "print_binary.h" #include "string2.h" #include "syscalltbl.h" #include "rb_resort.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sane_ctype.h" #ifndef O_CLOEXEC # define O_CLOEXEC 02000000 #endif #ifndef F_LINUX_SPECIFIC_BASE # define F_LINUX_SPECIFIC_BASE 1024 #endif struct trace { struct perf_tool tool; struct syscalltbl *sctbl; struct { int max; struct syscall *table; struct { struct perf_evsel *sys_enter, *sys_exit, *augmented; } events; } syscalls; struct record_opts opts; struct perf_evlist *evlist; struct machine *host; struct thread *current; struct cgroup *cgroup; u64 base_time; FILE *output; unsigned long nr_events; unsigned long nr_events_printed; unsigned long max_events; struct strlist *ev_qualifier; struct { size_t nr; int *entries; } ev_qualifier_ids; struct { size_t nr; pid_t *entries; struct bpf_map *map; } filter_pids; double duration_filter; double runtime_ms; struct { u64 vfs_getname, proc_getname; } stats; unsigned int max_stack; unsigned int min_stack; bool raw_augmented_syscalls; bool not_ev_qualifier; bool live; bool full_time; bool sched; bool multiple_threads; bool summary; bool summary_only; bool failure_only; bool show_comm; bool print_sample; bool show_tool_stats; bool trace_syscalls; bool kernel_syscallchains; bool force; bool vfs_getname; int trace_pgfaults; }; struct tp_field { int offset; union { u64 (*integer)(struct tp_field *field, struct perf_sample *sample); void *(*pointer)(struct tp_field *field, struct perf_sample *sample); }; }; #define TP_UINT_FIELD(bits) \ static u64 tp_field__u##bits(struct tp_field *field, struct perf_sample *sample) \ { \ u##bits value; \ memcpy(&value, sample->raw_data + field->offset, sizeof(value)); \ return value; \ } TP_UINT_FIELD(8); TP_UINT_FIELD(16); TP_UINT_FIELD(32); TP_UINT_FIELD(64); #define TP_UINT_FIELD__SWAPPED(bits) \ static u64 tp_field__swapped_u##bits(struct tp_field *field, struct perf_sample *sample) \ { \ u##bits value; \ memcpy(&value, sample->raw_data + field->offset, sizeof(value)); \ return bswap_##bits(value);\ } TP_UINT_FIELD__SWAPPED(16); TP_UINT_FIELD__SWAPPED(32); TP_UINT_FIELD__SWAPPED(64); static int __tp_field__init_uint(struct tp_field *field, int size, int offset, bool needs_swap) { field->offset = offset; switch (size) { case 1: field->integer = tp_field__u8; break; case 2: field->integer = needs_swap ? tp_field__swapped_u16 : tp_field__u16; break; case 4: field->integer = needs_swap ? tp_field__swapped_u32 : tp_field__u32; break; case 8: field->integer = needs_swap ? tp_field__swapped_u64 : tp_field__u64; break; default: return -1; } return 0; } static int tp_field__init_uint(struct tp_field *field, struct tep_format_field *format_field, bool needs_swap) { return __tp_field__init_uint(field, format_field->size, format_field->offset, needs_swap); } static void *tp_field__ptr(struct tp_field *field, struct perf_sample *sample) { return sample->raw_data + field->offset; } static int __tp_field__init_ptr(struct tp_field *field, int offset) { field->offset = offset; field->pointer = tp_field__ptr; return 0; } static int tp_field__init_ptr(struct tp_field *field, struct tep_format_field *format_field) { return __tp_field__init_ptr(field, format_field->offset); } struct syscall_tp { struct tp_field id; union { struct tp_field args, ret; }; }; static int perf_evsel__init_tp_uint_field(struct perf_evsel *evsel, struct tp_field *field, const char *name) { struct tep_format_field *format_field = perf_evsel__field(evsel, name); if (format_field == NULL) return -1; return tp_field__init_uint(field, format_field, evsel->needs_swap); } #define perf_evsel__init_sc_tp_uint_field(evsel, name) \ ({ struct syscall_tp *sc = evsel->priv;\ perf_evsel__init_tp_uint_field(evsel, &sc->name, #name); }) static int perf_evsel__init_tp_ptr_field(struct perf_evsel *evsel, struct tp_field *field, const char *name) { struct tep_format_field *format_field = perf_evsel__field(evsel, name); if (format_field == NULL) return -1; return tp_field__init_ptr(field, format_field); } #define perf_evsel__init_sc_tp_ptr_field(evsel, name) \ ({ struct syscall_tp *sc = evsel->priv;\ perf_evsel__init_tp_ptr_field(evsel, &sc->name, #name); }) static void perf_evsel__delete_priv(struct perf_evsel *evsel) { zfree(&evsel->priv); perf_evsel__delete(evsel); } static int perf_evsel__init_syscall_tp(struct perf_evsel *evsel) { struct syscall_tp *sc = evsel->priv = malloc(sizeof(struct syscall_tp)); if (evsel->priv != NULL) { if (perf_evsel__init_tp_uint_field(evsel, &sc->id, "__syscall_nr") && perf_evsel__init_tp_uint_field(evsel, &sc->id, "nr")) goto out_delete; return 0; } return -ENOMEM; out_delete: zfree(&evsel->priv); return -ENOENT; } static int perf_evsel__init_augmented_syscall_tp(struct perf_evsel *evsel) { struct syscall_tp *sc = evsel->priv = malloc(sizeof(struct syscall_tp)); if (evsel->priv != NULL) { /* field, sizeof_field, offsetof_field */ if (__tp_field__init_uint(&sc->id, sizeof(long), sizeof(long long), evsel->needs_swap)) goto out_delete; return 0; } return -ENOMEM; out_delete: zfree(&evsel->priv); return -EINVAL; } static int perf_evsel__init_augmented_syscall_tp_args(struct perf_evsel *evsel) { struct syscall_tp *sc = evsel->priv; return __tp_field__init_ptr(&sc->args, sc->id.offset + sizeof(u64)); } static int perf_evsel__init_augmented_syscall_tp_ret(struct perf_evsel *evsel) { struct syscall_tp *sc = evsel->priv; return __tp_field__init_uint(&sc->ret, sizeof(u64), sc->id.offset + sizeof(u64), evsel->needs_swap); } static int perf_evsel__init_raw_syscall_tp(struct perf_evsel *evsel, void *handler) { evsel->priv = malloc(sizeof(struct syscall_tp)); if (evsel->priv != NULL) { if (perf_evsel__init_sc_tp_uint_field(evsel, id)) goto out_delete; evsel->handler = handler; return 0; } return -ENOMEM; out_delete: zfree(&evsel->priv); return -ENOENT; } static struct perf_evsel *perf_evsel__raw_syscall_newtp(const char *direction, void *handler) { struct perf_evsel *evsel = perf_evsel__newtp("raw_syscalls", direction); /* older kernel (e.g., RHEL6) use syscalls:{enter,exit} */ if (IS_ERR(evsel)) evsel = perf_evsel__newtp("syscalls", direction); if (IS_ERR(evsel)) return NULL; if (perf_evsel__init_raw_syscall_tp(evsel, handler)) goto out_delete; return evsel; out_delete: perf_evsel__delete_priv(evsel); return NULL; } #define perf_evsel__sc_tp_uint(evsel, name, sample) \ ({ struct syscall_tp *fields = evsel->priv; \ fields->name.integer(&fields->name, sample); }) #define perf_evsel__sc_tp_ptr(evsel, name, sample) \ ({ struct syscall_tp *fields = evsel->priv; \ fields->name.pointer(&fields->name, sample); }) size_t strarray__scnprintf(struct strarray *sa, char *bf, size_t size, const char *intfmt, int val) { int idx = val - sa->offset; if (idx < 0 || idx >= sa->nr_entries || sa->entries[idx] == NULL) return scnprintf(bf, size, intfmt, val); return scnprintf(bf, size, "%s", sa->entries[idx]); } static size_t __syscall_arg__scnprintf_strarray(char *bf, size_t size, const char *intfmt, struct syscall_arg *arg) { return strarray__scnprintf(arg->parm, bf, size, intfmt, arg->val); } static size_t syscall_arg__scnprintf_strarray(char *bf, size_t size, struct syscall_arg *arg) { return __syscall_arg__scnprintf_strarray(bf, size, "%d", arg); } #define SCA_STRARRAY syscall_arg__scnprintf_strarray struct strarrays { int nr_entries; struct strarray **entries; }; #define DEFINE_STRARRAYS(array) struct strarrays strarrays__##array = { \ .nr_entries = ARRAY_SIZE(array), \ .entries = array, \ } size_t syscall_arg__scnprintf_strarrays(char *bf, size_t size, struct syscall_arg *arg) { struct strarrays *sas = arg->parm; int i; for (i = 0; i < sas->nr_entries; ++i) { struct strarray *sa = sas->entries[i]; int idx = arg->val - sa->offset; if (idx >= 0 && idx < sa->nr_entries) { if (sa->entries[idx] == NULL) break; return scnprintf(bf, size, "%s", sa->entries[idx]); } } return scnprintf(bf, size, "%d", arg->val); } #ifndef AT_FDCWD #define AT_FDCWD -100 #endif static size_t syscall_arg__scnprintf_fd_at(char *bf, size_t size, struct syscall_arg *arg) { int fd = arg->val; if (fd == AT_FDCWD) return scnprintf(bf, size, "CWD"); return syscall_arg__scnprintf_fd(bf, size, arg); } #define SCA_FDAT syscall_arg__scnprintf_fd_at static size_t syscall_arg__scnprintf_close_fd(char *bf, size_t size, struct syscall_arg *arg); #define SCA_CLOSE_FD syscall_arg__scnprintf_close_fd size_t syscall_arg__scnprintf_hex(char *bf, size_t size, struct syscall_arg *arg) { return scnprintf(bf, size, "%#lx", arg->val); } size_t syscall_arg__scnprintf_int(char *bf, size_t size, struct syscall_arg *arg) { return scnprintf(bf, size, "%d", arg->val); } size_t syscall_arg__scnprintf_long(char *bf, size_t size, struct syscall_arg *arg) { return scnprintf(bf, size, "%ld", arg->val); } static const char *bpf_cmd[] = { "MAP_CREATE", "MAP_LOOKUP_ELEM", "MAP_UPDATE_ELEM", "MAP_DELETE_ELEM", "MAP_GET_NEXT_KEY", "PROG_LOAD", }; static DEFINE_STRARRAY(bpf_cmd); static const char *epoll_ctl_ops[] = { "ADD", "DEL", "MOD", }; static DEFINE_STRARRAY_OFFSET(epoll_ctl_ops, 1); static const char *itimers[] = { "REAL", "VIRTUAL", "PROF", }; static DEFINE_STRARRAY(itimers); static const char *keyctl_options[] = { "GET_KEYRING_ID", "JOIN_SESSION_KEYRING", "UPDATE", "REVOKE", "CHOWN", "SETPERM", "DESCRIBE", "CLEAR", "LINK", "UNLINK", "SEARCH", "READ", "INSTANTIATE", "NEGATE", "SET_REQKEY_KEYRING", "SET_TIMEOUT", "ASSUME_AUTHORITY", "GET_SECURITY", "SESSION_TO_PARENT", "REJECT", "INSTANTIATE_IOV", "INVALIDATE", "GET_PERSISTENT", }; static DEFINE_STRARRAY(keyctl_options); static const char *whences[] = { "SET", "CUR", "END", #ifdef SEEK_DATA "DATA", #endif #ifdef SEEK_HOLE "HOLE", #endif }; static DEFINE_STRARRAY(whences); static const char *fcntl_cmds[] = { "DUPFD", "GETFD", "SETFD", "GETFL", "SETFL", "GETLK", "SETLK", "SETLKW", "SETOWN", "GETOWN", "SETSIG", "GETSIG", "GETLK64", "SETLK64", "SETLKW64", "SETOWN_EX", "GETOWN_EX", "GETOWNER_UIDS", }; static DEFINE_STRARRAY(fcntl_cmds); static const char *fcntl_linux_specific_cmds[] = { "SETLEASE", "GETLEASE", "NOTIFY", [5] = "CANCELLK", "DUPFD_CLOEXEC", "SETPIPE_SZ", "GETPIPE_SZ", "ADD_SEALS", "GET_SEALS", "GET_RW_HINT", "SET_RW_HINT", "GET_FILE_RW_HINT", "SET_FILE_RW_HINT", }; static DEFINE_STRARRAY_OFFSET(fcntl_linux_specific_cmds, F_LINUX_SPECIFIC_BASE); static struct strarray *fcntl_cmds_arrays[] = { &strarray__fcntl_cmds, &strarray__fcntl_linux_specific_cmds, }; static DEFINE_STRARRAYS(fcntl_cmds_arrays); static const char *rlimit_resources[] = { "CPU", "FSIZE", "DATA", "STACK", "CORE", "RSS", "NPROC", "NOFILE", "MEMLOCK", "AS", "LOCKS", "SIGPENDING", "MSGQUEUE", "NICE", "RTPRIO", "RTTIME", }; static DEFINE_STRARRAY(rlimit_resources); static const char *sighow[] = { "BLOCK", "UNBLOCK", "SETMASK", }; static DEFINE_STRARRAY(sighow); static const char *clockid[] = { "REALTIME", "MONOTONIC", "PROCESS_CPUTIME_ID", "THREAD_CPUTIME_ID", "MONOTONIC_RAW", "REALTIME_COARSE", "MONOTONIC_COARSE", "BOOTTIME", "REALTIME_ALARM", "BOOTTIME_ALARM", "SGI_CYCLE", "TAI" }; static DEFINE_STRARRAY(clockid); static size_t syscall_arg__scnprintf_access_mode(char *bf, size_t size, struct syscall_arg *arg) { size_t printed = 0; int mode = arg->val; if (mode == F_OK) /* 0 */ return scnprintf(bf, size, "F"); #define P_MODE(n) \ if (mode & n##_OK) { \ printed += scnprintf(bf + printed, size - printed, "%s", #n); \ mode &= ~n##_OK; \ } P_MODE(R); P_MODE(W); P_MODE(X); #undef P_MODE if (mode) printed += scnprintf(bf + printed, size - printed, "|%#x", mode); return printed; } #define SCA_ACCMODE syscall_arg__scnprintf_access_mode static size_t syscall_arg__scnprintf_filename(char *bf, size_t size, struct syscall_arg *arg); #define SCA_FILENAME syscall_arg__scnprintf_filename static size_t syscall_arg__scnprintf_pipe_flags(char *bf, size_t size, struct syscall_arg *arg) { int printed = 0, flags = arg->val; #define P_FLAG(n) \ if (flags & O_##n) { \ printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "|" : "", #n); \ flags &= ~O_##n; \ } P_FLAG(CLOEXEC); P_FLAG(NONBLOCK); #undef P_FLAG if (flags) printed += scnprintf(bf + printed, size - printed, "%s%#x", printed ? "|" : "", flags); return printed; } #define SCA_PIPE_FLAGS syscall_arg__scnprintf_pipe_flags #ifndef GRND_NONBLOCK #define GRND_NONBLOCK 0x0001 #endif #ifndef GRND_RANDOM #define GRND_RANDOM 0x0002 #endif static size_t syscall_arg__scnprintf_getrandom_flags(char *bf, size_t size, struct syscall_arg *arg) { int printed = 0, flags = arg->val; #define P_FLAG(n) \ if (flags & GRND_##n) { \ printed += scnprintf(bf + printed, size - printed, "%s%s", printed ? "|" : "", #n); \ flags &= ~GRND_##n; \ } P_FLAG(RANDOM); P_FLAG(NONBLOCK); #undef P_FLAG if (flags) printed += scnprintf(bf + printed, size - printed, "%s%#x", printed ? "|" : "", flags); return printed; } #define SCA_GETRANDOM_FLAGS syscall_arg__scnprintf_getrandom_flags #define STRARRAY(name, array) \ { .scnprintf = SCA_STRARRAY, \ .parm = &strarray__##array, } #include "trace/beauty/arch_errno_names.c" #include "trace/beauty/eventfd.c" #include "trace/beauty/futex_op.c" #include "trace/beauty/futex_val3.c" #include "trace/beauty/mmap.c" #include "trace/beauty/mode_t.c" #include "trace/beauty/msg_flags.c" #include "trace/beauty/open_flags.c" #include "trace/beauty/perf_event_open.c" #include "trace/beauty/pid.c" #include "trace/beauty/sched_policy.c" #include "trace/beauty/seccomp.c" #include "trace/beauty/signum.c" #include "trace/beauty/socket_type.c" #include "trace/beauty/waitid_options.c" struct syscall_arg_fmt { size_t (*scnprintf)(char *bf, size_t size, struct syscall_arg *arg); unsigned long (*mask_val)(struct syscall_arg *arg, unsigned long val); void *parm; const char *name; bool show_zero; }; static struct syscall_fmt { const char *name; const char *alias; struct syscall_arg_fmt arg[6]; u8 nr_args; bool errpid; bool timeout; bool hexret; } syscall_fmts[] = { { .name = "access", .arg = { [1] = { .scnprintf = SCA_ACCMODE, /* mode */ }, }, }, { .name = "bind", .arg = { [1] = { .scnprintf = SCA_SOCKADDR, /* umyaddr */ }, }, }, { .name = "bpf", .arg = { [0] = STRARRAY(cmd, bpf_cmd), }, }, { .name = "brk", .hexret = true, .arg = { [0] = { .scnprintf = SCA_HEX, /* brk */ }, }, }, { .name = "clock_gettime", .arg = { [0] = STRARRAY(clk_id, clockid), }, }, { .name = "clone", .errpid = true, .nr_args = 5, .arg = { [0] = { .name = "flags", .scnprintf = SCA_CLONE_FLAGS, }, [1] = { .name = "child_stack", .scnprintf = SCA_HEX, }, [2] = { .name = "parent_tidptr", .scnprintf = SCA_HEX, }, [3] = { .name = "child_tidptr", .scnprintf = SCA_HEX, }, [4] = { .name = "tls", .scnprintf = SCA_HEX, }, }, }, { .name = "close", .arg = { [0] = { .scnprintf = SCA_CLOSE_FD, /* fd */ }, }, }, { .name = "connect", .arg = { [1] = { .scnprintf = SCA_SOCKADDR, /* servaddr */ }, }, }, { .name = "epoll_ctl", .arg = { [1] = STRARRAY(op, epoll_ctl_ops), }, }, { .name = "eventfd2", .arg = { [1] = { .scnprintf = SCA_EFD_FLAGS, /* flags */ }, }, }, { .name = "fchmodat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* fd */ }, }, }, { .name = "fchownat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* fd */ }, }, }, { .name = "fcntl", .arg = { [1] = { .scnprintf = SCA_FCNTL_CMD, /* cmd */ .parm = &strarrays__fcntl_cmds_arrays, .show_zero = true, }, [2] = { .scnprintf = SCA_FCNTL_ARG, /* arg */ }, }, }, { .name = "flock", .arg = { [1] = { .scnprintf = SCA_FLOCK, /* cmd */ }, }, }, { .name = "fstat", .alias = "newfstat", }, { .name = "fstatat", .alias = "newfstatat", }, { .name = "futex", .arg = { [1] = { .scnprintf = SCA_FUTEX_OP, /* op */ }, [5] = { .scnprintf = SCA_FUTEX_VAL3, /* val3 */ }, }, }, { .name = "futimesat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* fd */ }, }, }, { .name = "getitimer", .arg = { [0] = STRARRAY(which, itimers), }, }, { .name = "getpid", .errpid = true, }, { .name = "getpgid", .errpid = true, }, { .name = "getppid", .errpid = true, }, { .name = "getrandom", .arg = { [2] = { .scnprintf = SCA_GETRANDOM_FLAGS, /* flags */ }, }, }, { .name = "getrlimit", .arg = { [0] = STRARRAY(resource, rlimit_resources), }, }, { .name = "gettid", .errpid = true, }, { .name = "ioctl", .arg = { #if defined(__i386__) || defined(__x86_64__) /* * FIXME: Make this available to all arches. */ [1] = { .scnprintf = SCA_IOCTL_CMD, /* cmd */ }, [2] = { .scnprintf = SCA_HEX, /* arg */ }, }, }, #else [2] = { .scnprintf = SCA_HEX, /* arg */ }, }, }, #endif { .name = "kcmp", .nr_args = 5, .arg = { [0] = { .name = "pid1", .scnprintf = SCA_PID, }, [1] = { .name = "pid2", .scnprintf = SCA_PID, }, [2] = { .name = "type", .scnprintf = SCA_KCMP_TYPE, }, [3] = { .name = "idx1", .scnprintf = SCA_KCMP_IDX, }, [4] = { .name = "idx2", .scnprintf = SCA_KCMP_IDX, }, }, }, { .name = "keyctl", .arg = { [0] = STRARRAY(option, keyctl_options), }, }, { .name = "kill", .arg = { [1] = { .scnprintf = SCA_SIGNUM, /* sig */ }, }, }, { .name = "linkat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* fd */ }, }, }, { .name = "lseek", .arg = { [2] = STRARRAY(whence, whences), }, }, { .name = "lstat", .alias = "newlstat", }, { .name = "madvise", .arg = { [0] = { .scnprintf = SCA_HEX, /* start */ }, [2] = { .scnprintf = SCA_MADV_BHV, /* behavior */ }, }, }, { .name = "mkdirat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* fd */ }, }, }, { .name = "mknodat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* fd */ }, }, }, { .name = "mlock", .arg = { [0] = { .scnprintf = SCA_HEX, /* addr */ }, }, }, { .name = "mlockall", .arg = { [0] = { .scnprintf = SCA_HEX, /* addr */ }, }, }, { .name = "mmap", .hexret = true, /* The standard mmap maps to old_mmap on s390x */ #if defined(__s390x__) .alias = "old_mmap", #endif .arg = { [0] = { .scnprintf = SCA_HEX, /* addr */ }, [2] = { .scnprintf = SCA_MMAP_PROT, /* prot */ }, [3] = { .scnprintf = SCA_MMAP_FLAGS, /* flags */ }, }, }, { .name = "mount", .arg = { [0] = { .scnprintf = SCA_FILENAME, /* dev_name */ }, [3] = { .scnprintf = SCA_MOUNT_FLAGS, /* flags */ .mask_val = SCAMV_MOUNT_FLAGS, /* flags */ }, }, }, { .name = "mprotect", .arg = { [0] = { .scnprintf = SCA_HEX, /* start */ }, [2] = { .scnprintf = SCA_MMAP_PROT, /* prot */ }, }, }, { .name = "mq_unlink", .arg = { [0] = { .scnprintf = SCA_FILENAME, /* u_name */ }, }, }, { .name = "mremap", .hexret = true, .arg = { [0] = { .scnprintf = SCA_HEX, /* addr */ }, [3] = { .scnprintf = SCA_MREMAP_FLAGS, /* flags */ }, [4] = { .scnprintf = SCA_HEX, /* new_addr */ }, }, }, { .name = "munlock", .arg = { [0] = { .scnprintf = SCA_HEX, /* addr */ }, }, }, { .name = "munmap", .arg = { [0] = { .scnprintf = SCA_HEX, /* addr */ }, }, }, { .name = "name_to_handle_at", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dfd */ }, }, }, { .name = "newfstatat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dfd */ }, }, }, { .name = "open", .arg = { [1] = { .scnprintf = SCA_OPEN_FLAGS, /* flags */ }, }, }, { .name = "open_by_handle_at", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dfd */ }, [2] = { .scnprintf = SCA_OPEN_FLAGS, /* flags */ }, }, }, { .name = "openat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dfd */ }, [2] = { .scnprintf = SCA_OPEN_FLAGS, /* flags */ }, }, }, { .name = "perf_event_open", .arg = { [2] = { .scnprintf = SCA_INT, /* cpu */ }, [3] = { .scnprintf = SCA_FD, /* group_fd */ }, [4] = { .scnprintf = SCA_PERF_FLAGS, /* flags */ }, }, }, { .name = "pipe2", .arg = { [1] = { .scnprintf = SCA_PIPE_FLAGS, /* flags */ }, }, }, { .name = "pkey_alloc", .arg = { [1] = { .scnprintf = SCA_PKEY_ALLOC_ACCESS_RIGHTS, /* access_rights */ }, }, }, { .name = "pkey_free", .arg = { [0] = { .scnprintf = SCA_INT, /* key */ }, }, }, { .name = "pkey_mprotect", .arg = { [0] = { .scnprintf = SCA_HEX, /* start */ }, [2] = { .scnprintf = SCA_MMAP_PROT, /* prot */ }, [3] = { .scnprintf = SCA_INT, /* pkey */ }, }, }, { .name = "poll", .timeout = true, }, { .name = "ppoll", .timeout = true, }, { .name = "prctl", .alias = "arch_prctl", .arg = { [0] = { .scnprintf = SCA_PRCTL_OPTION, /* option */ }, [1] = { .scnprintf = SCA_PRCTL_ARG2, /* arg2 */ }, [2] = { .scnprintf = SCA_PRCTL_ARG3, /* arg3 */ }, }, }, { .name = "pread", .alias = "pread64", }, { .name = "preadv", .alias = "pread", }, { .name = "prlimit64", .arg = { [1] = STRARRAY(resource, rlimit_resources), }, }, { .name = "pwrite", .alias = "pwrite64", }, { .name = "readlinkat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dfd */ }, }, }, { .name = "recvfrom", .arg = { [3] = { .scnprintf = SCA_MSG_FLAGS, /* flags */ }, }, }, { .name = "recvmmsg", .arg = { [3] = { .scnprintf = SCA_MSG_FLAGS, /* flags */ }, }, }, { .name = "recvmsg", .arg = { [2] = { .scnprintf = SCA_MSG_FLAGS, /* flags */ }, }, }, { .name = "renameat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dfd */ }, }, }, { .name = "rt_sigaction", .arg = { [0] = { .scnprintf = SCA_SIGNUM, /* sig */ }, }, }, { .name = "rt_sigprocmask", .arg = { [0] = STRARRAY(how, sighow), }, }, { .name = "rt_sigqueueinfo", .arg = { [1] = { .scnprintf = SCA_SIGNUM, /* sig */ }, }, }, { .name = "rt_tgsigqueueinfo", .arg = { [2] = { .scnprintf = SCA_SIGNUM, /* sig */ }, }, }, { .name = "sched_setscheduler", .arg = { [1] = { .scnprintf = SCA_SCHED_POLICY, /* policy */ }, }, }, { .name = "seccomp", .arg = { [0] = { .scnprintf = SCA_SECCOMP_OP, /* op */ }, [1] = { .scnprintf = SCA_SECCOMP_FLAGS, /* flags */ }, }, }, { .name = "select", .timeout = true, }, { .name = "sendmmsg", .arg = { [3] = { .scnprintf = SCA_MSG_FLAGS, /* flags */ }, }, }, { .name = "sendmsg", .arg = { [2] = { .scnprintf = SCA_MSG_FLAGS, /* flags */ }, }, }, { .name = "sendto", .arg = { [3] = { .scnprintf = SCA_MSG_FLAGS, /* flags */ }, [4] = { .scnprintf = SCA_SOCKADDR, /* addr */ }, }, }, { .name = "set_tid_address", .errpid = true, }, { .name = "setitimer", .arg = { [0] = STRARRAY(which, itimers), }, }, { .name = "setrlimit", .arg = { [0] = STRARRAY(resource, rlimit_resources), }, }, { .name = "socket", .arg = { [0] = STRARRAY(family, socket_families), [1] = { .scnprintf = SCA_SK_TYPE, /* type */ }, [2] = { .scnprintf = SCA_SK_PROTO, /* protocol */ }, }, }, { .name = "socketpair", .arg = { [0] = STRARRAY(family, socket_families), [1] = { .scnprintf = SCA_SK_TYPE, /* type */ }, [2] = { .scnprintf = SCA_SK_PROTO, /* protocol */ }, }, }, { .name = "stat", .alias = "newstat", }, { .name = "statx", .arg = { [0] = { .scnprintf = SCA_FDAT, /* fdat */ }, [2] = { .scnprintf = SCA_STATX_FLAGS, /* flags */ } , [3] = { .scnprintf = SCA_STATX_MASK, /* mask */ }, }, }, { .name = "swapoff", .arg = { [0] = { .scnprintf = SCA_FILENAME, /* specialfile */ }, }, }, { .name = "swapon", .arg = { [0] = { .scnprintf = SCA_FILENAME, /* specialfile */ }, }, }, { .name = "symlinkat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dfd */ }, }, }, { .name = "tgkill", .arg = { [2] = { .scnprintf = SCA_SIGNUM, /* sig */ }, }, }, { .name = "tkill", .arg = { [1] = { .scnprintf = SCA_SIGNUM, /* sig */ }, }, }, { .name = "umount2", .alias = "umount", .arg = { [0] = { .scnprintf = SCA_FILENAME, /* name */ }, }, }, { .name = "uname", .alias = "newuname", }, { .name = "unlinkat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dfd */ }, }, }, { .name = "utimensat", .arg = { [0] = { .scnprintf = SCA_FDAT, /* dirfd */ }, }, }, { .name = "wait4", .errpid = true, .arg = { [2] = { .scnprintf = SCA_WAITID_OPTIONS, /* options */ }, }, }, { .name = "waitid", .errpid = true, .arg = { [3] = { .scnprintf = SCA_WAITID_OPTIONS, /* options */ }, }, }, }; static int syscall_fmt__cmp(const void *name, const void *fmtp) { const struct syscall_fmt *fmt = fmtp; return strcmp(name, fmt->name); } static struct syscall_fmt *syscall_fmt__find(const char *name) { const int nmemb = ARRAY_SIZE(syscall_fmts); return bsearch(name, syscall_fmts, nmemb, sizeof(struct syscall_fmt), syscall_fmt__cmp); } static struct syscall_fmt *syscall_fmt__find_by_alias(const char *alias) { int i, nmemb = ARRAY_SIZE(syscall_fmts); for (i = 0; i < nmemb; ++i) { if (syscall_fmts[i].alias && strcmp(syscall_fmts[i].alias, alias) == 0) return &syscall_fmts[i]; } return NULL; } /* * is_exit: is this "exit" or "exit_group"? * is_open: is this "open" or "openat"? To associate the fd returned in sys_exit with the pathname in sys_enter. * args_size: sum of the sizes of the syscall arguments, anything after that is augmented stuff: pathname for openat, etc. */ struct syscall { struct tep_event *tp_format; int nr_args; int args_size; bool is_exit; bool is_open; struct tep_format_field *args; const char *name; struct syscall_fmt *fmt; struct syscall_arg_fmt *arg_fmt; }; /* * We need to have this 'calculated' boolean because in some cases we really * don't know what is the duration of a syscall, for instance, when we start * a session and some threads are waiting for a syscall to finish, say 'poll', * in which case all we can do is to print "( ? ) for duration and for the * start timestamp. */ static size_t fprintf_duration(unsigned long t, bool calculated, FILE *fp) { double duration = (double)t / NSEC_PER_MSEC; size_t printed = fprintf(fp, "("); if (!calculated) printed += fprintf(fp, " "); else if (duration >= 1.0) printed += color_fprintf(fp, PERF_COLOR_RED, "%6.3f ms", duration); else if (duration >= 0.01) printed += color_fprintf(fp, PERF_COLOR_YELLOW, "%6.3f ms", duration); else printed += color_fprintf(fp, PERF_COLOR_NORMAL, "%6.3f ms", duration); return printed + fprintf(fp, "): "); } /** * filename.ptr: The filename char pointer that will be vfs_getname'd * filename.entry_str_pos: Where to insert the string translated from * filename.ptr by the vfs_getname tracepoint/kprobe. * ret_scnprintf: syscall args may set this to a different syscall return * formatter, for instance, fcntl may return fds, file flags, etc. */ struct thread_trace { u64 entry_time; bool entry_pending; unsigned long nr_events; unsigned long pfmaj, pfmin; char *entry_str; double runtime_ms; size_t (*ret_scnprintf)(char *bf, size_t size, struct syscall_arg *arg); struct { unsigned long ptr; short int entry_str_pos; bool pending_open; unsigned int namelen; char *name; } filename; struct { int max; char **table; } paths; struct intlist *syscall_stats; }; static struct thread_trace *thread_trace__new(void) { struct thread_trace *ttrace = zalloc(sizeof(struct thread_trace)); if (ttrace) ttrace->paths.max = -1; ttrace->syscall_stats = intlist__new(NULL); return ttrace; } static struct thread_trace *thread__trace(struct thread *thread, FILE *fp) { struct thread_trace *ttrace; if (thread == NULL) goto fail; if (thread__priv(thread) == NULL) thread__set_priv(thread, thread_trace__new()); if (thread__priv(thread) == NULL) goto fail; ttrace = thread__priv(thread); ++ttrace->nr_events; return ttrace; fail: color_fprintf(fp, PERF_COLOR_RED, "WARNING: not enough memory, dropping samples!\n"); return NULL; } void syscall_arg__set_ret_scnprintf(struct syscall_arg *arg, size_t (*ret_scnprintf)(char *bf, size_t size, struct syscall_arg *arg)) { struct thread_trace *ttrace = thread__priv(arg->thread); ttrace->ret_scnprintf = ret_scnprintf; } #define TRACE_PFMAJ (1 << 0) #define TRACE_PFMIN (1 << 1) static const size_t trace__entry_str_size = 2048; static int trace__set_fd_pathname(struct thread *thread, int fd, const char *pathname) { struct thread_trace *ttrace = thread__priv(thread); if (fd > ttrace->paths.max) { char **npath = realloc(ttrace->paths.table, (fd + 1) * sizeof(char *)); if (npath == NULL) return -1; if (ttrace->paths.max != -1) { memset(npath + ttrace->paths.max + 1, 0, (fd - ttrace->paths.max) * sizeof(char *)); } else { memset(npath, 0, (fd + 1) * sizeof(char *)); } ttrace->paths.table = npath; ttrace->paths.max = fd; } ttrace->paths.table[fd] = strdup(pathname); return ttrace->paths.table[fd] != NULL ? 0 : -1; } static int thread__read_fd_path(struct thread *thread, int fd) { char linkname[PATH_MAX], pathname[PATH_MAX]; struct stat st; int ret; if (thread->pid_ == thread->tid) { scnprintf(linkname, sizeof(linkname), "/proc/%d/fd/%d", thread->pid_, fd); } else { scnprintf(linkname, sizeof(linkname), "/proc/%d/task/%d/fd/%d", thread->pid_, thread->tid, fd); } if (lstat(linkname, &st) < 0 || st.st_size + 1 > (off_t)sizeof(pathname)) return -1; ret = readlink(linkname, pathname, sizeof(pathname)); if (ret < 0 || ret > st.st_size) return -1; pathname[ret] = '\0'; return trace__set_fd_pathname(thread, fd, pathname); } static const char *thread__fd_path(struct thread *thread, int fd, struct trace *trace) { struct thread_trace *ttrace = thread__priv(thread); if (ttrace == NULL) return NULL; if (fd < 0) return NULL; if ((fd > ttrace->paths.max || ttrace->paths.table[fd] == NULL)) { if (!trace->live) return NULL; ++trace->stats.proc_getname; if (thread__read_fd_path(thread, fd)) return NULL; } return ttrace->paths.table[fd]; } size_t syscall_arg__scnprintf_fd(char *bf, size_t size, struct syscall_arg *arg) { int fd = arg->val; size_t printed = scnprintf(bf, size, "%d", fd); const char *path = thread__fd_path(arg->thread, fd, arg->trace); if (path) printed += scnprintf(bf + printed, size - printed, "<%s>", path); return printed; } size_t pid__scnprintf_fd(struct trace *trace, pid_t pid, int fd, char *bf, size_t size) { size_t printed = scnprintf(bf, size, "%d", fd); struct thread *thread = machine__find_thread(trace->host, pid, pid); if (thread) { const char *path = thread__fd_path(thread, fd, trace); if (path) printed += scnprintf(bf + printed, size - printed, "<%s>", path); thread__put(thread); } return printed; } static size_t syscall_arg__scnprintf_close_fd(char *bf, size_t size, struct syscall_arg *arg) { int fd = arg->val; size_t printed = syscall_arg__scnprintf_fd(bf, size, arg); struct thread_trace *ttrace = thread__priv(arg->thread); if (ttrace && fd >= 0 && fd <= ttrace->paths.max) zfree(&ttrace->paths.table[fd]); return printed; } static void thread__set_filename_pos(struct thread *thread, const char *bf, unsigned long ptr) { struct thread_trace *ttrace = thread__priv(thread); ttrace->filename.ptr = ptr; ttrace->filename.entry_str_pos = bf - ttrace->entry_str; } static size_t syscall_arg__scnprintf_augmented_string(struct syscall_arg *arg, char *bf, size_t size) { struct augmented_arg *augmented_arg = arg->augmented.args; return scnprintf(bf, size, "%.*s", augmented_arg->size, augmented_arg->value); } static size_t syscall_arg__scnprintf_filename(char *bf, size_t size, struct syscall_arg *arg) { unsigned long ptr = arg->val; if (arg->augmented.args) return syscall_arg__scnprintf_augmented_string(arg, bf, size); if (!arg->trace->vfs_getname) return scnprintf(bf, size, "%#x", ptr); thread__set_filename_pos(arg->thread, bf, ptr); return 0; } static bool trace__filter_duration(struct trace *trace, double t) { return t < (trace->duration_filter * NSEC_PER_MSEC); } static size_t __trace__fprintf_tstamp(struct trace *trace, u64 tstamp, FILE *fp) { double ts = (double)(tstamp - trace->base_time) / NSEC_PER_MSEC; return fprintf(fp, "%10.3f ", ts); } /* * We're handling tstamp=0 as an undefined tstamp, i.e. like when we are * using ttrace->entry_time for a thread that receives a sys_exit without * first having received a sys_enter ("poll" issued before tracing session * starts, lost sys_enter exit due to ring buffer overflow). */ static size_t trace__fprintf_tstamp(struct trace *trace, u64 tstamp, FILE *fp) { if (tstamp > 0) return __trace__fprintf_tstamp(trace, tstamp, fp); return fprintf(fp, " ? "); } static bool done = false; static bool interrupted = false; static void sig_handler(int sig) { done = true; interrupted = sig == SIGINT; } static size_t trace__fprintf_comm_tid(struct trace *trace, struct thread *thread, FILE *fp) { size_t printed = 0; if (trace->multiple_threads) { if (trace->show_comm) printed += fprintf(fp, "%.14s/", thread__comm_str(thread)); printed += fprintf(fp, "%d ", thread->tid); } return printed; } static size_t trace__fprintf_entry_head(struct trace *trace, struct thread *thread, u64 duration, bool duration_calculated, u64 tstamp, FILE *fp) { size_t printed = trace__fprintf_tstamp(trace, tstamp, fp); printed += fprintf_duration(duration, duration_calculated, fp); return printed + trace__fprintf_comm_tid(trace, thread, fp); } static int trace__process_event(struct trace *trace, struct machine *machine, union perf_event *event, struct perf_sample *sample) { int ret = 0; switch (event->header.type) { case PERF_RECORD_LOST: color_fprintf(trace->output, PERF_COLOR_RED, "LOST %" PRIu64 " events!\n", event->lost.lost); ret = machine__process_lost_event(machine, event, sample); break; default: ret = machine__process_event(machine, event, sample); break; } return ret; } static int trace__tool_process(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct machine *machine) { struct trace *trace = container_of(tool, struct trace, tool); return trace__process_event(trace, machine, event, sample); } static char *trace__machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp) { struct machine *machine = vmachine; if (machine->kptr_restrict_warned) return NULL; if (symbol_conf.kptr_restrict) { pr_warning("Kernel address maps (/proc/{kallsyms,modules}) are restricted.\n\n" "Check /proc/sys/kernel/kptr_restrict.\n\n" "Kernel samples will not be resolved.\n"); machine->kptr_restrict_warned = true; return NULL; } return machine__resolve_kernel_addr(vmachine, addrp, modp); } static int trace__symbols_init(struct trace *trace, struct perf_evlist *evlist) { int err = symbol__init(NULL); if (err) return err; trace->host = machine__new_host(); if (trace->host == NULL) return -ENOMEM; err = trace_event__register_resolver(trace->host, trace__machine__resolve_kernel_addr); if (err < 0) goto out; err = __machine__synthesize_threads(trace->host, &trace->tool, &trace->opts.target, evlist->threads, trace__tool_process, false, 1); out: if (err) symbol__exit(); return err; } static void trace__symbols__exit(struct trace *trace) { machine__exit(trace->host); trace->host = NULL; symbol__exit(); } static int syscall__alloc_arg_fmts(struct syscall *sc, int nr_args) { int idx; if (nr_args == 6 && sc->fmt && sc->fmt->nr_args != 0) nr_args = sc->fmt->nr_args; sc->arg_fmt = calloc(nr_args, sizeof(*sc->arg_fmt)); if (sc->arg_fmt == NULL) return -1; for (idx = 0; idx < nr_args; ++idx) { if (sc->fmt) sc->arg_fmt[idx] = sc->fmt->arg[idx]; } sc->nr_args = nr_args; return 0; } static int syscall__set_arg_fmts(struct syscall *sc) { struct tep_format_field *field, *last_field = NULL; int idx = 0, len; for (field = sc->args; field; field = field->next, ++idx) { last_field = field; if (sc->fmt && sc->fmt->arg[idx].scnprintf) continue; if (strcmp(field->type, "const char *") == 0 && (strcmp(field->name, "filename") == 0 || strcmp(field->name, "path") == 0 || strcmp(field->name, "pathname") == 0)) sc->arg_fmt[idx].scnprintf = SCA_FILENAME; else if (field->flags & TEP_FIELD_IS_POINTER) sc->arg_fmt[idx].scnprintf = syscall_arg__scnprintf_hex; else if (strcmp(field->type, "pid_t") == 0) sc->arg_fmt[idx].scnprintf = SCA_PID; else if (strcmp(field->type, "umode_t") == 0) sc->arg_fmt[idx].scnprintf = SCA_MODE_T; else if ((strcmp(field->type, "int") == 0 || strcmp(field->type, "unsigned int") == 0 || strcmp(field->type, "long") == 0) && (len = strlen(field->name)) >= 2 && strcmp(field->name + len - 2, "fd") == 0) { /* * /sys/kernel/tracing/events/syscalls/sys_enter* * egrep 'field:.*fd;' .../format|sed -r 's/.*field:([a-z ]+) [a-z_]*fd.+/\1/g'|sort|uniq -c * 65 int * 23 unsigned int * 7 unsigned long */ sc->arg_fmt[idx].scnprintf = SCA_FD; } } if (last_field) sc->args_size = last_field->offset + last_field->size; return 0; } static int trace__read_syscall_info(struct trace *trace, int id) { char tp_name[128]; struct syscall *sc; const char *name = syscalltbl__name(trace->sctbl, id); if (name == NULL) return -1; if (id > trace->syscalls.max) { struct syscall *nsyscalls = realloc(trace->syscalls.table, (id + 1) * sizeof(*sc)); if (nsyscalls == NULL) return -1; if (trace->syscalls.max != -1) { memset(nsyscalls + trace->syscalls.max + 1, 0, (id - trace->syscalls.max) * sizeof(*sc)); } else { memset(nsyscalls, 0, (id + 1) * sizeof(*sc)); } trace->syscalls.table = nsyscalls; trace->syscalls.max = id; } sc = trace->syscalls.table + id; sc->name = name; sc->fmt = syscall_fmt__find(sc->name); snprintf(tp_name, sizeof(tp_name), "sys_enter_%s", sc->name); sc->tp_format = trace_event__tp_format("syscalls", tp_name); if (IS_ERR(sc->tp_format) && sc->fmt && sc->fmt->alias) { snprintf(tp_name, sizeof(tp_name), "sys_enter_%s", sc->fmt->alias); sc->tp_format = trace_event__tp_format("syscalls", tp_name); } if (syscall__alloc_arg_fmts(sc, IS_ERR(sc->tp_format) ? 6 : sc->tp_format->format.nr_fields)) return -1; if (IS_ERR(sc->tp_format)) return -1; sc->args = sc->tp_format->format.fields; /* * We need to check and discard the first variable '__syscall_nr' * or 'nr' that mean the syscall number. It is needless here. * So drop '__syscall_nr' or 'nr' field but does not exist on older kernels. */ if (sc->args && (!strcmp(sc->args->name, "__syscall_nr") || !strcmp(sc->args->name, "nr"))) { sc->args = sc->args->next; --sc->nr_args; } sc->is_exit = !strcmp(name, "exit_group") || !strcmp(name, "exit"); sc->is_open = !strcmp(name, "open") || !strcmp(name, "openat"); return syscall__set_arg_fmts(sc); } static int trace__validate_ev_qualifier(struct trace *trace) { int err = 0, i; size_t nr_allocated; struct str_node *pos; trace->ev_qualifier_ids.nr = strlist__nr_entries(trace->ev_qualifier); trace->ev_qualifier_ids.entries = malloc(trace->ev_qualifier_ids.nr * sizeof(trace->ev_qualifier_ids.entries[0])); if (trace->ev_qualifier_ids.entries == NULL) { fputs("Error:\tNot enough memory for allocating events qualifier ids\n", trace->output); err = -EINVAL; goto out; } nr_allocated = trace->ev_qualifier_ids.nr; i = 0; strlist__for_each_entry(pos, trace->ev_qualifier) { const char *sc = pos->s; int id = syscalltbl__id(trace->sctbl, sc), match_next = -1; if (id < 0) { id = syscalltbl__strglobmatch_first(trace->sctbl, sc, &match_next); if (id >= 0) goto matches; if (err == 0) { fputs("Error:\tInvalid syscall ", trace->output); err = -EINVAL; } else { fputs(", ", trace->output); } fputs(sc, trace->output); } matches: trace->ev_qualifier_ids.entries[i++] = id; if (match_next == -1) continue; while (1) { id = syscalltbl__strglobmatch_next(trace->sctbl, sc, &match_next); if (id < 0) break; if (nr_allocated == trace->ev_qualifier_ids.nr) { void *entries; nr_allocated += 8; entries = realloc(trace->ev_qualifier_ids.entries, nr_allocated * sizeof(trace->ev_qualifier_ids.entries[0])); if (entries == NULL) { err = -ENOMEM; fputs("\nError:\t Not enough memory for parsing\n", trace->output); goto out_free; } trace->ev_qualifier_ids.entries = entries; } trace->ev_qualifier_ids.nr++; trace->ev_qualifier_ids.entries[i++] = id; } } if (err < 0) { fputs("\nHint:\ttry 'perf list syscalls:sys_enter_*'" "\nHint:\tand: 'man syscalls'\n", trace->output); out_free: zfree(&trace->ev_qualifier_ids.entries); trace->ev_qualifier_ids.nr = 0; } out: return err; } /* * args is to be interpreted as a series of longs but we need to handle * 8-byte unaligned accesses. args points to raw_data within the event * and raw_data is guaranteed to be 8-byte unaligned because it is * preceded by raw_size which is a u32. So we need to copy args to a temp * variable to read it. Most notably this avoids extended load instructions * on unaligned addresses */ unsigned long syscall_arg__val(struct syscall_arg *arg, u8 idx) { unsigned long val; unsigned char *p = arg->args + sizeof(unsigned long) * idx; memcpy(&val, p, sizeof(val)); return val; } static size_t syscall__scnprintf_name(struct syscall *sc, char *bf, size_t size, struct syscall_arg *arg) { if (sc->arg_fmt && sc->arg_fmt[arg->idx].name) return scnprintf(bf, size, "%s: ", sc->arg_fmt[arg->idx].name); return scnprintf(bf, size, "arg%d: ", arg->idx); } /* * Check if the value is in fact zero, i.e. mask whatever needs masking, such * as mount 'flags' argument that needs ignoring some magic flag, see comment * in tools/perf/trace/beauty/mount_flags.c */ static unsigned long syscall__mask_val(struct syscall *sc, struct syscall_arg *arg, unsigned long val) { if (sc->arg_fmt && sc->arg_fmt[arg->idx].mask_val) return sc->arg_fmt[arg->idx].mask_val(arg, val); return val; } static size_t syscall__scnprintf_val(struct syscall *sc, char *bf, size_t size, struct syscall_arg *arg, unsigned long val) { if (sc->arg_fmt && sc->arg_fmt[arg->idx].scnprintf) { arg->val = val; if (sc->arg_fmt[arg->idx].parm) arg->parm = sc->arg_fmt[arg->idx].parm; return sc->arg_fmt[arg->idx].scnprintf(bf, size, arg); } return scnprintf(bf, size, "%ld", val); } static size_t syscall__scnprintf_args(struct syscall *sc, char *bf, size_t size, unsigned char *args, void *augmented_args, int augmented_args_size, struct trace *trace, struct thread *thread) { size_t printed = 0; unsigned long val; u8 bit = 1; struct syscall_arg arg = { .args = args, .augmented = { .size = augmented_args_size, .args = augmented_args, }, .idx = 0, .mask = 0, .trace = trace, .thread = thread, }; struct thread_trace *ttrace = thread__priv(thread); /* * Things like fcntl will set this in its 'cmd' formatter to pick the * right formatter for the return value (an fd? file flags?), which is * not needed for syscalls that always return a given type, say an fd. */ ttrace->ret_scnprintf = NULL; if (sc->args != NULL) { struct tep_format_field *field; for (field = sc->args; field; field = field->next, ++arg.idx, bit <<= 1) { if (arg.mask & bit) continue; val = syscall_arg__val(&arg, arg.idx); /* * Some syscall args need some mask, most don't and * return val untouched. */ val = syscall__mask_val(sc, &arg, val); /* * Suppress this argument if its value is zero and * and we don't have a string associated in an * strarray for it. */ if (val == 0 && !(sc->arg_fmt && (sc->arg_fmt[arg.idx].show_zero || sc->arg_fmt[arg.idx].scnprintf == SCA_STRARRAY || sc->arg_fmt[arg.idx].scnprintf == SCA_STRARRAYS) && sc->arg_fmt[arg.idx].parm)) continue; printed += scnprintf(bf + printed, size - printed, "%s%s: ", printed ? ", " : "", field->name); printed += syscall__scnprintf_val(sc, bf + printed, size - printed, &arg, val); } } else if (IS_ERR(sc->tp_format)) { /* * If we managed to read the tracepoint /format file, then we * may end up not having any args, like with gettid(), so only * print the raw args when we didn't manage to read it. */ while (arg.idx < sc->nr_args) { if (arg.mask & bit) goto next_arg; val = syscall_arg__val(&arg, arg.idx); if (printed) printed += scnprintf(bf + printed, size - printed, ", "); printed += syscall__scnprintf_name(sc, bf + printed, size - printed, &arg); printed += syscall__scnprintf_val(sc, bf + printed, size - printed, &arg, val); next_arg: ++arg.idx; bit <<= 1; } } return printed; } typedef int (*tracepoint_handler)(struct trace *trace, struct perf_evsel *evsel, union perf_event *event, struct perf_sample *sample); static struct syscall *trace__syscall_info(struct trace *trace, struct perf_evsel *evsel, int id) { if (id < 0) { /* * XXX: Noticed on x86_64, reproduced as far back as 3.0.36, haven't tried * before that, leaving at a higher verbosity level till that is * explained. Reproduced with plain ftrace with: * * echo 1 > /t/events/raw_syscalls/sys_exit/enable * grep "NR -1 " /t/trace_pipe * * After generating some load on the machine. */ if (verbose > 1) { static u64 n; fprintf(trace->output, "Invalid syscall %d id, skipping (%s, %" PRIu64 ") ...\n", id, perf_evsel__name(evsel), ++n); } return NULL; } if ((id > trace->syscalls.max || trace->syscalls.table[id].name == NULL) && trace__read_syscall_info(trace, id)) goto out_cant_read; if ((id > trace->syscalls.max || trace->syscalls.table[id].name == NULL)) goto out_cant_read; return &trace->syscalls.table[id]; out_cant_read: if (verbose > 0) { fprintf(trace->output, "Problems reading syscall %d", id); if (id <= trace->syscalls.max && trace->syscalls.table[id].name != NULL) fprintf(trace->output, "(%s)", trace->syscalls.table[id].name); fputs(" information\n", trace->output); } return NULL; } static void thread__update_stats(struct thread_trace *ttrace, int id, struct perf_sample *sample) { struct int_node *inode; struct stats *stats; u64 duration = 0; inode = intlist__findnew(ttrace->syscall_stats, id); if (inode == NULL) return; stats = inode->priv; if (stats == NULL) { stats = malloc(sizeof(struct stats)); if (stats == NULL) return; init_stats(stats); inode->priv = stats; } if (ttrace->entry_time && sample->time > ttrace->entry_time) duration = sample->time - ttrace->entry_time; update_stats(stats, duration); } static int trace__printf_interrupted_entry(struct trace *trace) { struct thread_trace *ttrace; size_t printed; if (trace->failure_only || trace->current == NULL) return 0; ttrace = thread__priv(trace->current); if (!ttrace->entry_pending) return 0; printed = trace__fprintf_entry_head(trace, trace->current, 0, false, ttrace->entry_time, trace->output); printed += fprintf(trace->output, "%-70s) ...\n", ttrace->entry_str); ttrace->entry_pending = false; ++trace->nr_events_printed; return printed; } static int trace__fprintf_sample(struct trace *trace, struct perf_evsel *evsel, struct perf_sample *sample, struct thread *thread) { int printed = 0; if (trace->print_sample) { double ts = (double)sample->time / NSEC_PER_MSEC; printed += fprintf(trace->output, "%22s %10.3f %s %d/%d [%d]\n", perf_evsel__name(evsel), ts, thread__comm_str(thread), sample->pid, sample->tid, sample->cpu); } return printed; } static void *syscall__augmented_args(struct syscall *sc, struct perf_sample *sample, int *augmented_args_size, bool raw_augmented) { void *augmented_args = NULL; /* * For now with BPF raw_augmented we hook into raw_syscalls:sys_enter * and there we get all 6 syscall args plus the tracepoint common * fields (sizeof(long)) and the syscall_nr (another long). So we check * if that is the case and if so don't look after the sc->args_size, * but always after the full raw_syscalls:sys_enter payload, which is * fixed. * * We'll revisit this later to pass s->args_size to the BPF augmenter * (now tools/perf/examples/bpf/augmented_raw_syscalls.c, so that it * copies only what we need for each syscall, like what happens when we * use syscalls:sys_enter_NAME, so that we reduce the kernel/userspace * traffic to just what is needed for each syscall. */ int args_size = raw_augmented ? (8 * (int)sizeof(long)) : sc->args_size; *augmented_args_size = sample->raw_size - args_size; if (*augmented_args_size > 0) augmented_args = sample->raw_data + args_size; return augmented_args; } static int trace__sys_enter(struct trace *trace, struct perf_evsel *evsel, union perf_event *event __maybe_unused, struct perf_sample *sample) { char *msg; void *args; size_t printed = 0; struct thread *thread; int id = perf_evsel__sc_tp_uint(evsel, id, sample), err = -1; int augmented_args_size = 0; void *augmented_args = NULL; struct syscall *sc = trace__syscall_info(trace, evsel, id); struct thread_trace *ttrace; if (sc == NULL) return -1; thread = machine__findnew_thread(trace->host, sample->pid, sample->tid); ttrace = thread__trace(thread, trace->output); if (ttrace == NULL) goto out_put; trace__fprintf_sample(trace, evsel, sample, thread); args = perf_evsel__sc_tp_ptr(evsel, args, sample); if (ttrace->entry_str == NULL) { ttrace->entry_str = malloc(trace__entry_str_size); if (!ttrace->entry_str) goto out_put; } if (!(trace->duration_filter || trace->summary_only || trace->min_stack)) trace__printf_interrupted_entry(trace); /* * If this is raw_syscalls.sys_enter, then it always comes with the 6 possible * arguments, even if the syscall being handled, say "openat", uses only 4 arguments * this breaks syscall__augmented_args() check for augmented args, as we calculate * syscall->args_size using each syscalls:sys_enter_NAME tracefs format file, * so when handling, say the openat syscall, we end up getting 6 args for the * raw_syscalls:sys_enter event, when we expected just 4, we end up mistakenly * thinking that the extra 2 u64 args are the augmented filename, so just check * here and avoid using augmented syscalls when the evsel is the raw_syscalls one. */ if (evsel != trace->syscalls.events.sys_enter) augmented_args = syscall__augmented_args(sc, sample, &augmented_args_size, trace->raw_augmented_syscalls); ttrace->entry_time = sample->time; msg = ttrace->entry_str; printed += scnprintf(msg + printed, trace__entry_str_size - printed, "%s(", sc->name); printed += syscall__scnprintf_args(sc, msg + printed, trace__entry_str_size - printed, args, augmented_args, augmented_args_size, trace, thread); if (sc->is_exit) { if (!(trace->duration_filter || trace->summary_only || trace->failure_only || trace->min_stack)) { trace__fprintf_entry_head(trace, thread, 0, false, ttrace->entry_time, trace->output); fprintf(trace->output, "%-70s)\n", ttrace->entry_str); } } else { ttrace->entry_pending = true; /* See trace__vfs_getname & trace__sys_exit */ ttrace->filename.pending_open = false; } if (trace->current != thread) { thread__put(trace->current); trace->current = thread__get(thread); } err = 0; out_put: thread__put(thread); return err; } static int trace__fprintf_sys_enter(struct trace *trace, struct perf_evsel *evsel, struct perf_sample *sample) { struct thread_trace *ttrace; struct thread *thread; int id = perf_evsel__sc_tp_uint(evsel, id, sample), err = -1; struct syscall *sc = trace__syscall_info(trace, evsel, id); char msg[1024]; void *args, *augmented_args = NULL; int augmented_args_size; if (sc == NULL) return -1; thread = machine__findnew_thread(trace->host, sample->pid, sample->tid); ttrace = thread__trace(thread, trace->output); /* * We need to get ttrace just to make sure it is there when syscall__scnprintf_args() * and the rest of the beautifiers accessing it via struct syscall_arg touches it. */ if (ttrace == NULL) goto out_put; args = perf_evsel__sc_tp_ptr(evsel, args, sample); augmented_args = syscall__augmented_args(sc, sample, &augmented_args_size, trace->raw_augmented_syscalls); syscall__scnprintf_args(sc, msg, sizeof(msg), args, augmented_args, augmented_args_size, trace, thread); fprintf(trace->output, "%s", msg); err = 0; out_put: thread__put(thread); return err; } static int trace__resolve_callchain(struct trace *trace, struct perf_evsel *evsel, struct perf_sample *sample, struct callchain_cursor *cursor) { struct addr_location al; int max_stack = evsel->attr.sample_max_stack ? evsel->attr.sample_max_stack : trace->max_stack; int err; if (machine__resolve(trace->host, &al, sample) < 0) return -1; err = thread__resolve_callchain(al.thread, cursor, evsel, sample, NULL, NULL, max_stack); addr_location__put(&al); return err; } static int trace__fprintf_callchain(struct trace *trace, struct perf_sample *sample) { /* TODO: user-configurable print_opts */ const unsigned int print_opts = EVSEL__PRINT_SYM | EVSEL__PRINT_DSO | EVSEL__PRINT_UNKNOWN_AS_ADDR; return sample__fprintf_callchain(sample, 38, print_opts, &callchain_cursor, trace->output); } static const char *errno_to_name(struct perf_evsel *evsel, int err) { struct perf_env *env = perf_evsel__env(evsel); const char *arch_name = perf_env__arch(env); return arch_syscalls__strerrno(arch_name, err); } static int trace__sys_exit(struct trace *trace, struct perf_evsel *evsel, union perf_event *event __maybe_unused, struct perf_sample *sample) { long ret; u64 duration = 0; bool duration_calculated = false; struct thread *thread; int id = perf_evsel__sc_tp_uint(evsel, id, sample), err = -1, callchain_ret = 0; struct syscall *sc = trace__syscall_info(trace, evsel, id); struct thread_trace *ttrace; if (sc == NULL) return -1; thread = machine__findnew_thread(trace->host, sample->pid, sample->tid); ttrace = thread__trace(thread, trace->output); if (ttrace == NULL) goto out_put; trace__fprintf_sample(trace, evsel, sample, thread); if (trace->summary) thread__update_stats(ttrace, id, sample); ret = perf_evsel__sc_tp_uint(evsel, ret, sample); if (sc->is_open && ret >= 0 && ttrace->filename.pending_open) { trace__set_fd_pathname(thread, ret, ttrace->filename.name); ttrace->filename.pending_open = false; ++trace->stats.vfs_getname; } if (ttrace->entry_time) { duration = sample->time - ttrace->entry_time; if (trace__filter_duration(trace, duration)) goto out; duration_calculated = true; } else if (trace->duration_filter) goto out; if (sample->callchain) { callchain_ret = trace__resolve_callchain(trace, evsel, sample, &callchain_cursor); if (callchain_ret == 0) { if (callchain_cursor.nr < trace->min_stack) goto out; callchain_ret = 1; } } if (trace->summary_only || (ret >= 0 && trace->failure_only)) goto out; trace__fprintf_entry_head(trace, thread, duration, duration_calculated, ttrace->entry_time, trace->output); if (ttrace->entry_pending) { fprintf(trace->output, "%-70s", ttrace->entry_str); } else { fprintf(trace->output, " ... ["); color_fprintf(trace->output, PERF_COLOR_YELLOW, "continued"); fprintf(trace->output, "]: %s()", sc->name); } if (sc->fmt == NULL) { if (ret < 0) goto errno_print; signed_print: fprintf(trace->output, ") = %ld", ret); } else if (ret < 0) { errno_print: { char bf[STRERR_BUFSIZE]; const char *emsg = str_error_r(-ret, bf, sizeof(bf)), *e = errno_to_name(evsel, -ret); fprintf(trace->output, ") = -1 %s %s", e, emsg); } } else if (ret == 0 && sc->fmt->timeout) fprintf(trace->output, ") = 0 Timeout"); else if (ttrace->ret_scnprintf) { char bf[1024]; struct syscall_arg arg = { .val = ret, .thread = thread, .trace = trace, }; ttrace->ret_scnprintf(bf, sizeof(bf), &arg); ttrace->ret_scnprintf = NULL; fprintf(trace->output, ") = %s", bf); } else if (sc->fmt->hexret) fprintf(trace->output, ") = %#lx", ret); else if (sc->fmt->errpid) { struct thread *child = machine__find_thread(trace->host, ret, ret); if (child != NULL) { fprintf(trace->output, ") = %ld", ret); if (child->comm_set) fprintf(trace->output, " (%s)", thread__comm_str(child)); thread__put(child); } } else goto signed_print; fputc('\n', trace->output); /* * We only consider an 'event' for the sake of --max-events a non-filtered * sys_enter + sys_exit and other tracepoint events. */ if (++trace->nr_events_printed == trace->max_events && trace->max_events != ULONG_MAX) interrupted = true; if (callchain_ret > 0) trace__fprintf_callchain(trace, sample); else if (callchain_ret < 0) pr_err("Problem processing %s callchain, skipping...\n", perf_evsel__name(evsel)); out: ttrace->entry_pending = false; err = 0; out_put: thread__put(thread); return err; } static int trace__vfs_getname(struct trace *trace, struct perf_evsel *evsel, union perf_event *event __maybe_unused, struct perf_sample *sample) { struct thread *thread = machine__findnew_thread(trace->host, sample->pid, sample->tid); struct thread_trace *ttrace; size_t filename_len, entry_str_len, to_move; ssize_t remaining_space; char *pos; const char *filename = perf_evsel__rawptr(evsel, sample, "pathname"); if (!thread) goto out; ttrace = thread__priv(thread); if (!ttrace) goto out_put; filename_len = strlen(filename); if (filename_len == 0) goto out_put; if (ttrace->filename.namelen < filename_len) { char *f = realloc(ttrace->filename.name, filename_len + 1); if (f == NULL) goto out_put; ttrace->filename.namelen = filename_len; ttrace->filename.name = f; } strcpy(ttrace->filename.name, filename); ttrace->filename.pending_open = true; if (!ttrace->filename.ptr) goto out_put; entry_str_len = strlen(ttrace->entry_str); remaining_space = trace__entry_str_size - entry_str_len - 1; /* \0 */ if (remaining_space <= 0) goto out_put; if (filename_len > (size_t)remaining_space) { filename += filename_len - remaining_space; filename_len = remaining_space; } to_move = entry_str_len - ttrace->filename.entry_str_pos + 1; /* \0 */ pos = ttrace->entry_str + ttrace->filename.entry_str_pos; memmove(pos + filename_len, pos, to_move); memcpy(pos, filename, filename_len); ttrace->filename.ptr = 0; ttrace->filename.entry_str_pos = 0; out_put: thread__put(thread); out: return 0; } static int trace__sched_stat_runtime(struct trace *trace, struct perf_evsel *evsel, union perf_event *event __maybe_unused, struct perf_sample *sample) { u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); double runtime_ms = (double)runtime / NSEC_PER_MSEC; struct thread *thread = machine__findnew_thread(trace->host, sample->pid, sample->tid); struct thread_trace *ttrace = thread__trace(thread, trace->output); if (ttrace == NULL) goto out_dump; ttrace->runtime_ms += runtime_ms; trace->runtime_ms += runtime_ms; out_put: thread__put(thread); return 0; out_dump: fprintf(trace->output, "%s: comm=%s,pid=%u,runtime=%" PRIu64 ",vruntime=%" PRIu64 ")\n", evsel->name, perf_evsel__strval(evsel, sample, "comm"), (pid_t)perf_evsel__intval(evsel, sample, "pid"), runtime, perf_evsel__intval(evsel, sample, "vruntime")); goto out_put; } static int bpf_output__printer(enum binary_printer_ops op, unsigned int val, void *extra __maybe_unused, FILE *fp) { unsigned char ch = (unsigned char)val; switch (op) { case BINARY_PRINT_CHAR_DATA: return fprintf(fp, "%c", isprint(ch) ? ch : '.'); case BINARY_PRINT_DATA_BEGIN: case BINARY_PRINT_LINE_BEGIN: case BINARY_PRINT_ADDR: case BINARY_PRINT_NUM_DATA: case BINARY_PRINT_NUM_PAD: case BINARY_PRINT_SEP: case BINARY_PRINT_CHAR_PAD: case BINARY_PRINT_LINE_END: case BINARY_PRINT_DATA_END: default: break; } return 0; } static void bpf_output__fprintf(struct trace *trace, struct perf_sample *sample) { binary__fprintf(sample->raw_data, sample->raw_size, 8, bpf_output__printer, NULL, trace->output); ++trace->nr_events_printed; } static int trace__event_handler(struct trace *trace, struct perf_evsel *evsel, union perf_event *event __maybe_unused, struct perf_sample *sample) { struct thread *thread; int callchain_ret = 0; /* * Check if we called perf_evsel__disable(evsel) due to, for instance, * this event's max_events having been hit and this is an entry coming * from the ring buffer that we should discard, since the max events * have already been considered/printed. */ if (evsel->disabled) return 0; thread = machine__findnew_thread(trace->host, sample->pid, sample->tid); if (sample->callchain) { callchain_ret = trace__resolve_callchain(trace, evsel, sample, &callchain_cursor); if (callchain_ret == 0) { if (callchain_cursor.nr < trace->min_stack) goto out; callchain_ret = 1; } } trace__printf_interrupted_entry(trace); trace__fprintf_tstamp(trace, sample->time, trace->output); if (trace->trace_syscalls) fprintf(trace->output, "( ): "); if (thread) trace__fprintf_comm_tid(trace, thread, trace->output); if (evsel == trace->syscalls.events.augmented) { int id = perf_evsel__sc_tp_uint(evsel, id, sample); struct syscall *sc = trace__syscall_info(trace, evsel, id); if (sc) { fprintf(trace->output, "%s(", sc->name); trace__fprintf_sys_enter(trace, evsel, sample); fputc(')', trace->output); goto newline; } /* * XXX: Not having the associated syscall info or not finding/adding * the thread should never happen, but if it does... * fall thru and print it as a bpf_output event. */ } fprintf(trace->output, "%s:", evsel->name); if (perf_evsel__is_bpf_output(evsel)) { bpf_output__fprintf(trace, sample); } else if (evsel->tp_format) { if (strncmp(evsel->tp_format->name, "sys_enter_", 10) || trace__fprintf_sys_enter(trace, evsel, sample)) { event_format__fprintf(evsel->tp_format, sample->cpu, sample->raw_data, sample->raw_size, trace->output); ++trace->nr_events_printed; if (evsel->max_events != ULONG_MAX && ++evsel->nr_events_printed == evsel->max_events) { perf_evsel__disable(evsel); perf_evsel__close(evsel); } } } newline: fprintf(trace->output, "\n"); if (callchain_ret > 0) trace__fprintf_callchain(trace, sample); else if (callchain_ret < 0) pr_err("Problem processing %s callchain, skipping...\n", perf_evsel__name(evsel)); out: thread__put(thread); return 0; } static void print_location(FILE *f, struct perf_sample *sample, struct addr_location *al, bool print_dso, bool print_sym) { if ((verbose > 0 || print_dso) && al->map) fprintf(f, "%s@", al->map->dso->long_name); if ((verbose > 0 || print_sym) && al->sym) fprintf(f, "%s+0x%" PRIx64, al->sym->name, al->addr - al->sym->start); else if (al->map) fprintf(f, "0x%" PRIx64, al->addr); else fprintf(f, "0x%" PRIx64, sample->addr); } static int trace__pgfault(struct trace *trace, struct perf_evsel *evsel, union perf_event *event __maybe_unused, struct perf_sample *sample) { struct thread *thread; struct addr_location al; char map_type = 'd'; struct thread_trace *ttrace; int err = -1; int callchain_ret = 0; thread = machine__findnew_thread(trace->host, sample->pid, sample->tid); if (sample->callchain) { callchain_ret = trace__resolve_callchain(trace, evsel, sample, &callchain_cursor); if (callchain_ret == 0) { if (callchain_cursor.nr < trace->min_stack) goto out_put; callchain_ret = 1; } } ttrace = thread__trace(thread, trace->output); if (ttrace == NULL) goto out_put; if (evsel->attr.config == PERF_COUNT_SW_PAGE_FAULTS_MAJ) ttrace->pfmaj++; else ttrace->pfmin++; if (trace->summary_only) goto out; thread__find_symbol(thread, sample->cpumode, sample->ip, &al); trace__fprintf_entry_head(trace, thread, 0, true, sample->time, trace->output); fprintf(trace->output, "%sfault [", evsel->attr.config == PERF_COUNT_SW_PAGE_FAULTS_MAJ ? "maj" : "min"); print_location(trace->output, sample, &al, false, true); fprintf(trace->output, "] => "); thread__find_symbol(thread, sample->cpumode, sample->addr, &al); if (!al.map) { thread__find_symbol(thread, sample->cpumode, sample->addr, &al); if (al.map) map_type = 'x'; else map_type = '?'; } print_location(trace->output, sample, &al, true, false); fprintf(trace->output, " (%c%c)\n", map_type, al.level); if (callchain_ret > 0) trace__fprintf_callchain(trace, sample); else if (callchain_ret < 0) pr_err("Problem processing %s callchain, skipping...\n", perf_evsel__name(evsel)); ++trace->nr_events_printed; out: err = 0; out_put: thread__put(thread); return err; } static void trace__set_base_time(struct trace *trace, struct perf_evsel *evsel, struct perf_sample *sample) { /* * BPF events were not setting PERF_SAMPLE_TIME, so be more robust * and don't use sample->time unconditionally, we may end up having * some other event in the future without PERF_SAMPLE_TIME for good * reason, i.e. we may not be interested in its timestamps, just in * it taking place, picking some piece of information when it * appears in our event stream (vfs_getname comes to mind). */ if (trace->base_time == 0 && !trace->full_time && (evsel->attr.sample_type & PERF_SAMPLE_TIME)) trace->base_time = sample->time; } static int trace__process_sample(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample, struct perf_evsel *evsel, struct machine *machine __maybe_unused) { struct trace *trace = container_of(tool, struct trace, tool); struct thread *thread; int err = 0; tracepoint_handler handler = evsel->handler; thread = machine__findnew_thread(trace->host, sample->pid, sample->tid); if (thread && thread__is_filtered(thread)) goto out; trace__set_base_time(trace, evsel, sample); if (handler) { ++trace->nr_events; handler(trace, evsel, event, sample); } out: thread__put(thread); return err; } static int trace__record(struct trace *trace, int argc, const char **argv) { unsigned int rec_argc, i, j; const char **rec_argv; const char * const record_args[] = { "record", "-R", "-m", "1024", "-c", "1", }; const char * const sc_args[] = { "-e", }; unsigned int sc_args_nr = ARRAY_SIZE(sc_args); const char * const majpf_args[] = { "-e", "major-faults" }; unsigned int majpf_args_nr = ARRAY_SIZE(majpf_args); const char * const minpf_args[] = { "-e", "minor-faults" }; unsigned int minpf_args_nr = ARRAY_SIZE(minpf_args); /* +1 is for the event string below */ rec_argc = ARRAY_SIZE(record_args) + sc_args_nr + 1 + majpf_args_nr + minpf_args_nr + argc; rec_argv = calloc(rec_argc + 1, sizeof(char *)); if (rec_argv == NULL) return -ENOMEM; j = 0; for (i = 0; i < ARRAY_SIZE(record_args); i++) rec_argv[j++] = record_args[i]; if (trace->trace_syscalls) { for (i = 0; i < sc_args_nr; i++) rec_argv[j++] = sc_args[i]; /* event string may be different for older kernels - e.g., RHEL6 */ if (is_valid_tracepoint("raw_syscalls:sys_enter")) rec_argv[j++] = "raw_syscalls:sys_enter,raw_syscalls:sys_exit"; else if (is_valid_tracepoint("syscalls:sys_enter")) rec_argv[j++] = "syscalls:sys_enter,syscalls:sys_exit"; else { pr_err("Neither raw_syscalls nor syscalls events exist.\n"); free(rec_argv); return -1; } } if (trace->trace_pgfaults & TRACE_PFMAJ) for (i = 0; i < majpf_args_nr; i++) rec_argv[j++] = majpf_args[i]; if (trace->trace_pgfaults & TRACE_PFMIN) for (i = 0; i < minpf_args_nr; i++) rec_argv[j++] = minpf_args[i]; for (i = 0; i < (unsigned int)argc; i++) rec_argv[j++] = argv[i]; return cmd_record(j, rec_argv); } static size_t trace__fprintf_thread_summary(struct trace *trace, FILE *fp); static bool perf_evlist__add_vfs_getname(struct perf_evlist *evlist) { struct perf_evsel *evsel = perf_evsel__newtp("probe", "vfs_getname"); if (IS_ERR(evsel)) return false; if (perf_evsel__field(evsel, "pathname") == NULL) { perf_evsel__delete(evsel); return false; } evsel->handler = trace__vfs_getname; perf_evlist__add(evlist, evsel); return true; } static struct perf_evsel *perf_evsel__new_pgfault(u64 config) { struct perf_evsel *evsel; struct perf_event_attr attr = { .type = PERF_TYPE_SOFTWARE, .mmap_data = 1, }; attr.config = config; attr.sample_period = 1; event_attr_init(&attr); evsel = perf_evsel__new(&attr); if (evsel) evsel->handler = trace__pgfault; return evsel; } static void trace__handle_event(struct trace *trace, union perf_event *event, struct perf_sample *sample) { const u32 type = event->header.type; struct perf_evsel *evsel; if (type != PERF_RECORD_SAMPLE) { trace__process_event(trace, trace->host, event, sample); return; } evsel = perf_evlist__id2evsel(trace->evlist, sample->id); if (evsel == NULL) { fprintf(trace->output, "Unknown tp ID %" PRIu64 ", skipping...\n", sample->id); return; } trace__set_base_time(trace, evsel, sample); if (evsel->attr.type == PERF_TYPE_TRACEPOINT && sample->raw_data == NULL) { fprintf(trace->output, "%s sample with no payload for tid: %d, cpu %d, raw_size=%d, skipping...\n", perf_evsel__name(evsel), sample->tid, sample->cpu, sample->raw_size); } else { tracepoint_handler handler = evsel->handler; handler(trace, evsel, event, sample); } if (trace->nr_events_printed >= trace->max_events && trace->max_events != ULONG_MAX) interrupted = true; } static int trace__add_syscall_newtp(struct trace *trace) { int ret = -1; struct perf_evlist *evlist = trace->evlist; struct perf_evsel *sys_enter, *sys_exit; sys_enter = perf_evsel__raw_syscall_newtp("sys_enter", trace__sys_enter); if (sys_enter == NULL) goto out; if (perf_evsel__init_sc_tp_ptr_field(sys_enter, args)) goto out_delete_sys_enter; sys_exit = perf_evsel__raw_syscall_newtp("sys_exit", trace__sys_exit); if (sys_exit == NULL) goto out_delete_sys_enter; if (perf_evsel__init_sc_tp_uint_field(sys_exit, ret)) goto out_delete_sys_exit; perf_evsel__config_callchain(sys_enter, &trace->opts, &callchain_param); perf_evsel__config_callchain(sys_exit, &trace->opts, &callchain_param); perf_evlist__add(evlist, sys_enter); perf_evlist__add(evlist, sys_exit); if (callchain_param.enabled && !trace->kernel_syscallchains) { /* * We're interested only in the user space callchain * leading to the syscall, allow overriding that for * debugging reasons using --kernel_syscall_callchains */ sys_exit->attr.exclude_callchain_kernel = 1; } trace->syscalls.events.sys_enter = sys_enter; trace->syscalls.events.sys_exit = sys_exit; ret = 0; out: return ret; out_delete_sys_exit: perf_evsel__delete_priv(sys_exit); out_delete_sys_enter: perf_evsel__delete_priv(sys_enter); goto out; } static int trace__set_ev_qualifier_filter(struct trace *trace) { int err = -1; struct perf_evsel *sys_exit; char *filter = asprintf_expr_inout_ints("id", !trace->not_ev_qualifier, trace->ev_qualifier_ids.nr, trace->ev_qualifier_ids.entries); if (filter == NULL) goto out_enomem; if (!perf_evsel__append_tp_filter(trace->syscalls.events.sys_enter, filter)) { sys_exit = trace->syscalls.events.sys_exit; err = perf_evsel__append_tp_filter(sys_exit, filter); } free(filter); out: return err; out_enomem: errno = ENOMEM; goto out; } static int bpf_map__set_filter_pids(struct bpf_map *map __maybe_unused, size_t npids __maybe_unused, pid_t *pids __maybe_unused) { int err = 0; #ifdef HAVE_LIBBPF_SUPPORT bool value = true; int map_fd = bpf_map__fd(map); size_t i; for (i = 0; i < npids; ++i) { err = bpf_map_update_elem(map_fd, &pids[i], &value, BPF_ANY); if (err) break; } #endif return err; } static int trace__set_filter_loop_pids(struct trace *trace) { unsigned int nr = 1, err; pid_t pids[32] = { getpid(), }; struct thread *thread = machine__find_thread(trace->host, pids[0], pids[0]); while (thread && nr < ARRAY_SIZE(pids)) { struct thread *parent = machine__find_thread(trace->host, thread->ppid, thread->ppid); if (parent == NULL) break; if (!strcmp(thread__comm_str(parent), "sshd")) { pids[nr++] = parent->tid; break; } thread = parent; } err = perf_evlist__set_tp_filter_pids(trace->evlist, nr, pids); if (!err && trace->filter_pids.map) err = bpf_map__set_filter_pids(trace->filter_pids.map, nr, pids); return err; } static int trace__set_filter_pids(struct trace *trace) { int err = 0; /* * Better not use !target__has_task() here because we need to cover the * case where no threads were specified in the command line, but a * workload was, and in that case we will fill in the thread_map when * we fork the workload in perf_evlist__prepare_workload. */ if (trace->filter_pids.nr > 0) { err = perf_evlist__set_tp_filter_pids(trace->evlist, trace->filter_pids.nr, trace->filter_pids.entries); if (!err && trace->filter_pids.map) { err = bpf_map__set_filter_pids(trace->filter_pids.map, trace->filter_pids.nr, trace->filter_pids.entries); } } else if (thread_map__pid(trace->evlist->threads, 0) == -1) { err = trace__set_filter_loop_pids(trace); } return err; } static int trace__run(struct trace *trace, int argc, const char **argv) { struct perf_evlist *evlist = trace->evlist; struct perf_evsel *evsel, *pgfault_maj = NULL, *pgfault_min = NULL; int err = -1, i; unsigned long before; const bool forks = argc > 0; bool draining = false; trace->live = true; if (trace->trace_syscalls && trace__add_syscall_newtp(trace)) goto out_error_raw_syscalls; if (trace->trace_syscalls) trace->vfs_getname = perf_evlist__add_vfs_getname(evlist); if ((trace->trace_pgfaults & TRACE_PFMAJ)) { pgfault_maj = perf_evsel__new_pgfault(PERF_COUNT_SW_PAGE_FAULTS_MAJ); if (pgfault_maj == NULL) goto out_error_mem; perf_evsel__config_callchain(pgfault_maj, &trace->opts, &callchain_param); perf_evlist__add(evlist, pgfault_maj); } if ((trace->trace_pgfaults & TRACE_PFMIN)) { pgfault_min = perf_evsel__new_pgfault(PERF_COUNT_SW_PAGE_FAULTS_MIN); if (pgfault_min == NULL) goto out_error_mem; perf_evsel__config_callchain(pgfault_min, &trace->opts, &callchain_param); perf_evlist__add(evlist, pgfault_min); } if (trace->sched && perf_evlist__add_newtp(evlist, "sched", "sched_stat_runtime", trace__sched_stat_runtime)) goto out_error_sched_stat_runtime; /* * If a global cgroup was set, apply it to all the events without an * explicit cgroup. I.e.: * * trace -G A -e sched:*switch * * Will set all raw_syscalls:sys_{enter,exit}, pgfault, vfs_getname, etc * _and_ sched:sched_switch to the 'A' cgroup, while: * * trace -e sched:*switch -G A * * will only set the sched:sched_switch event to the 'A' cgroup, all the * other events (raw_syscalls:sys_{enter,exit}, etc are left "without" * a cgroup (on the root cgroup, sys wide, etc). * * Multiple cgroups: * * trace -G A -e sched:*switch -G B * * the syscall ones go to the 'A' cgroup, the sched:sched_switch goes * to the 'B' cgroup. * * evlist__set_default_cgroup() grabs a reference of the passed cgroup * only for the evsels still without a cgroup, i.e. evsel->cgroup == NULL. */ if (trace->cgroup) evlist__set_default_cgroup(trace->evlist, trace->cgroup); err = perf_evlist__create_maps(evlist, &trace->opts.target); if (err < 0) { fprintf(trace->output, "Problems parsing the target to trace, check your options!\n"); goto out_delete_evlist; } err = trace__symbols_init(trace, evlist); if (err < 0) { fprintf(trace->output, "Problems initializing symbol libraries!\n"); goto out_delete_evlist; } perf_evlist__config(evlist, &trace->opts, &callchain_param); signal(SIGCHLD, sig_handler); signal(SIGINT, sig_handler); if (forks) { err = perf_evlist__prepare_workload(evlist, &trace->opts.target, argv, false, NULL); if (err < 0) { fprintf(trace->output, "Couldn't run the workload!\n"); goto out_delete_evlist; } } err = perf_evlist__open(evlist); if (err < 0) goto out_error_open; err = bpf__apply_obj_config(); if (err) { char errbuf[BUFSIZ]; bpf__strerror_apply_obj_config(err, errbuf, sizeof(errbuf)); pr_err("ERROR: Apply config to BPF failed: %s\n", errbuf); goto out_error_open; } err = trace__set_filter_pids(trace); if (err < 0) goto out_error_mem; if (trace->ev_qualifier_ids.nr > 0) { err = trace__set_ev_qualifier_filter(trace); if (err < 0) goto out_errno; pr_debug("event qualifier tracepoint filter: %s\n", trace->syscalls.events.sys_exit->filter); } err = perf_evlist__apply_filters(evlist, &evsel); if (err < 0) goto out_error_apply_filters; err = perf_evlist__mmap(evlist, trace->opts.mmap_pages); if (err < 0) goto out_error_mmap; if (!target__none(&trace->opts.target) && !trace->opts.initial_delay) perf_evlist__enable(evlist); if (forks) perf_evlist__start_workload(evlist); if (trace->opts.initial_delay) { usleep(trace->opts.initial_delay * 1000); perf_evlist__enable(evlist); } trace->multiple_threads = thread_map__pid(evlist->threads, 0) == -1 || evlist->threads->nr > 1 || perf_evlist__first(evlist)->attr.inherit; /* * Now that we already used evsel->attr to ask the kernel to setup the * events, lets reuse evsel->attr.sample_max_stack as the limit in * trace__resolve_callchain(), allowing per-event max-stack settings * to override an explicitly set --max-stack global setting. */ evlist__for_each_entry(evlist, evsel) { if (evsel__has_callchain(evsel) && evsel->attr.sample_max_stack == 0) evsel->attr.sample_max_stack = trace->max_stack; } again: before = trace->nr_events; for (i = 0; i < evlist->nr_mmaps; i++) { union perf_event *event; struct perf_mmap *md; md = &evlist->mmap[i]; if (perf_mmap__read_init(md) < 0) continue; while ((event = perf_mmap__read_event(md)) != NULL) { struct perf_sample sample; ++trace->nr_events; err = perf_evlist__parse_sample(evlist, event, &sample); if (err) { fprintf(trace->output, "Can't parse sample, err = %d, skipping...\n", err); goto next_event; } trace__handle_event(trace, event, &sample); next_event: perf_mmap__consume(md); if (interrupted) goto out_disable; if (done && !draining) { perf_evlist__disable(evlist); draining = true; } } perf_mmap__read_done(md); } if (trace->nr_events == before) { int timeout = done ? 100 : -1; if (!draining && perf_evlist__poll(evlist, timeout) > 0) { if (perf_evlist__filter_pollfd(evlist, POLLERR | POLLHUP | POLLNVAL) == 0) draining = true; goto again; } } else { goto again; } out_disable: thread__zput(trace->current); perf_evlist__disable(evlist); if (!err) { if (trace->summary) trace__fprintf_thread_summary(trace, trace->output); if (trace->show_tool_stats) { fprintf(trace->output, "Stats:\n " " vfs_getname : %" PRIu64 "\n" " proc_getname: %" PRIu64 "\n", trace->stats.vfs_getname, trace->stats.proc_getname); } } out_delete_evlist: trace__symbols__exit(trace); perf_evlist__delete(evlist); cgroup__put(trace->cgroup); trace->evlist = NULL; trace->live = false; return err; { char errbuf[BUFSIZ]; out_error_sched_stat_runtime: tracing_path__strerror_open_tp(errno, errbuf, sizeof(errbuf), "sched", "sched_stat_runtime"); goto out_error; out_error_raw_syscalls: tracing_path__strerror_open_tp(errno, errbuf, sizeof(errbuf), "raw_syscalls", "sys_(enter|exit)"); goto out_error; out_error_mmap: perf_evlist__strerror_mmap(evlist, errno, errbuf, sizeof(errbuf)); goto out_error; out_error_open: perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf)); out_error: fprintf(trace->output, "%s\n", errbuf); goto out_delete_evlist; out_error_apply_filters: fprintf(trace->output, "Failed to set filter \"%s\" on event %s with %d (%s)\n", evsel->filter, perf_evsel__name(evsel), errno, str_error_r(errno, errbuf, sizeof(errbuf))); goto out_delete_evlist; } out_error_mem: fprintf(trace->output, "Not enough memory to run!\n"); goto out_delete_evlist; out_errno: fprintf(trace->output, "errno=%d,%s\n", errno, strerror(errno)); goto out_delete_evlist; } static int trace__replay(struct trace *trace) { const struct perf_evsel_str_handler handlers[] = { { "probe:vfs_getname", trace__vfs_getname, }, }; struct perf_data data = { .file = { .path = input_name, }, .mode = PERF_DATA_MODE_READ, .force = trace->force, }; struct perf_session *session; struct perf_evsel *evsel; int err = -1; trace->tool.sample = trace__process_sample; trace->tool.mmap = perf_event__process_mmap; trace->tool.mmap2 = perf_event__process_mmap2; trace->tool.comm = perf_event__process_comm; trace->tool.exit = perf_event__process_exit; trace->tool.fork = perf_event__process_fork; trace->tool.attr = perf_event__process_attr; trace->tool.tracing_data = perf_event__process_tracing_data; trace->tool.build_id = perf_event__process_build_id; trace->tool.namespaces = perf_event__process_namespaces; trace->tool.ordered_events = true; trace->tool.ordering_requires_timestamps = true; /* add tid to output */ trace->multiple_threads = true; session = perf_session__new(&data, false, &trace->tool); if (session == NULL) return -1; if (trace->opts.target.pid) symbol_conf.pid_list_str = strdup(trace->opts.target.pid); if (trace->opts.target.tid) symbol_conf.tid_list_str = strdup(trace->opts.target.tid); if (symbol__init(&session->header.env) < 0) goto out; trace->host = &session->machines.host; err = perf_session__set_tracepoints_handlers(session, handlers); if (err) goto out; evsel = perf_evlist__find_tracepoint_by_name(session->evlist, "raw_syscalls:sys_enter"); /* older kernels have syscalls tp versus raw_syscalls */ if (evsel == NULL) evsel = perf_evlist__find_tracepoint_by_name(session->evlist, "syscalls:sys_enter"); if (evsel && (perf_evsel__init_raw_syscall_tp(evsel, trace__sys_enter) < 0 || perf_evsel__init_sc_tp_ptr_field(evsel, args))) { pr_err("Error during initialize raw_syscalls:sys_enter event\n"); goto out; } evsel = perf_evlist__find_tracepoint_by_name(session->evlist, "raw_syscalls:sys_exit"); if (evsel == NULL) evsel = perf_evlist__find_tracepoint_by_name(session->evlist, "syscalls:sys_exit"); if (evsel && (perf_evsel__init_raw_syscall_tp(evsel, trace__sys_exit) < 0 || perf_evsel__init_sc_tp_uint_field(evsel, ret))) { pr_err("Error during initialize raw_syscalls:sys_exit event\n"); goto out; } evlist__for_each_entry(session->evlist, evsel) { if (evsel->attr.type == PERF_TYPE_SOFTWARE && (evsel->attr.config == PERF_COUNT_SW_PAGE_FAULTS_MAJ || evsel->attr.config == PERF_COUNT_SW_PAGE_FAULTS_MIN || evsel->attr.config == PERF_COUNT_SW_PAGE_FAULTS)) evsel->handler = trace__pgfault; } setup_pager(); err = perf_session__process_events(session); if (err) pr_err("Failed to process events, error %d", err); else if (trace->summary) trace__fprintf_thread_summary(trace, trace->output); out: perf_session__delete(session); return err; } static size_t trace__fprintf_threads_header(FILE *fp) { size_t printed; printed = fprintf(fp, "\n Summary of events:\n\n"); return printed; } DEFINE_RESORT_RB(syscall_stats, a->msecs > b->msecs, struct stats *stats; double msecs; int syscall; ) { struct int_node *source = rb_entry(nd, struct int_node, rb_node); struct stats *stats = source->priv; entry->syscall = source->i; entry->stats = stats; entry->msecs = stats ? (u64)stats->n * (avg_stats(stats) / NSEC_PER_MSEC) : 0; } static size_t thread__dump_stats(struct thread_trace *ttrace, struct trace *trace, FILE *fp) { size_t printed = 0; struct syscall *sc; struct rb_node *nd; DECLARE_RESORT_RB_INTLIST(syscall_stats, ttrace->syscall_stats); if (syscall_stats == NULL) return 0; printed += fprintf(fp, "\n"); printed += fprintf(fp, " syscall calls total min avg max stddev\n"); printed += fprintf(fp, " (msec) (msec) (msec) (msec) (%%)\n"); printed += fprintf(fp, " --------------- -------- --------- --------- --------- --------- ------\n"); resort_rb__for_each_entry(nd, syscall_stats) { struct stats *stats = syscall_stats_entry->stats; if (stats) { double min = (double)(stats->min) / NSEC_PER_MSEC; double max = (double)(stats->max) / NSEC_PER_MSEC; double avg = avg_stats(stats); double pct; u64 n = (u64) stats->n; pct = avg ? 100.0 * stddev_stats(stats)/avg : 0.0; avg /= NSEC_PER_MSEC; sc = &trace->syscalls.table[syscall_stats_entry->syscall]; printed += fprintf(fp, " %-15s", sc->name); printed += fprintf(fp, " %8" PRIu64 " %9.3f %9.3f %9.3f", n, syscall_stats_entry->msecs, min, avg); printed += fprintf(fp, " %9.3f %9.2f%%\n", max, pct); } } resort_rb__delete(syscall_stats); printed += fprintf(fp, "\n\n"); return printed; } static size_t trace__fprintf_thread(FILE *fp, struct thread *thread, struct trace *trace) { size_t printed = 0; struct thread_trace *ttrace = thread__priv(thread); double ratio; if (ttrace == NULL) return 0; ratio = (double)ttrace->nr_events / trace->nr_events * 100.0; printed += fprintf(fp, " %s (%d), ", thread__comm_str(thread), thread->tid); printed += fprintf(fp, "%lu events, ", ttrace->nr_events); printed += fprintf(fp, "%.1f%%", ratio); if (ttrace->pfmaj) printed += fprintf(fp, ", %lu majfaults", ttrace->pfmaj); if (ttrace->pfmin) printed += fprintf(fp, ", %lu minfaults", ttrace->pfmin); if (trace->sched) printed += fprintf(fp, ", %.3f msec\n", ttrace->runtime_ms); else if (fputc('\n', fp) != EOF) ++printed; printed += thread__dump_stats(ttrace, trace, fp); return printed; } static unsigned long thread__nr_events(struct thread_trace *ttrace) { return ttrace ? ttrace->nr_events : 0; } DEFINE_RESORT_RB(threads, (thread__nr_events(a->thread->priv) < thread__nr_events(b->thread->priv)), struct thread *thread; ) { entry->thread = rb_entry(nd, struct thread, rb_node); } static size_t trace__fprintf_thread_summary(struct trace *trace, FILE *fp) { size_t printed = trace__fprintf_threads_header(fp); struct rb_node *nd; int i; for (i = 0; i < THREADS__TABLE_SIZE; i++) { DECLARE_RESORT_RB_MACHINE_THREADS(threads, trace->host, i); if (threads == NULL) { fprintf(fp, "%s", "Error sorting output by nr_events!\n"); return 0; } resort_rb__for_each_entry(nd, threads) printed += trace__fprintf_thread(fp, threads_entry->thread, trace); resort_rb__delete(threads); } return printed; } static int trace__set_duration(const struct option *opt, const char *str, int unset __maybe_unused) { struct trace *trace = opt->value; trace->duration_filter = atof(str); return 0; } static int trace__set_filter_pids_from_option(const struct option *opt, const char *str, int unset __maybe_unused) { int ret = -1; size_t i; struct trace *trace = opt->value; /* * FIXME: introduce a intarray class, plain parse csv and create a * { int nr, int entries[] } struct... */ struct intlist *list = intlist__new(str); if (list == NULL) return -1; i = trace->filter_pids.nr = intlist__nr_entries(list) + 1; trace->filter_pids.entries = calloc(i, sizeof(pid_t)); if (trace->filter_pids.entries == NULL) goto out; trace->filter_pids.entries[0] = getpid(); for (i = 1; i < trace->filter_pids.nr; ++i) trace->filter_pids.entries[i] = intlist__entry(list, i - 1)->i; intlist__delete(list); ret = 0; out: return ret; } static int trace__open_output(struct trace *trace, const char *filename) { struct stat st; if (!stat(filename, &st) && st.st_size) { char oldname[PATH_MAX]; scnprintf(oldname, sizeof(oldname), "%s.old", filename); unlink(oldname); rename(filename, oldname); } trace->output = fopen(filename, "w"); return trace->output == NULL ? -errno : 0; } static int parse_pagefaults(const struct option *opt, const char *str, int unset __maybe_unused) { int *trace_pgfaults = opt->value; if (strcmp(str, "all") == 0) *trace_pgfaults |= TRACE_PFMAJ | TRACE_PFMIN; else if (strcmp(str, "maj") == 0) *trace_pgfaults |= TRACE_PFMAJ; else if (strcmp(str, "min") == 0) *trace_pgfaults |= TRACE_PFMIN; else return -1; return 0; } static void evlist__set_evsel_handler(struct perf_evlist *evlist, void *handler) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) evsel->handler = handler; } static int evlist__set_syscall_tp_fields(struct perf_evlist *evlist) { struct perf_evsel *evsel; evlist__for_each_entry(evlist, evsel) { if (evsel->priv || !evsel->tp_format) continue; if (strcmp(evsel->tp_format->system, "syscalls")) continue; if (perf_evsel__init_syscall_tp(evsel)) return -1; if (!strncmp(evsel->tp_format->name, "sys_enter_", 10)) { struct syscall_tp *sc = evsel->priv; if (__tp_field__init_ptr(&sc->args, sc->id.offset + sizeof(u64))) return -1; } else if (!strncmp(evsel->tp_format->name, "sys_exit_", 9)) { struct syscall_tp *sc = evsel->priv; if (__tp_field__init_uint(&sc->ret, sizeof(u64), sc->id.offset + sizeof(u64), evsel->needs_swap)) return -1; } } return 0; } /* * XXX: Hackish, just splitting the combined -e+--event (syscalls * (raw_syscalls:{sys_{enter,exit}} + events (tracepoints, HW, SW, etc) to use * existing facilities unchanged (trace->ev_qualifier + parse_options()). * * It'd be better to introduce a parse_options() variant that would return a * list with the terms it didn't match to an event... */ static int trace__parse_events_option(const struct option *opt, const char *str, int unset __maybe_unused) { struct trace *trace = (struct trace *)opt->value; const char *s = str; char *sep = NULL, *lists[2] = { NULL, NULL, }; int len = strlen(str) + 1, err = -1, list, idx; char *strace_groups_dir = system_path(STRACE_GROUPS_DIR); char group_name[PATH_MAX]; struct syscall_fmt *fmt; if (strace_groups_dir == NULL) return -1; if (*s == '!') { ++s; trace->not_ev_qualifier = true; } while (1) { if ((sep = strchr(s, ',')) != NULL) *sep = '\0'; list = 0; if (syscalltbl__id(trace->sctbl, s) >= 0 || syscalltbl__strglobmatch_first(trace->sctbl, s, &idx) >= 0) { list = 1; goto do_concat; } fmt = syscall_fmt__find_by_alias(s); if (fmt != NULL) { list = 1; s = fmt->name; } else { path__join(group_name, sizeof(group_name), strace_groups_dir, s); if (access(group_name, R_OK) == 0) list = 1; } do_concat: if (lists[list]) { sprintf(lists[list] + strlen(lists[list]), ",%s", s); } else { lists[list] = malloc(len); if (lists[list] == NULL) goto out; strcpy(lists[list], s); } if (!sep) break; *sep = ','; s = sep + 1; } if (lists[1] != NULL) { struct strlist_config slist_config = { .dirname = strace_groups_dir, }; trace->ev_qualifier = strlist__new(lists[1], &slist_config); if (trace->ev_qualifier == NULL) { fputs("Not enough memory to parse event qualifier", trace->output); goto out; } if (trace__validate_ev_qualifier(trace)) goto out; trace->trace_syscalls = true; } err = 0; if (lists[0]) { struct option o = OPT_CALLBACK('e', "event", &trace->evlist, "event", "event selector. use 'perf list' to list available events", parse_events_option); err = parse_events_option(&o, lists[0], 0); } out: if (sep) *sep = ','; return err; } static int trace__parse_cgroups(const struct option *opt, const char *str, int unset) { struct trace *trace = opt->value; if (!list_empty(&trace->evlist->entries)) return parse_cgroups(opt, str, unset); trace->cgroup = evlist__findnew_cgroup(trace->evlist, str); return 0; } static struct bpf_map *bpf__find_map_by_name(const char *name) { struct bpf_object *obj, *tmp; bpf_object__for_each_safe(obj, tmp) { struct bpf_map *map = bpf_object__find_map_by_name(obj, name); if (map) return map; } return NULL; } static void trace__set_bpf_map_filtered_pids(struct trace *trace) { trace->filter_pids.map = bpf__find_map_by_name("pids_filtered"); } int cmd_trace(int argc, const char **argv) { const char *trace_usage[] = { "perf trace [] []", "perf trace [] -- []", "perf trace record [] []", "perf trace record [] -- []", NULL }; struct trace trace = { .syscalls = { . max = -1, }, .opts = { .target = { .uid = UINT_MAX, .uses_mmap = true, }, .user_freq = UINT_MAX, .user_interval = ULLONG_MAX, .no_buffering = true, .mmap_pages = UINT_MAX, }, .output = stderr, .show_comm = true, .trace_syscalls = false, .kernel_syscallchains = false, .max_stack = UINT_MAX, .max_events = ULONG_MAX, }; const char *output_name = NULL; const struct option trace_options[] = { OPT_CALLBACK('e', "event", &trace, "event", "event/syscall selector. use 'perf list' to list available events", trace__parse_events_option), OPT_BOOLEAN(0, "comm", &trace.show_comm, "show the thread COMM next to its id"), OPT_BOOLEAN(0, "tool_stats", &trace.show_tool_stats, "show tool stats"), OPT_CALLBACK(0, "expr", &trace, "expr", "list of syscalls/events to trace", trace__parse_events_option), OPT_STRING('o', "output", &output_name, "file", "output file name"), OPT_STRING('i', "input", &input_name, "file", "Analyze events in file"), OPT_STRING('p', "pid", &trace.opts.target.pid, "pid", "trace events on existing process id"), OPT_STRING('t', "tid", &trace.opts.target.tid, "tid", "trace events on existing thread id"), OPT_CALLBACK(0, "filter-pids", &trace, "CSV list of pids", "pids to filter (by the kernel)", trace__set_filter_pids_from_option), OPT_BOOLEAN('a', "all-cpus", &trace.opts.target.system_wide, "system-wide collection from all CPUs"), OPT_STRING('C', "cpu", &trace.opts.target.cpu_list, "cpu", "list of cpus to monitor"), OPT_BOOLEAN(0, "no-inherit", &trace.opts.no_inherit, "child tasks do not inherit counters"), OPT_CALLBACK('m', "mmap-pages", &trace.opts.mmap_pages, "pages", "number of mmap data pages", perf_evlist__parse_mmap_pages), OPT_STRING('u', "uid", &trace.opts.target.uid_str, "user", "user to profile"), OPT_CALLBACK(0, "duration", &trace, "float", "show only events with duration > N.M ms", trace__set_duration), OPT_BOOLEAN(0, "sched", &trace.sched, "show blocking scheduler events"), OPT_INCR('v', "verbose", &verbose, "be more verbose"), OPT_BOOLEAN('T', "time", &trace.full_time, "Show full timestamp, not time relative to first start"), OPT_BOOLEAN(0, "failure", &trace.failure_only, "Show only syscalls that failed"), OPT_BOOLEAN('s', "summary", &trace.summary_only, "Show only syscall summary with statistics"), OPT_BOOLEAN('S', "with-summary", &trace.summary, "Show all syscalls and summary with statistics"), OPT_CALLBACK_DEFAULT('F', "pf", &trace.trace_pgfaults, "all|maj|min", "Trace pagefaults", parse_pagefaults, "maj"), OPT_BOOLEAN(0, "syscalls", &trace.trace_syscalls, "Trace syscalls"), OPT_BOOLEAN('f', "force", &trace.force, "don't complain, do it"), OPT_CALLBACK(0, "call-graph", &trace.opts, "record_mode[,record_size]", record_callchain_help, &record_parse_callchain_opt), OPT_BOOLEAN(0, "kernel-syscall-graph", &trace.kernel_syscallchains, "Show the kernel callchains on the syscall exit path"), OPT_ULONG(0, "max-events", &trace.max_events, "Set the maximum number of events to print, exit after that is reached. "), OPT_UINTEGER(0, "min-stack", &trace.min_stack, "Set the minimum stack depth when parsing the callchain, " "anything below the specified depth will be ignored."), OPT_UINTEGER(0, "max-stack", &trace.max_stack, "Set the maximum stack depth when parsing the callchain, " "anything beyond the specified depth will be ignored. " "Default: kernel.perf_event_max_stack or " __stringify(PERF_MAX_STACK_DEPTH)), OPT_BOOLEAN(0, "print-sample", &trace.print_sample, "print the PERF_RECORD_SAMPLE PERF_SAMPLE_ info, for debugging"), OPT_UINTEGER(0, "proc-map-timeout", &proc_map_timeout, "per thread proc mmap processing timeout in ms"), OPT_CALLBACK('G', "cgroup", &trace, "name", "monitor event in cgroup name only", trace__parse_cgroups), OPT_UINTEGER('D', "delay", &trace.opts.initial_delay, "ms to wait before starting measurement after program " "start"), OPT_END() }; bool __maybe_unused max_stack_user_set = true; bool mmap_pages_user_set = true; struct perf_evsel *evsel; const char * const trace_subcommands[] = { "record", NULL }; int err = -1; char bf[BUFSIZ]; signal(SIGSEGV, sighandler_dump_stack); signal(SIGFPE, sighandler_dump_stack); trace.evlist = perf_evlist__new(); trace.sctbl = syscalltbl__new(); if (trace.evlist == NULL || trace.sctbl == NULL) { pr_err("Not enough memory to run!\n"); err = -ENOMEM; goto out; } argc = parse_options_subcommand(argc, argv, trace_options, trace_subcommands, trace_usage, PARSE_OPT_STOP_AT_NON_OPTION); if ((nr_cgroups || trace.cgroup) && !trace.opts.target.system_wide) { usage_with_options_msg(trace_usage, trace_options, "cgroup monitoring only available in system-wide mode"); } evsel = bpf__setup_output_event(trace.evlist, "__augmented_syscalls__"); if (IS_ERR(evsel)) { bpf__strerror_setup_output_event(trace.evlist, PTR_ERR(evsel), bf, sizeof(bf)); pr_err("ERROR: Setup trace syscalls enter failed: %s\n", bf); goto out; } if (evsel) { trace.syscalls.events.augmented = evsel; trace__set_bpf_map_filtered_pids(&trace); } err = bpf__setup_stdout(trace.evlist); if (err) { bpf__strerror_setup_stdout(trace.evlist, err, bf, sizeof(bf)); pr_err("ERROR: Setup BPF stdout failed: %s\n", bf); goto out; } err = -1; if (trace.trace_pgfaults) { trace.opts.sample_address = true; trace.opts.sample_time = true; } if (trace.opts.mmap_pages == UINT_MAX) mmap_pages_user_set = false; if (trace.max_stack == UINT_MAX) { trace.max_stack = input_name ? PERF_MAX_STACK_DEPTH : sysctl__max_stack(); max_stack_user_set = false; } #ifdef HAVE_DWARF_UNWIND_SUPPORT if ((trace.min_stack || max_stack_user_set) && !callchain_param.enabled) { record_opts__parse_callchain(&trace.opts, &callchain_param, "dwarf", false); } #endif if (callchain_param.enabled) { if (!mmap_pages_user_set && geteuid() == 0) trace.opts.mmap_pages = perf_event_mlock_kb_in_pages() * 4; symbol_conf.use_callchain = true; } if (trace.evlist->nr_entries > 0) { evlist__set_evsel_handler(trace.evlist, trace__event_handler); if (evlist__set_syscall_tp_fields(trace.evlist)) { perror("failed to set syscalls:* tracepoint fields"); goto out; } } /* * If we are augmenting syscalls, then combine what we put in the * __augmented_syscalls__ BPF map with what is in the * syscalls:sys_exit_FOO tracepoints, i.e. just like we do without BPF, * combining raw_syscalls:sys_enter with raw_syscalls:sys_exit. * * We'll switch to look at two BPF maps, one for sys_enter and the * other for sys_exit when we start augmenting the sys_exit paths with * buffers that are being copied from kernel to userspace, think 'read' * syscall. */ if (trace.syscalls.events.augmented) { evsel = trace.syscalls.events.augmented; if (perf_evsel__init_augmented_syscall_tp(evsel) || perf_evsel__init_augmented_syscall_tp_args(evsel)) goto out; evsel->handler = trace__sys_enter; evlist__for_each_entry(trace.evlist, evsel) { bool raw_syscalls_sys_exit = strcmp(perf_evsel__name(evsel), "raw_syscalls:sys_exit") == 0; if (raw_syscalls_sys_exit) { trace.raw_augmented_syscalls = true; goto init_augmented_syscall_tp; } if (strstarts(perf_evsel__name(evsel), "syscalls:sys_exit_")) { init_augmented_syscall_tp: perf_evsel__init_augmented_syscall_tp(evsel); perf_evsel__init_augmented_syscall_tp_ret(evsel); evsel->handler = trace__sys_exit; } } } if ((argc >= 1) && (strcmp(argv[0], "record") == 0)) return trace__record(&trace, argc-1, &argv[1]); /* summary_only implies summary option, but don't overwrite summary if set */ if (trace.summary_only) trace.summary = trace.summary_only; if (!trace.trace_syscalls && !trace.trace_pgfaults && trace.evlist->nr_entries == 0 /* Was --events used? */) { trace.trace_syscalls = true; } if (output_name != NULL) { err = trace__open_output(&trace, output_name); if (err < 0) { perror("failed to create output file"); goto out; } } err = target__validate(&trace.opts.target); if (err) { target__strerror(&trace.opts.target, err, bf, sizeof(bf)); fprintf(trace.output, "%s", bf); goto out_close; } err = target__parse_uid(&trace.opts.target); if (err) { target__strerror(&trace.opts.target, err, bf, sizeof(bf)); fprintf(trace.output, "%s", bf); goto out_close; } if (!argc && target__none(&trace.opts.target)) trace.opts.target.system_wide = true; if (input_name) err = trace__replay(&trace); else err = trace__run(&trace, argc, argv); out_close: if (output_name != NULL) fclose(trace.output); out: return err; }