// SPDX-License-Identifier: GPL-2.0-only /* * omap-mcbsp.c -- OMAP ALSA SoC DAI driver using McBSP port * * Copyright (C) 2008 Nokia Corporation * * Contact: Jarkko Nikula * Peter Ujfalusi */ #include #include #include #include #include #include #include #include #include #include #include #include #include "omap-mcbsp-priv.h" #include "omap-mcbsp.h" #include "sdma-pcm.h" #define OMAP_MCBSP_RATES (SNDRV_PCM_RATE_8000_96000) enum { OMAP_MCBSP_WORD_8 = 0, OMAP_MCBSP_WORD_12, OMAP_MCBSP_WORD_16, OMAP_MCBSP_WORD_20, OMAP_MCBSP_WORD_24, OMAP_MCBSP_WORD_32, }; static void omap_mcbsp_dump_reg(struct omap_mcbsp *mcbsp) { dev_dbg(mcbsp->dev, "**** McBSP%d regs ****\n", mcbsp->id); dev_dbg(mcbsp->dev, "DRR2: 0x%04x\n", MCBSP_READ(mcbsp, DRR2)); dev_dbg(mcbsp->dev, "DRR1: 0x%04x\n", MCBSP_READ(mcbsp, DRR1)); dev_dbg(mcbsp->dev, "DXR2: 0x%04x\n", MCBSP_READ(mcbsp, DXR2)); dev_dbg(mcbsp->dev, "DXR1: 0x%04x\n", MCBSP_READ(mcbsp, DXR1)); dev_dbg(mcbsp->dev, "SPCR2: 0x%04x\n", MCBSP_READ(mcbsp, SPCR2)); dev_dbg(mcbsp->dev, "SPCR1: 0x%04x\n", MCBSP_READ(mcbsp, SPCR1)); dev_dbg(mcbsp->dev, "RCR2: 0x%04x\n", MCBSP_READ(mcbsp, RCR2)); dev_dbg(mcbsp->dev, "RCR1: 0x%04x\n", MCBSP_READ(mcbsp, RCR1)); dev_dbg(mcbsp->dev, "XCR2: 0x%04x\n", MCBSP_READ(mcbsp, XCR2)); dev_dbg(mcbsp->dev, "XCR1: 0x%04x\n", MCBSP_READ(mcbsp, XCR1)); dev_dbg(mcbsp->dev, "SRGR2: 0x%04x\n", MCBSP_READ(mcbsp, SRGR2)); dev_dbg(mcbsp->dev, "SRGR1: 0x%04x\n", MCBSP_READ(mcbsp, SRGR1)); dev_dbg(mcbsp->dev, "PCR0: 0x%04x\n", MCBSP_READ(mcbsp, PCR0)); dev_dbg(mcbsp->dev, "***********************\n"); } static int omap2_mcbsp_set_clks_src(struct omap_mcbsp *mcbsp, u8 fck_src_id) { struct clk *fck_src; const char *src; int r; if (fck_src_id == MCBSP_CLKS_PAD_SRC) src = "pad_fck"; else if (fck_src_id == MCBSP_CLKS_PRCM_SRC) src = "prcm_fck"; else return -EINVAL; fck_src = clk_get(mcbsp->dev, src); if (IS_ERR(fck_src)) { dev_err(mcbsp->dev, "CLKS: could not clk_get() %s\n", src); return -EINVAL; } pm_runtime_put_sync(mcbsp->dev); r = clk_set_parent(mcbsp->fclk, fck_src); if (r) { dev_err(mcbsp->dev, "CLKS: could not clk_set_parent() to %s\n", src); clk_put(fck_src); return r; } pm_runtime_get_sync(mcbsp->dev); clk_put(fck_src); return 0; } static irqreturn_t omap_mcbsp_irq_handler(int irq, void *data) { struct omap_mcbsp *mcbsp = data; u16 irqst; irqst = MCBSP_READ(mcbsp, IRQST); dev_dbg(mcbsp->dev, "IRQ callback : 0x%x\n", irqst); if (irqst & RSYNCERREN) dev_err(mcbsp->dev, "RX Frame Sync Error!\n"); if (irqst & RFSREN) dev_dbg(mcbsp->dev, "RX Frame Sync\n"); if (irqst & REOFEN) dev_dbg(mcbsp->dev, "RX End Of Frame\n"); if (irqst & RRDYEN) dev_dbg(mcbsp->dev, "RX Buffer Threshold Reached\n"); if (irqst & RUNDFLEN) dev_err(mcbsp->dev, "RX Buffer Underflow!\n"); if (irqst & ROVFLEN) dev_err(mcbsp->dev, "RX Buffer Overflow!\n"); if (irqst & XSYNCERREN) dev_err(mcbsp->dev, "TX Frame Sync Error!\n"); if (irqst & XFSXEN) dev_dbg(mcbsp->dev, "TX Frame Sync\n"); if (irqst & XEOFEN) dev_dbg(mcbsp->dev, "TX End Of Frame\n"); if (irqst & XRDYEN) dev_dbg(mcbsp->dev, "TX Buffer threshold Reached\n"); if (irqst & XUNDFLEN) dev_err(mcbsp->dev, "TX Buffer Underflow!\n"); if (irqst & XOVFLEN) dev_err(mcbsp->dev, "TX Buffer Overflow!\n"); if (irqst & XEMPTYEOFEN) dev_dbg(mcbsp->dev, "TX Buffer empty at end of frame\n"); MCBSP_WRITE(mcbsp, IRQST, irqst); return IRQ_HANDLED; } static irqreturn_t omap_mcbsp_tx_irq_handler(int irq, void *data) { struct omap_mcbsp *mcbsp = data; u16 irqst_spcr2; irqst_spcr2 = MCBSP_READ(mcbsp, SPCR2); dev_dbg(mcbsp->dev, "TX IRQ callback : 0x%x\n", irqst_spcr2); if (irqst_spcr2 & XSYNC_ERR) { dev_err(mcbsp->dev, "TX Frame Sync Error! : 0x%x\n", irqst_spcr2); /* Writing zero to XSYNC_ERR clears the IRQ */ MCBSP_WRITE(mcbsp, SPCR2, MCBSP_READ_CACHE(mcbsp, SPCR2)); } return IRQ_HANDLED; } static irqreturn_t omap_mcbsp_rx_irq_handler(int irq, void *data) { struct omap_mcbsp *mcbsp = data; u16 irqst_spcr1; irqst_spcr1 = MCBSP_READ(mcbsp, SPCR1); dev_dbg(mcbsp->dev, "RX IRQ callback : 0x%x\n", irqst_spcr1); if (irqst_spcr1 & RSYNC_ERR) { dev_err(mcbsp->dev, "RX Frame Sync Error! : 0x%x\n", irqst_spcr1); /* Writing zero to RSYNC_ERR clears the IRQ */ MCBSP_WRITE(mcbsp, SPCR1, MCBSP_READ_CACHE(mcbsp, SPCR1)); } return IRQ_HANDLED; } /* * omap_mcbsp_config simply write a config to the * appropriate McBSP. * You either call this function or set the McBSP registers * by yourself before calling omap_mcbsp_start(). */ static void omap_mcbsp_config(struct omap_mcbsp *mcbsp, const struct omap_mcbsp_reg_cfg *config) { dev_dbg(mcbsp->dev, "Configuring McBSP%d phys_base: 0x%08lx\n", mcbsp->id, mcbsp->phys_base); /* We write the given config */ MCBSP_WRITE(mcbsp, SPCR2, config->spcr2); MCBSP_WRITE(mcbsp, SPCR1, config->spcr1); MCBSP_WRITE(mcbsp, RCR2, config->rcr2); MCBSP_WRITE(mcbsp, RCR1, config->rcr1); MCBSP_WRITE(mcbsp, XCR2, config->xcr2); MCBSP_WRITE(mcbsp, XCR1, config->xcr1); MCBSP_WRITE(mcbsp, SRGR2, config->srgr2); MCBSP_WRITE(mcbsp, SRGR1, config->srgr1); MCBSP_WRITE(mcbsp, MCR2, config->mcr2); MCBSP_WRITE(mcbsp, MCR1, config->mcr1); MCBSP_WRITE(mcbsp, PCR0, config->pcr0); if (mcbsp->pdata->has_ccr) { MCBSP_WRITE(mcbsp, XCCR, config->xccr); MCBSP_WRITE(mcbsp, RCCR, config->rccr); } /* Enable wakeup behavior */ if (mcbsp->pdata->has_wakeup) MCBSP_WRITE(mcbsp, WAKEUPEN, XRDYEN | RRDYEN); /* Enable TX/RX sync error interrupts by default */ if (mcbsp->irq) MCBSP_WRITE(mcbsp, IRQEN, RSYNCERREN | XSYNCERREN | RUNDFLEN | ROVFLEN | XUNDFLEN | XOVFLEN); } /** * omap_mcbsp_dma_reg_params - returns the address of mcbsp data register * @mcbsp: omap_mcbsp struct for the McBSP instance * @stream: Stream direction (playback/capture) * * Returns the address of mcbsp data transmit register or data receive register * to be used by DMA for transferring/receiving data */ static int omap_mcbsp_dma_reg_params(struct omap_mcbsp *mcbsp, unsigned int stream) { int data_reg; if (stream == SNDRV_PCM_STREAM_PLAYBACK) { if (mcbsp->pdata->reg_size == 2) data_reg = OMAP_MCBSP_REG_DXR1; else data_reg = OMAP_MCBSP_REG_DXR; } else { if (mcbsp->pdata->reg_size == 2) data_reg = OMAP_MCBSP_REG_DRR1; else data_reg = OMAP_MCBSP_REG_DRR; } return mcbsp->phys_dma_base + data_reg * mcbsp->pdata->reg_step; } /* * omap_mcbsp_set_rx_threshold configures the transmit threshold in words. * The threshold parameter is 1 based, and it is converted (threshold - 1) * for the THRSH2 register. */ static void omap_mcbsp_set_tx_threshold(struct omap_mcbsp *mcbsp, u16 threshold) { if (threshold && threshold <= mcbsp->max_tx_thres) MCBSP_WRITE(mcbsp, THRSH2, threshold - 1); } /* * omap_mcbsp_set_rx_threshold configures the receive threshold in words. * The threshold parameter is 1 based, and it is converted (threshold - 1) * for the THRSH1 register. */ static void omap_mcbsp_set_rx_threshold(struct omap_mcbsp *mcbsp, u16 threshold) { if (threshold && threshold <= mcbsp->max_rx_thres) MCBSP_WRITE(mcbsp, THRSH1, threshold - 1); } /* * omap_mcbsp_get_tx_delay returns the number of used slots in the McBSP FIFO */ static u16 omap_mcbsp_get_tx_delay(struct omap_mcbsp *mcbsp) { u16 buffstat; /* Returns the number of free locations in the buffer */ buffstat = MCBSP_READ(mcbsp, XBUFFSTAT); /* Number of slots are different in McBSP ports */ return mcbsp->pdata->buffer_size - buffstat; } /* * omap_mcbsp_get_rx_delay returns the number of free slots in the McBSP FIFO * to reach the threshold value (when the DMA will be triggered to read it) */ static u16 omap_mcbsp_get_rx_delay(struct omap_mcbsp *mcbsp) { u16 buffstat, threshold; /* Returns the number of used locations in the buffer */ buffstat = MCBSP_READ(mcbsp, RBUFFSTAT); /* RX threshold */ threshold = MCBSP_READ(mcbsp, THRSH1); /* Return the number of location till we reach the threshold limit */ if (threshold <= buffstat) return 0; else return threshold - buffstat; } static int omap_mcbsp_request(struct omap_mcbsp *mcbsp) { void *reg_cache; int err; reg_cache = kzalloc(mcbsp->reg_cache_size, GFP_KERNEL); if (!reg_cache) return -ENOMEM; spin_lock(&mcbsp->lock); if (!mcbsp->free) { dev_err(mcbsp->dev, "McBSP%d is currently in use\n", mcbsp->id); err = -EBUSY; goto err_kfree; } mcbsp->free = false; mcbsp->reg_cache = reg_cache; spin_unlock(&mcbsp->lock); if(mcbsp->pdata->ops && mcbsp->pdata->ops->request) mcbsp->pdata->ops->request(mcbsp->id - 1); /* * Make sure that transmitter, receiver and sample-rate generator are * not running before activating IRQs. */ MCBSP_WRITE(mcbsp, SPCR1, 0); MCBSP_WRITE(mcbsp, SPCR2, 0); if (mcbsp->irq) { err = request_irq(mcbsp->irq, omap_mcbsp_irq_handler, 0, "McBSP", (void *)mcbsp); if (err != 0) { dev_err(mcbsp->dev, "Unable to request IRQ\n"); goto err_clk_disable; } } else { err = request_irq(mcbsp->tx_irq, omap_mcbsp_tx_irq_handler, 0, "McBSP TX", (void *)mcbsp); if (err != 0) { dev_err(mcbsp->dev, "Unable to request TX IRQ\n"); goto err_clk_disable; } err = request_irq(mcbsp->rx_irq, omap_mcbsp_rx_irq_handler, 0, "McBSP RX", (void *)mcbsp); if (err != 0) { dev_err(mcbsp->dev, "Unable to request RX IRQ\n"); goto err_free_irq; } } return 0; err_free_irq: free_irq(mcbsp->tx_irq, (void *)mcbsp); err_clk_disable: if(mcbsp->pdata->ops && mcbsp->pdata->ops->free) mcbsp->pdata->ops->free(mcbsp->id - 1); /* Disable wakeup behavior */ if (mcbsp->pdata->has_wakeup) MCBSP_WRITE(mcbsp, WAKEUPEN, 0); spin_lock(&mcbsp->lock); mcbsp->free = true; mcbsp->reg_cache = NULL; err_kfree: spin_unlock(&mcbsp->lock); kfree(reg_cache); return err; } static void omap_mcbsp_free(struct omap_mcbsp *mcbsp) { void *reg_cache; if(mcbsp->pdata->ops && mcbsp->pdata->ops->free) mcbsp->pdata->ops->free(mcbsp->id - 1); /* Disable wakeup behavior */ if (mcbsp->pdata->has_wakeup) MCBSP_WRITE(mcbsp, WAKEUPEN, 0); /* Disable interrupt requests */ if (mcbsp->irq) MCBSP_WRITE(mcbsp, IRQEN, 0); if (mcbsp->irq) { free_irq(mcbsp->irq, (void *)mcbsp); } else { free_irq(mcbsp->rx_irq, (void *)mcbsp); free_irq(mcbsp->tx_irq, (void *)mcbsp); } reg_cache = mcbsp->reg_cache; /* * Select CLKS source from internal source unconditionally before * marking the McBSP port as free. * If the external clock source via MCBSP_CLKS pin has been selected the * system will refuse to enter idle if the CLKS pin source is not reset * back to internal source. */ if (!mcbsp_omap1()) omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC); spin_lock(&mcbsp->lock); if (mcbsp->free) dev_err(mcbsp->dev, "McBSP%d was not reserved\n", mcbsp->id); else mcbsp->free = true; mcbsp->reg_cache = NULL; spin_unlock(&mcbsp->lock); kfree(reg_cache); } /* * Here we start the McBSP, by enabling transmitter, receiver or both. * If no transmitter or receiver is active prior calling, then sample-rate * generator and frame sync are started. */ static void omap_mcbsp_start(struct omap_mcbsp *mcbsp, int stream) { int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK); int rx = !tx; int enable_srg = 0; u16 w; if (mcbsp->st_data) omap_mcbsp_st_start(mcbsp); /* Only enable SRG, if McBSP is master */ w = MCBSP_READ_CACHE(mcbsp, PCR0); if (w & (FSXM | FSRM | CLKXM | CLKRM)) enable_srg = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); if (enable_srg) { /* Start the sample generator */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 6)); } /* Enable transmitter and receiver */ tx &= 1; w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | tx); rx &= 1; w = MCBSP_READ_CACHE(mcbsp, SPCR1); MCBSP_WRITE(mcbsp, SPCR1, w | rx); /* * Worst case: CLKSRG*2 = 8000khz: (1/8000) * 2 * 2 usec * REVISIT: 100us may give enough time for two CLKSRG, however * due to some unknown PM related, clock gating etc. reason it * is now at 500us. */ udelay(500); if (enable_srg) { /* Start frame sync */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w | (1 << 7)); } if (mcbsp->pdata->has_ccr) { /* Release the transmitter and receiver */ w = MCBSP_READ_CACHE(mcbsp, XCCR); w &= ~(tx ? XDISABLE : 0); MCBSP_WRITE(mcbsp, XCCR, w); w = MCBSP_READ_CACHE(mcbsp, RCCR); w &= ~(rx ? RDISABLE : 0); MCBSP_WRITE(mcbsp, RCCR, w); } /* Dump McBSP Regs */ omap_mcbsp_dump_reg(mcbsp); } static void omap_mcbsp_stop(struct omap_mcbsp *mcbsp, int stream) { int tx = (stream == SNDRV_PCM_STREAM_PLAYBACK); int rx = !tx; int idle; u16 w; /* Reset transmitter */ tx &= 1; if (mcbsp->pdata->has_ccr) { w = MCBSP_READ_CACHE(mcbsp, XCCR); w |= (tx ? XDISABLE : 0); MCBSP_WRITE(mcbsp, XCCR, w); } w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w & ~tx); /* Reset receiver */ rx &= 1; if (mcbsp->pdata->has_ccr) { w = MCBSP_READ_CACHE(mcbsp, RCCR); w |= (rx ? RDISABLE : 0); MCBSP_WRITE(mcbsp, RCCR, w); } w = MCBSP_READ_CACHE(mcbsp, SPCR1); MCBSP_WRITE(mcbsp, SPCR1, w & ~rx); idle = !((MCBSP_READ_CACHE(mcbsp, SPCR2) | MCBSP_READ_CACHE(mcbsp, SPCR1)) & 1); if (idle) { /* Reset the sample rate generator */ w = MCBSP_READ_CACHE(mcbsp, SPCR2); MCBSP_WRITE(mcbsp, SPCR2, w & ~(1 << 6)); } if (mcbsp->st_data) omap_mcbsp_st_stop(mcbsp); } #define max_thres(m) (mcbsp->pdata->buffer_size) #define valid_threshold(m, val) ((val) <= max_thres(m)) #define THRESHOLD_PROP_BUILDER(prop) \ static ssize_t prop##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ \ return sprintf(buf, "%u\n", mcbsp->prop); \ } \ \ static ssize_t prop##_store(struct device *dev, \ struct device_attribute *attr, \ const char *buf, size_t size) \ { \ struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); \ unsigned long val; \ int status; \ \ status = kstrtoul(buf, 0, &val); \ if (status) \ return status; \ \ if (!valid_threshold(mcbsp, val)) \ return -EDOM; \ \ mcbsp->prop = val; \ return size; \ } \ \ static DEVICE_ATTR(prop, 0644, prop##_show, prop##_store) THRESHOLD_PROP_BUILDER(max_tx_thres); THRESHOLD_PROP_BUILDER(max_rx_thres); static const char * const dma_op_modes[] = { "element", "threshold", }; static ssize_t dma_op_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); int dma_op_mode, i = 0; ssize_t len = 0; const char * const *s; dma_op_mode = mcbsp->dma_op_mode; for (s = &dma_op_modes[i]; i < ARRAY_SIZE(dma_op_modes); s++, i++) { if (dma_op_mode == i) len += sprintf(buf + len, "[%s] ", *s); else len += sprintf(buf + len, "%s ", *s); } len += sprintf(buf + len, "\n"); return len; } static ssize_t dma_op_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct omap_mcbsp *mcbsp = dev_get_drvdata(dev); int i; i = sysfs_match_string(dma_op_modes, buf); if (i < 0) return i; spin_lock_irq(&mcbsp->lock); if (!mcbsp->free) { size = -EBUSY; goto unlock; } mcbsp->dma_op_mode = i; unlock: spin_unlock_irq(&mcbsp->lock); return size; } static DEVICE_ATTR_RW(dma_op_mode); static const struct attribute *additional_attrs[] = { &dev_attr_max_tx_thres.attr, &dev_attr_max_rx_thres.attr, &dev_attr_dma_op_mode.attr, NULL, }; static const struct attribute_group additional_attr_group = { .attrs = (struct attribute **)additional_attrs, }; /* * McBSP1 and McBSP3 are directly mapped on 1610 and 1510. * 730 has only 2 McBSP, and both of them are MPU peripherals. */ static int omap_mcbsp_init(struct platform_device *pdev) { struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev); struct resource *res; int ret = 0; spin_lock_init(&mcbsp->lock); mcbsp->free = true; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mpu"); if (!res) res = platform_get_resource(pdev, IORESOURCE_MEM, 0); mcbsp->io_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mcbsp->io_base)) return PTR_ERR(mcbsp->io_base); mcbsp->phys_base = res->start; mcbsp->reg_cache_size = resource_size(res); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma"); if (!res) mcbsp->phys_dma_base = mcbsp->phys_base; else mcbsp->phys_dma_base = res->start; /* * OMAP1, 2 uses two interrupt lines: TX, RX * OMAP2430, OMAP3 SoC have combined IRQ line as well. * OMAP4 and newer SoC only have the combined IRQ line. * Use the combined IRQ if available since it gives better debugging * possibilities. */ mcbsp->irq = platform_get_irq_byname(pdev, "common"); if (mcbsp->irq == -ENXIO) { mcbsp->tx_irq = platform_get_irq_byname(pdev, "tx"); if (mcbsp->tx_irq == -ENXIO) { mcbsp->irq = platform_get_irq(pdev, 0); mcbsp->tx_irq = 0; } else { mcbsp->rx_irq = platform_get_irq_byname(pdev, "rx"); mcbsp->irq = 0; } } if (!pdev->dev.of_node) { res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx"); if (!res) { dev_err(&pdev->dev, "invalid tx DMA channel\n"); return -ENODEV; } mcbsp->dma_req[0] = res->start; mcbsp->dma_data[0].filter_data = &mcbsp->dma_req[0]; res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx"); if (!res) { dev_err(&pdev->dev, "invalid rx DMA channel\n"); return -ENODEV; } mcbsp->dma_req[1] = res->start; mcbsp->dma_data[1].filter_data = &mcbsp->dma_req[1]; } else { mcbsp->dma_data[0].filter_data = "tx"; mcbsp->dma_data[1].filter_data = "rx"; } mcbsp->dma_data[0].addr = omap_mcbsp_dma_reg_params(mcbsp, SNDRV_PCM_STREAM_PLAYBACK); mcbsp->dma_data[1].addr = omap_mcbsp_dma_reg_params(mcbsp, SNDRV_PCM_STREAM_CAPTURE); mcbsp->fclk = clk_get(&pdev->dev, "fck"); if (IS_ERR(mcbsp->fclk)) { ret = PTR_ERR(mcbsp->fclk); dev_err(mcbsp->dev, "unable to get fck: %d\n", ret); return ret; } mcbsp->dma_op_mode = MCBSP_DMA_MODE_ELEMENT; if (mcbsp->pdata->buffer_size) { /* * Initially configure the maximum thresholds to a safe value. * The McBSP FIFO usage with these values should not go under * 16 locations. * If the whole FIFO without safety buffer is used, than there * is a possibility that the DMA will be not able to push the * new data on time, causing channel shifts in runtime. */ mcbsp->max_tx_thres = max_thres(mcbsp) - 0x10; mcbsp->max_rx_thres = max_thres(mcbsp) - 0x10; ret = sysfs_create_group(&mcbsp->dev->kobj, &additional_attr_group); if (ret) { dev_err(mcbsp->dev, "Unable to create additional controls\n"); goto err_thres; } } ret = omap_mcbsp_st_init(pdev); if (ret) goto err_st; return 0; err_st: if (mcbsp->pdata->buffer_size) sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group); err_thres: clk_put(mcbsp->fclk); return ret; } /* * Stream DMA parameters. DMA request line and port address are set runtime * since they are different between OMAP1 and later OMAPs */ static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream, unsigned int packet_size) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0); struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); int words; /* No need to proceed further if McBSP does not have FIFO */ if (mcbsp->pdata->buffer_size == 0) return; /* * Configure McBSP threshold based on either: * packet_size, when the sDMA is in packet mode, or based on the * period size in THRESHOLD mode, otherwise use McBSP threshold = 1 * for mono streams. */ if (packet_size) words = packet_size; else words = 1; /* Configure McBSP internal buffer usage */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) omap_mcbsp_set_tx_threshold(mcbsp, words); else omap_mcbsp_set_rx_threshold(mcbsp, words); } static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_interval *buffer_size = hw_param_interval(params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE); struct snd_interval *channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); struct omap_mcbsp *mcbsp = rule->private; struct snd_interval frames; int size; snd_interval_any(&frames); size = mcbsp->pdata->buffer_size; frames.min = size / channels->min; frames.integer = 1; return snd_interval_refine(buffer_size, &frames); } static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); int err = 0; if (!cpu_dai->active) err = omap_mcbsp_request(mcbsp); /* * OMAP3 McBSP FIFO is word structured. * McBSP2 has 1024 + 256 = 1280 word long buffer, * McBSP1,3,4,5 has 128 word long buffer * This means that the size of the FIFO depends on the sample format. * For example on McBSP3: * 16bit samples: size is 128 * 2 = 256 bytes * 32bit samples: size is 128 * 4 = 512 bytes * It is simpler to place constraint for buffer and period based on * channels. * McBSP3 as example again (16 or 32 bit samples): * 1 channel (mono): size is 128 frames (128 words) * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words) * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words) */ if (mcbsp->pdata->buffer_size) { /* * Rule for the buffer size. We should not allow * smaller buffer than the FIFO size to avoid underruns. * This applies only for the playback stream. */ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, omap_mcbsp_hwrule_min_buffersize, mcbsp, SNDRV_PCM_HW_PARAM_CHANNELS, -1); /* Make sure, that the period size is always even */ snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2); } return err; } static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE; int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; if (mcbsp->latency[stream2]) cpu_latency_qos_update_request(&mcbsp->pm_qos_req, mcbsp->latency[stream2]); else if (mcbsp->latency[stream1]) cpu_latency_qos_remove_request(&mcbsp->pm_qos_req); mcbsp->latency[stream1] = 0; if (!cpu_dai->active) { omap_mcbsp_free(mcbsp); mcbsp->configured = 0; } } static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req; int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK); int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE; int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK; int latency = mcbsp->latency[stream2]; /* Prevent omap hardware from hitting off between FIFO fills */ if (!latency || mcbsp->latency[stream1] < latency) latency = mcbsp->latency[stream1]; if (cpu_latency_qos_request_active(pm_qos_req)) cpu_latency_qos_update_request(pm_qos_req, latency); else if (latency) cpu_latency_qos_add_request(pm_qos_req, latency); return 0; } static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *cpu_dai) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: mcbsp->active++; omap_mcbsp_start(mcbsp, substream->stream); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: omap_mcbsp_stop(mcbsp, substream->stream); mcbsp->active--; break; default: return -EINVAL; } return 0; } static snd_pcm_sframes_t omap_mcbsp_dai_delay( struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0); struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); u16 fifo_use; snd_pcm_sframes_t delay; /* No need to proceed further if McBSP does not have FIFO */ if (mcbsp->pdata->buffer_size == 0) return 0; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) fifo_use = omap_mcbsp_get_tx_delay(mcbsp); else fifo_use = omap_mcbsp_get_rx_delay(mcbsp); /* * Divide the used locations with the channel count to get the * FIFO usage in samples (don't care about partial samples in the * buffer). */ delay = fifo_use / substream->runtime->channels; return delay; } static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *cpu_dai) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; struct snd_dmaengine_dai_dma_data *dma_data; int wlen, channels, wpf; int pkt_size = 0; unsigned int format, div, framesize, master; unsigned int buffer_size = mcbsp->pdata->buffer_size; dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream); channels = params_channels(params); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: wlen = 16; break; case SNDRV_PCM_FORMAT_S32_LE: wlen = 32; break; default: return -EINVAL; } if (buffer_size) { int latency; if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) { int period_words, max_thrsh; int divider = 0; period_words = params_period_bytes(params) / (wlen / 8); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) max_thrsh = mcbsp->max_tx_thres; else max_thrsh = mcbsp->max_rx_thres; /* * Use sDMA packet mode if McBSP is in threshold mode: * If period words less than the FIFO size the packet * size is set to the number of period words, otherwise * Look for the biggest threshold value which divides * the period size evenly. */ divider = period_words / max_thrsh; if (period_words % max_thrsh) divider++; while (period_words % divider && divider < period_words) divider++; if (divider == period_words) return -EINVAL; pkt_size = period_words / divider; } else if (channels > 1) { /* Use packet mode for non mono streams */ pkt_size = channels; } latency = (buffer_size - pkt_size) / channels; latency = latency * USEC_PER_SEC / (params->rate_num / params->rate_den); mcbsp->latency[substream->stream] = latency; omap_mcbsp_set_threshold(substream, pkt_size); } dma_data->maxburst = pkt_size; if (mcbsp->configured) { /* McBSP already configured by another stream */ return 0; } regs->rcr2 &= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7)); regs->xcr2 &= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7)); regs->rcr1 &= ~(RFRLEN1(0x7f) | RWDLEN1(7)); regs->xcr1 &= ~(XFRLEN1(0x7f) | XWDLEN1(7)); format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK; wpf = channels; if (channels == 2 && (format == SND_SOC_DAIFMT_I2S || format == SND_SOC_DAIFMT_LEFT_J)) { /* Use dual-phase frames */ regs->rcr2 |= RPHASE; regs->xcr2 |= XPHASE; /* Set 1 word per (McBSP) frame for phase1 and phase2 */ wpf--; regs->rcr2 |= RFRLEN2(wpf - 1); regs->xcr2 |= XFRLEN2(wpf - 1); } regs->rcr1 |= RFRLEN1(wpf - 1); regs->xcr1 |= XFRLEN1(wpf - 1); switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: /* Set word lengths */ regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_16); regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_16); regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_16); regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_16); break; case SNDRV_PCM_FORMAT_S32_LE: /* Set word lengths */ regs->rcr2 |= RWDLEN2(OMAP_MCBSP_WORD_32); regs->rcr1 |= RWDLEN1(OMAP_MCBSP_WORD_32); regs->xcr2 |= XWDLEN2(OMAP_MCBSP_WORD_32); regs->xcr1 |= XWDLEN1(OMAP_MCBSP_WORD_32); break; default: /* Unsupported PCM format */ return -EINVAL; } /* In McBSP master modes, FRAME (i.e. sample rate) is generated * by _counting_ BCLKs. Calculate frame size in BCLKs */ master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK; if (master == SND_SOC_DAIFMT_CBS_CFS) { div = mcbsp->clk_div ? mcbsp->clk_div : 1; framesize = (mcbsp->in_freq / div) / params_rate(params); if (framesize < wlen * channels) { printk(KERN_ERR "%s: not enough bandwidth for desired rate and " "channels\n", __func__); return -EINVAL; } } else framesize = wlen * channels; /* Set FS period and length in terms of bit clock periods */ regs->srgr2 &= ~FPER(0xfff); regs->srgr1 &= ~FWID(0xff); switch (format) { case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_LEFT_J: regs->srgr2 |= FPER(framesize - 1); regs->srgr1 |= FWID((framesize >> 1) - 1); break; case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: regs->srgr2 |= FPER(framesize - 1); regs->srgr1 |= FWID(0); break; } omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs); mcbsp->wlen = wlen; mcbsp->configured = 1; return 0; } /* * This must be called before _set_clkdiv and _set_sysclk since McBSP register * cache is initialized here */ static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; bool inv_fs = false; if (mcbsp->configured) return 0; mcbsp->fmt = fmt; memset(regs, 0, sizeof(*regs)); /* Generic McBSP register settings */ regs->spcr2 |= XINTM(3) | FREE; regs->spcr1 |= RINTM(3); /* RFIG and XFIG are not defined in 2430 and on OMAP3+ */ if (!mcbsp->pdata->has_ccr) { regs->rcr2 |= RFIG; regs->xcr2 |= XFIG; } /* Configure XCCR/RCCR only for revisions which have ccr registers */ if (mcbsp->pdata->has_ccr) { regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE; regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: /* 1-bit data delay */ regs->rcr2 |= RDATDLY(1); regs->xcr2 |= XDATDLY(1); break; case SND_SOC_DAIFMT_LEFT_J: /* 0-bit data delay */ regs->rcr2 |= RDATDLY(0); regs->xcr2 |= XDATDLY(0); regs->spcr1 |= RJUST(2); /* Invert FS polarity configuration */ inv_fs = true; break; case SND_SOC_DAIFMT_DSP_A: /* 1-bit data delay */ regs->rcr2 |= RDATDLY(1); regs->xcr2 |= XDATDLY(1); /* Invert FS polarity configuration */ inv_fs = true; break; case SND_SOC_DAIFMT_DSP_B: /* 0-bit data delay */ regs->rcr2 |= RDATDLY(0); regs->xcr2 |= XDATDLY(0); /* Invert FS polarity configuration */ inv_fs = true; break; default: /* Unsupported data format */ return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: /* McBSP master. Set FS and bit clocks as outputs */ regs->pcr0 |= FSXM | FSRM | CLKXM | CLKRM; /* Sample rate generator drives the FS */ regs->srgr2 |= FSGM; break; case SND_SOC_DAIFMT_CBM_CFS: /* McBSP slave. FS clock as output */ regs->srgr2 |= FSGM; regs->pcr0 |= FSXM | FSRM; break; case SND_SOC_DAIFMT_CBM_CFM: /* McBSP slave */ break; default: /* Unsupported master/slave configuration */ return -EINVAL; } /* Set bit clock (CLKX/CLKR) and FS polarities */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: /* * Normal BCLK + FS. * FS active low. TX data driven on falling edge of bit clock * and RX data sampled on rising edge of bit clock. */ regs->pcr0 |= FSXP | FSRP | CLKXP | CLKRP; break; case SND_SOC_DAIFMT_NB_IF: regs->pcr0 |= CLKXP | CLKRP; break; case SND_SOC_DAIFMT_IB_NF: regs->pcr0 |= FSXP | FSRP; break; case SND_SOC_DAIFMT_IB_IF: break; default: return -EINVAL; } if (inv_fs) regs->pcr0 ^= FSXP | FSRP; return 0; } static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai, int div_id, int div) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; if (div_id != OMAP_MCBSP_CLKGDV) return -ENODEV; mcbsp->clk_div = div; regs->srgr1 &= ~CLKGDV(0xff); regs->srgr1 |= CLKGDV(div - 1); return 0; } static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai, int clk_id, unsigned int freq, int dir) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai); struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs; int err = 0; if (mcbsp->active) { if (freq == mcbsp->in_freq) return 0; else return -EBUSY; } mcbsp->in_freq = freq; regs->srgr2 &= ~CLKSM; regs->pcr0 &= ~SCLKME; switch (clk_id) { case OMAP_MCBSP_SYSCLK_CLK: regs->srgr2 |= CLKSM; break; case OMAP_MCBSP_SYSCLK_CLKS_FCLK: if (mcbsp_omap1()) { err = -EINVAL; break; } err = omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PRCM_SRC); break; case OMAP_MCBSP_SYSCLK_CLKS_EXT: if (mcbsp_omap1()) { err = 0; break; } err = omap2_mcbsp_set_clks_src(mcbsp, MCBSP_CLKS_PAD_SRC); break; case OMAP_MCBSP_SYSCLK_CLKX_EXT: regs->srgr2 |= CLKSM; regs->pcr0 |= SCLKME; /* * If McBSP is master but yet the CLKX/CLKR pin drives the SRG, * disable output on those pins. This enables to inject the * reference clock through CLKX/CLKR. For this to work * set_dai_sysclk() _needs_ to be called after set_dai_fmt(). */ regs->pcr0 &= ~CLKXM; break; case OMAP_MCBSP_SYSCLK_CLKR_EXT: regs->pcr0 |= SCLKME; /* Disable ouput on CLKR pin in master mode */ regs->pcr0 &= ~CLKRM; break; default: err = -ENODEV; } return err; } static const struct snd_soc_dai_ops mcbsp_dai_ops = { .startup = omap_mcbsp_dai_startup, .shutdown = omap_mcbsp_dai_shutdown, .prepare = omap_mcbsp_dai_prepare, .trigger = omap_mcbsp_dai_trigger, .delay = omap_mcbsp_dai_delay, .hw_params = omap_mcbsp_dai_hw_params, .set_fmt = omap_mcbsp_dai_set_dai_fmt, .set_clkdiv = omap_mcbsp_dai_set_clkdiv, .set_sysclk = omap_mcbsp_dai_set_dai_sysclk, }; static int omap_mcbsp_probe(struct snd_soc_dai *dai) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai); pm_runtime_enable(mcbsp->dev); snd_soc_dai_init_dma_data(dai, &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK], &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]); return 0; } static int omap_mcbsp_remove(struct snd_soc_dai *dai) { struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai); pm_runtime_disable(mcbsp->dev); return 0; } static struct snd_soc_dai_driver omap_mcbsp_dai = { .probe = omap_mcbsp_probe, .remove = omap_mcbsp_remove, .playback = { .channels_min = 1, .channels_max = 16, .rates = OMAP_MCBSP_RATES, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .capture = { .channels_min = 1, .channels_max = 16, .rates = OMAP_MCBSP_RATES, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE, }, .ops = &mcbsp_dai_ops, }; static const struct snd_soc_component_driver omap_mcbsp_component = { .name = "omap-mcbsp", }; static struct omap_mcbsp_platform_data omap2420_pdata = { .reg_step = 4, .reg_size = 2, }; static struct omap_mcbsp_platform_data omap2430_pdata = { .reg_step = 4, .reg_size = 4, .has_ccr = true, }; static struct omap_mcbsp_platform_data omap3_pdata = { .reg_step = 4, .reg_size = 4, .has_ccr = true, .has_wakeup = true, }; static struct omap_mcbsp_platform_data omap4_pdata = { .reg_step = 4, .reg_size = 4, .has_ccr = true, .has_wakeup = true, }; static const struct of_device_id omap_mcbsp_of_match[] = { { .compatible = "ti,omap2420-mcbsp", .data = &omap2420_pdata, }, { .compatible = "ti,omap2430-mcbsp", .data = &omap2430_pdata, }, { .compatible = "ti,omap3-mcbsp", .data = &omap3_pdata, }, { .compatible = "ti,omap4-mcbsp", .data = &omap4_pdata, }, { }, }; MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match); static int asoc_mcbsp_probe(struct platform_device *pdev) { struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev); struct omap_mcbsp *mcbsp; const struct of_device_id *match; int ret; match = of_match_device(omap_mcbsp_of_match, &pdev->dev); if (match) { struct device_node *node = pdev->dev.of_node; struct omap_mcbsp_platform_data *pdata_quirk = pdata; int buffer_size; pdata = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp_platform_data), GFP_KERNEL); if (!pdata) return -ENOMEM; memcpy(pdata, match->data, sizeof(*pdata)); if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size)) pdata->buffer_size = buffer_size; if (pdata_quirk) pdata->force_ick_on = pdata_quirk->force_ick_on; } else if (!pdata) { dev_err(&pdev->dev, "missing platform data.\n"); return -EINVAL; } mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL); if (!mcbsp) return -ENOMEM; mcbsp->id = pdev->id; mcbsp->pdata = pdata; mcbsp->dev = &pdev->dev; platform_set_drvdata(pdev, mcbsp); ret = omap_mcbsp_init(pdev); if (ret) return ret; if (mcbsp->pdata->reg_size == 2) { omap_mcbsp_dai.playback.formats = SNDRV_PCM_FMTBIT_S16_LE; omap_mcbsp_dai.capture.formats = SNDRV_PCM_FMTBIT_S16_LE; } ret = devm_snd_soc_register_component(&pdev->dev, &omap_mcbsp_component, &omap_mcbsp_dai, 1); if (ret) return ret; return sdma_pcm_platform_register(&pdev->dev, "tx", "rx"); } static int asoc_mcbsp_remove(struct platform_device *pdev) { struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev); if (mcbsp->pdata->ops && mcbsp->pdata->ops->free) mcbsp->pdata->ops->free(mcbsp->id); if (cpu_latency_qos_request_active(&mcbsp->pm_qos_req)) cpu_latency_qos_remove_request(&mcbsp->pm_qos_req); if (mcbsp->pdata->buffer_size) sysfs_remove_group(&mcbsp->dev->kobj, &additional_attr_group); omap_mcbsp_st_cleanup(pdev); clk_put(mcbsp->fclk); return 0; } static struct platform_driver asoc_mcbsp_driver = { .driver = { .name = "omap-mcbsp", .of_match_table = omap_mcbsp_of_match, }, .probe = asoc_mcbsp_probe, .remove = asoc_mcbsp_remove, }; module_platform_driver(asoc_mcbsp_driver); MODULE_AUTHOR("Jarkko Nikula "); MODULE_DESCRIPTION("OMAP I2S SoC Interface"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:omap-mcbsp");