/* * wm8978.c -- WM8978 ALSA SoC Audio Codec driver * * Copyright (C) 2009-2010 Guennadi Liakhovetski <g.liakhovetski@gmx.de> * Copyright (C) 2007 Carlos Munoz <carlos@kenati.com> * Copyright 2006-2009 Wolfson Microelectronics PLC. * Based on wm8974 and wm8990 by Liam Girdwood <lrg@slimlogic.co.uk> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/pm.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/soc.h> #include <sound/initval.h> #include <sound/tlv.h> #include <asm/div64.h> #include "wm8978.h" static const struct reg_default wm8978_reg_defaults[] = { { 1, 0x0000 }, { 2, 0x0000 }, { 3, 0x0000 }, { 4, 0x0050 }, { 5, 0x0000 }, { 6, 0x0140 }, { 7, 0x0000 }, { 8, 0x0000 }, { 9, 0x0000 }, { 10, 0x0000 }, { 11, 0x00ff }, { 12, 0x00ff }, { 13, 0x0000 }, { 14, 0x0100 }, { 15, 0x00ff }, { 16, 0x00ff }, { 17, 0x0000 }, { 18, 0x012c }, { 19, 0x002c }, { 20, 0x002c }, { 21, 0x002c }, { 22, 0x002c }, { 23, 0x0000 }, { 24, 0x0032 }, { 25, 0x0000 }, { 26, 0x0000 }, { 27, 0x0000 }, { 28, 0x0000 }, { 29, 0x0000 }, { 30, 0x0000 }, { 31, 0x0000 }, { 32, 0x0038 }, { 33, 0x000b }, { 34, 0x0032 }, { 35, 0x0000 }, { 36, 0x0008 }, { 37, 0x000c }, { 38, 0x0093 }, { 39, 0x00e9 }, { 40, 0x0000 }, { 41, 0x0000 }, { 42, 0x0000 }, { 43, 0x0000 }, { 44, 0x0033 }, { 45, 0x0010 }, { 46, 0x0010 }, { 47, 0x0100 }, { 48, 0x0100 }, { 49, 0x0002 }, { 50, 0x0001 }, { 51, 0x0001 }, { 52, 0x0039 }, { 53, 0x0039 }, { 54, 0x0039 }, { 55, 0x0039 }, { 56, 0x0001 }, { 57, 0x0001 }, }; static bool wm8978_volatile(struct device *dev, unsigned int reg) { return reg == WM8978_RESET; } /* codec private data */ struct wm8978_priv { struct regmap *regmap; unsigned int f_pllout; unsigned int f_mclk; unsigned int f_256fs; unsigned int f_opclk; int mclk_idx; enum wm8978_sysclk_src sysclk; }; static const char *wm8978_companding[] = {"Off", "NC", "u-law", "A-law"}; static const char *wm8978_eqmode[] = {"Capture", "Playback"}; static const char *wm8978_bw[] = {"Narrow", "Wide"}; static const char *wm8978_eq1[] = {"80Hz", "105Hz", "135Hz", "175Hz"}; static const char *wm8978_eq2[] = {"230Hz", "300Hz", "385Hz", "500Hz"}; static const char *wm8978_eq3[] = {"650Hz", "850Hz", "1.1kHz", "1.4kHz"}; static const char *wm8978_eq4[] = {"1.8kHz", "2.4kHz", "3.2kHz", "4.1kHz"}; static const char *wm8978_eq5[] = {"5.3kHz", "6.9kHz", "9kHz", "11.7kHz"}; static const char *wm8978_alc3[] = {"ALC", "Limiter"}; static const char *wm8978_alc1[] = {"Off", "Right", "Left", "Both"}; static const SOC_ENUM_SINGLE_DECL(adc_compand, WM8978_COMPANDING_CONTROL, 1, wm8978_companding); static const SOC_ENUM_SINGLE_DECL(dac_compand, WM8978_COMPANDING_CONTROL, 3, wm8978_companding); static const SOC_ENUM_SINGLE_DECL(eqmode, WM8978_EQ1, 8, wm8978_eqmode); static const SOC_ENUM_SINGLE_DECL(eq1, WM8978_EQ1, 5, wm8978_eq1); static const SOC_ENUM_SINGLE_DECL(eq2bw, WM8978_EQ2, 8, wm8978_bw); static const SOC_ENUM_SINGLE_DECL(eq2, WM8978_EQ2, 5, wm8978_eq2); static const SOC_ENUM_SINGLE_DECL(eq3bw, WM8978_EQ3, 8, wm8978_bw); static const SOC_ENUM_SINGLE_DECL(eq3, WM8978_EQ3, 5, wm8978_eq3); static const SOC_ENUM_SINGLE_DECL(eq4bw, WM8978_EQ4, 8, wm8978_bw); static const SOC_ENUM_SINGLE_DECL(eq4, WM8978_EQ4, 5, wm8978_eq4); static const SOC_ENUM_SINGLE_DECL(eq5, WM8978_EQ5, 5, wm8978_eq5); static const SOC_ENUM_SINGLE_DECL(alc3, WM8978_ALC_CONTROL_3, 8, wm8978_alc3); static const SOC_ENUM_SINGLE_DECL(alc1, WM8978_ALC_CONTROL_1, 7, wm8978_alc1); static const DECLARE_TLV_DB_SCALE(digital_tlv, -12750, 50, 1); static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0); static const DECLARE_TLV_DB_SCALE(inpga_tlv, -1200, 75, 0); static const DECLARE_TLV_DB_SCALE(spk_tlv, -5700, 100, 0); static const DECLARE_TLV_DB_SCALE(boost_tlv, -1500, 300, 1); static const DECLARE_TLV_DB_SCALE(limiter_tlv, 0, 100, 0); static const struct snd_kcontrol_new wm8978_snd_controls[] = { SOC_SINGLE("Digital Loopback Switch", WM8978_COMPANDING_CONTROL, 0, 1, 0), SOC_ENUM("ADC Companding", adc_compand), SOC_ENUM("DAC Companding", dac_compand), SOC_DOUBLE("DAC Inversion Switch", WM8978_DAC_CONTROL, 0, 1, 1, 0), SOC_DOUBLE_R_TLV("PCM Volume", WM8978_LEFT_DAC_DIGITAL_VOLUME, WM8978_RIGHT_DAC_DIGITAL_VOLUME, 0, 255, 0, digital_tlv), SOC_SINGLE("High Pass Filter Switch", WM8978_ADC_CONTROL, 8, 1, 0), SOC_SINGLE("High Pass Cut Off", WM8978_ADC_CONTROL, 4, 7, 0), SOC_DOUBLE("ADC Inversion Switch", WM8978_ADC_CONTROL, 0, 1, 1, 0), SOC_DOUBLE_R_TLV("ADC Volume", WM8978_LEFT_ADC_DIGITAL_VOLUME, WM8978_RIGHT_ADC_DIGITAL_VOLUME, 0, 255, 0, digital_tlv), SOC_ENUM("Equaliser Function", eqmode), SOC_ENUM("EQ1 Cut Off", eq1), SOC_SINGLE_TLV("EQ1 Volume", WM8978_EQ1, 0, 24, 1, eq_tlv), SOC_ENUM("Equaliser EQ2 Bandwith", eq2bw), SOC_ENUM("EQ2 Cut Off", eq2), SOC_SINGLE_TLV("EQ2 Volume", WM8978_EQ2, 0, 24, 1, eq_tlv), SOC_ENUM("Equaliser EQ3 Bandwith", eq3bw), SOC_ENUM("EQ3 Cut Off", eq3), SOC_SINGLE_TLV("EQ3 Volume", WM8978_EQ3, 0, 24, 1, eq_tlv), SOC_ENUM("Equaliser EQ4 Bandwith", eq4bw), SOC_ENUM("EQ4 Cut Off", eq4), SOC_SINGLE_TLV("EQ4 Volume", WM8978_EQ4, 0, 24, 1, eq_tlv), SOC_ENUM("EQ5 Cut Off", eq5), SOC_SINGLE_TLV("EQ5 Volume", WM8978_EQ5, 0, 24, 1, eq_tlv), SOC_SINGLE("DAC Playback Limiter Switch", WM8978_DAC_LIMITER_1, 8, 1, 0), SOC_SINGLE("DAC Playback Limiter Decay", WM8978_DAC_LIMITER_1, 4, 15, 0), SOC_SINGLE("DAC Playback Limiter Attack", WM8978_DAC_LIMITER_1, 0, 15, 0), SOC_SINGLE("DAC Playback Limiter Threshold", WM8978_DAC_LIMITER_2, 4, 7, 0), SOC_SINGLE_TLV("DAC Playback Limiter Volume", WM8978_DAC_LIMITER_2, 0, 12, 0, limiter_tlv), SOC_ENUM("ALC Enable Switch", alc1), SOC_SINGLE("ALC Capture Min Gain", WM8978_ALC_CONTROL_1, 0, 7, 0), SOC_SINGLE("ALC Capture Max Gain", WM8978_ALC_CONTROL_1, 3, 7, 0), SOC_SINGLE("ALC Capture Hold", WM8978_ALC_CONTROL_2, 4, 10, 0), SOC_SINGLE("ALC Capture Target", WM8978_ALC_CONTROL_2, 0, 15, 0), SOC_ENUM("ALC Capture Mode", alc3), SOC_SINGLE("ALC Capture Decay", WM8978_ALC_CONTROL_3, 4, 10, 0), SOC_SINGLE("ALC Capture Attack", WM8978_ALC_CONTROL_3, 0, 10, 0), SOC_SINGLE("ALC Capture Noise Gate Switch", WM8978_NOISE_GATE, 3, 1, 0), SOC_SINGLE("ALC Capture Noise Gate Threshold", WM8978_NOISE_GATE, 0, 7, 0), SOC_DOUBLE_R("Capture PGA ZC Switch", WM8978_LEFT_INP_PGA_CONTROL, WM8978_RIGHT_INP_PGA_CONTROL, 7, 1, 0), /* OUT1 - Headphones */ SOC_DOUBLE_R("Headphone Playback ZC Switch", WM8978_LOUT1_HP_CONTROL, WM8978_ROUT1_HP_CONTROL, 7, 1, 0), SOC_DOUBLE_R_TLV("Headphone Playback Volume", WM8978_LOUT1_HP_CONTROL, WM8978_ROUT1_HP_CONTROL, 0, 63, 0, spk_tlv), /* OUT2 - Speakers */ SOC_DOUBLE_R("Speaker Playback ZC Switch", WM8978_LOUT2_SPK_CONTROL, WM8978_ROUT2_SPK_CONTROL, 7, 1, 0), SOC_DOUBLE_R_TLV("Speaker Playback Volume", WM8978_LOUT2_SPK_CONTROL, WM8978_ROUT2_SPK_CONTROL, 0, 63, 0, spk_tlv), /* OUT3/4 - Line Output */ SOC_DOUBLE_R("Line Playback Switch", WM8978_OUT3_MIXER_CONTROL, WM8978_OUT4_MIXER_CONTROL, 6, 1, 1), /* Mixer #3: Boost (Input) mixer */ SOC_DOUBLE_R("PGA Boost (+20dB)", WM8978_LEFT_ADC_BOOST_CONTROL, WM8978_RIGHT_ADC_BOOST_CONTROL, 8, 1, 0), SOC_DOUBLE_R_TLV("L2/R2 Boost Volume", WM8978_LEFT_ADC_BOOST_CONTROL, WM8978_RIGHT_ADC_BOOST_CONTROL, 4, 7, 0, boost_tlv), SOC_DOUBLE_R_TLV("Aux Boost Volume", WM8978_LEFT_ADC_BOOST_CONTROL, WM8978_RIGHT_ADC_BOOST_CONTROL, 0, 7, 0, boost_tlv), /* Input PGA volume */ SOC_DOUBLE_R_TLV("Input PGA Volume", WM8978_LEFT_INP_PGA_CONTROL, WM8978_RIGHT_INP_PGA_CONTROL, 0, 63, 0, inpga_tlv), /* Headphone */ SOC_DOUBLE_R("Headphone Switch", WM8978_LOUT1_HP_CONTROL, WM8978_ROUT1_HP_CONTROL, 6, 1, 1), /* Speaker */ SOC_DOUBLE_R("Speaker Switch", WM8978_LOUT2_SPK_CONTROL, WM8978_ROUT2_SPK_CONTROL, 6, 1, 1), /* DAC / ADC oversampling */ SOC_SINGLE("DAC 128x Oversampling Switch", WM8978_DAC_CONTROL, 5, 1, 0), SOC_SINGLE("ADC 128x Oversampling Switch", WM8978_ADC_CONTROL, 5, 1, 0), }; /* Mixer #1: Output (OUT1, OUT2) Mixer: mix AUX, Input mixer output and DAC */ static const struct snd_kcontrol_new wm8978_left_out_mixer[] = { SOC_DAPM_SINGLE("Line Bypass Switch", WM8978_LEFT_MIXER_CONTROL, 1, 1, 0), SOC_DAPM_SINGLE("Aux Playback Switch", WM8978_LEFT_MIXER_CONTROL, 5, 1, 0), SOC_DAPM_SINGLE("PCM Playback Switch", WM8978_LEFT_MIXER_CONTROL, 0, 1, 0), }; static const struct snd_kcontrol_new wm8978_right_out_mixer[] = { SOC_DAPM_SINGLE("Line Bypass Switch", WM8978_RIGHT_MIXER_CONTROL, 1, 1, 0), SOC_DAPM_SINGLE("Aux Playback Switch", WM8978_RIGHT_MIXER_CONTROL, 5, 1, 0), SOC_DAPM_SINGLE("PCM Playback Switch", WM8978_RIGHT_MIXER_CONTROL, 0, 1, 0), }; /* OUT3/OUT4 Mixer not implemented */ /* Mixer #2: Input PGA Mute */ static const struct snd_kcontrol_new wm8978_left_input_mixer[] = { SOC_DAPM_SINGLE("L2 Switch", WM8978_INPUT_CONTROL, 2, 1, 0), SOC_DAPM_SINGLE("MicN Switch", WM8978_INPUT_CONTROL, 1, 1, 0), SOC_DAPM_SINGLE("MicP Switch", WM8978_INPUT_CONTROL, 0, 1, 0), }; static const struct snd_kcontrol_new wm8978_right_input_mixer[] = { SOC_DAPM_SINGLE("R2 Switch", WM8978_INPUT_CONTROL, 6, 1, 0), SOC_DAPM_SINGLE("MicN Switch", WM8978_INPUT_CONTROL, 5, 1, 0), SOC_DAPM_SINGLE("MicP Switch", WM8978_INPUT_CONTROL, 4, 1, 0), }; static const struct snd_soc_dapm_widget wm8978_dapm_widgets[] = { SND_SOC_DAPM_DAC("Left DAC", "Left HiFi Playback", WM8978_POWER_MANAGEMENT_3, 0, 0), SND_SOC_DAPM_DAC("Right DAC", "Right HiFi Playback", WM8978_POWER_MANAGEMENT_3, 1, 0), SND_SOC_DAPM_ADC("Left ADC", "Left HiFi Capture", WM8978_POWER_MANAGEMENT_2, 0, 0), SND_SOC_DAPM_ADC("Right ADC", "Right HiFi Capture", WM8978_POWER_MANAGEMENT_2, 1, 0), /* Mixer #1: OUT1,2 */ SOC_MIXER_ARRAY("Left Output Mixer", WM8978_POWER_MANAGEMENT_3, 2, 0, wm8978_left_out_mixer), SOC_MIXER_ARRAY("Right Output Mixer", WM8978_POWER_MANAGEMENT_3, 3, 0, wm8978_right_out_mixer), SOC_MIXER_ARRAY("Left Input Mixer", WM8978_POWER_MANAGEMENT_2, 2, 0, wm8978_left_input_mixer), SOC_MIXER_ARRAY("Right Input Mixer", WM8978_POWER_MANAGEMENT_2, 3, 0, wm8978_right_input_mixer), SND_SOC_DAPM_PGA("Left Boost Mixer", WM8978_POWER_MANAGEMENT_2, 4, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Boost Mixer", WM8978_POWER_MANAGEMENT_2, 5, 0, NULL, 0), SND_SOC_DAPM_PGA("Left Capture PGA", WM8978_LEFT_INP_PGA_CONTROL, 6, 1, NULL, 0), SND_SOC_DAPM_PGA("Right Capture PGA", WM8978_RIGHT_INP_PGA_CONTROL, 6, 1, NULL, 0), SND_SOC_DAPM_PGA("Left Headphone Out", WM8978_POWER_MANAGEMENT_2, 7, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Headphone Out", WM8978_POWER_MANAGEMENT_2, 8, 0, NULL, 0), SND_SOC_DAPM_PGA("Left Speaker Out", WM8978_POWER_MANAGEMENT_3, 6, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Speaker Out", WM8978_POWER_MANAGEMENT_3, 5, 0, NULL, 0), SND_SOC_DAPM_MIXER("OUT4 VMID", WM8978_POWER_MANAGEMENT_3, 8, 0, NULL, 0), SND_SOC_DAPM_MICBIAS("Mic Bias", WM8978_POWER_MANAGEMENT_1, 4, 0), SND_SOC_DAPM_INPUT("LMICN"), SND_SOC_DAPM_INPUT("LMICP"), SND_SOC_DAPM_INPUT("RMICN"), SND_SOC_DAPM_INPUT("RMICP"), SND_SOC_DAPM_INPUT("LAUX"), SND_SOC_DAPM_INPUT("RAUX"), SND_SOC_DAPM_INPUT("L2"), SND_SOC_DAPM_INPUT("R2"), SND_SOC_DAPM_OUTPUT("LHP"), SND_SOC_DAPM_OUTPUT("RHP"), SND_SOC_DAPM_OUTPUT("LSPK"), SND_SOC_DAPM_OUTPUT("RSPK"), }; static const struct snd_soc_dapm_route wm8978_dapm_routes[] = { /* Output mixer */ {"Right Output Mixer", "PCM Playback Switch", "Right DAC"}, {"Right Output Mixer", "Aux Playback Switch", "RAUX"}, {"Right Output Mixer", "Line Bypass Switch", "Right Boost Mixer"}, {"Left Output Mixer", "PCM Playback Switch", "Left DAC"}, {"Left Output Mixer", "Aux Playback Switch", "LAUX"}, {"Left Output Mixer", "Line Bypass Switch", "Left Boost Mixer"}, /* Outputs */ {"Right Headphone Out", NULL, "Right Output Mixer"}, {"RHP", NULL, "Right Headphone Out"}, {"Left Headphone Out", NULL, "Left Output Mixer"}, {"LHP", NULL, "Left Headphone Out"}, {"Right Speaker Out", NULL, "Right Output Mixer"}, {"RSPK", NULL, "Right Speaker Out"}, {"Left Speaker Out", NULL, "Left Output Mixer"}, {"LSPK", NULL, "Left Speaker Out"}, /* Boost Mixer */ {"Right ADC", NULL, "Right Boost Mixer"}, {"Right Boost Mixer", NULL, "RAUX"}, {"Right Boost Mixer", NULL, "Right Capture PGA"}, {"Right Boost Mixer", NULL, "R2"}, {"Left ADC", NULL, "Left Boost Mixer"}, {"Left Boost Mixer", NULL, "LAUX"}, {"Left Boost Mixer", NULL, "Left Capture PGA"}, {"Left Boost Mixer", NULL, "L2"}, /* Input PGA */ {"Right Capture PGA", NULL, "Right Input Mixer"}, {"Left Capture PGA", NULL, "Left Input Mixer"}, {"Right Input Mixer", "R2 Switch", "R2"}, {"Right Input Mixer", "MicN Switch", "RMICN"}, {"Right Input Mixer", "MicP Switch", "RMICP"}, {"Left Input Mixer", "L2 Switch", "L2"}, {"Left Input Mixer", "MicN Switch", "LMICN"}, {"Left Input Mixer", "MicP Switch", "LMICP"}, }; /* PLL divisors */ struct wm8978_pll_div { u32 k; u8 n; u8 div2; }; #define FIXED_PLL_SIZE (1 << 24) static void pll_factors(struct snd_soc_codec *codec, struct wm8978_pll_div *pll_div, unsigned int target, unsigned int source) { u64 k_part; unsigned int k, n_div, n_mod; n_div = target / source; if (n_div < 6) { source >>= 1; pll_div->div2 = 1; n_div = target / source; } else { pll_div->div2 = 0; } if (n_div < 6 || n_div > 12) dev_warn(codec->dev, "WM8978 N value exceeds recommended range! N = %u\n", n_div); pll_div->n = n_div; n_mod = target - source * n_div; k_part = FIXED_PLL_SIZE * (long long)n_mod + source / 2; do_div(k_part, source); k = k_part & 0xFFFFFFFF; pll_div->k = k; } /* MCLK dividers */ static const int mclk_numerator[] = {1, 3, 2, 3, 4, 6, 8, 12}; static const int mclk_denominator[] = {1, 2, 1, 1, 1, 1, 1, 1}; /* * find index >= idx, such that, for a given f_out, * 3 * f_mclk / 4 <= f_PLLOUT < 13 * f_mclk / 4 * f_out can be f_256fs or f_opclk, currently only used for f_256fs. Can be * generalised for f_opclk with suitable coefficient arrays, but currently * the OPCLK divisor is calculated directly, not iteratively. */ static int wm8978_enum_mclk(unsigned int f_out, unsigned int f_mclk, unsigned int *f_pllout) { int i; for (i = 0; i < ARRAY_SIZE(mclk_numerator); i++) { unsigned int f_pllout_x4 = 4 * f_out * mclk_numerator[i] / mclk_denominator[i]; if (3 * f_mclk <= f_pllout_x4 && f_pllout_x4 < 13 * f_mclk) { *f_pllout = f_pllout_x4 / 4; return i; } } return -EINVAL; } /* * Calculate internal frequencies and dividers, according to Figure 40 * "PLL and Clock Select Circuit" in WM8978 datasheet Rev. 2.6 */ static int wm8978_configure_pll(struct snd_soc_codec *codec) { struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec); struct wm8978_pll_div pll_div; unsigned int f_opclk = wm8978->f_opclk, f_mclk = wm8978->f_mclk, f_256fs = wm8978->f_256fs; unsigned int f2; if (!f_mclk) return -EINVAL; if (f_opclk) { unsigned int opclk_div; /* Cannot set up MCLK divider now, do later */ wm8978->mclk_idx = -1; /* * The user needs OPCLK. Choose OPCLKDIV to put * 6 <= R = f2 / f1 < 13, 1 <= OPCLKDIV <= 4. * f_opclk = f_mclk * prescale * R / 4 / OPCLKDIV, where * prescale = 1, or prescale = 2. Prescale is calculated inside * pll_factors(). We have to select f_PLLOUT, such that * f_mclk * 3 / 4 <= f_PLLOUT < f_mclk * 13 / 4. Must be * f_mclk * 3 / 16 <= f_opclk < f_mclk * 13 / 4. */ if (16 * f_opclk < 3 * f_mclk || 4 * f_opclk >= 13 * f_mclk) return -EINVAL; if (4 * f_opclk < 3 * f_mclk) /* Have to use OPCLKDIV */ opclk_div = (3 * f_mclk / 4 + f_opclk - 1) / f_opclk; else opclk_div = 1; dev_dbg(codec->dev, "%s: OPCLKDIV=%d\n", __func__, opclk_div); snd_soc_update_bits(codec, WM8978_GPIO_CONTROL, 0x30, (opclk_div - 1) << 4); wm8978->f_pllout = f_opclk * opclk_div; } else if (f_256fs) { /* * Not using OPCLK, but PLL is used for the codec, choose R: * 6 <= R = f2 / f1 < 13, to put 1 <= MCLKDIV <= 12. * f_256fs = f_mclk * prescale * R / 4 / MCLKDIV, where * prescale = 1, or prescale = 2. Prescale is calculated inside * pll_factors(). We have to select f_PLLOUT, such that * f_mclk * 3 / 4 <= f_PLLOUT < f_mclk * 13 / 4. Must be * f_mclk * 3 / 48 <= f_256fs < f_mclk * 13 / 4. This means MCLK * must be 3.781MHz <= f_MCLK <= 32.768MHz */ int idx = wm8978_enum_mclk(f_256fs, f_mclk, &wm8978->f_pllout); if (idx < 0) return idx; wm8978->mclk_idx = idx; /* GPIO1 into default mode as input - before configuring PLL */ snd_soc_update_bits(codec, WM8978_GPIO_CONTROL, 7, 0); } else { return -EINVAL; } f2 = wm8978->f_pllout * 4; dev_dbg(codec->dev, "%s: f_MCLK=%uHz, f_PLLOUT=%uHz\n", __func__, wm8978->f_mclk, wm8978->f_pllout); pll_factors(codec, &pll_div, f2, wm8978->f_mclk); dev_dbg(codec->dev, "%s: calculated PLL N=0x%x, K=0x%x, div2=%d\n", __func__, pll_div.n, pll_div.k, pll_div.div2); /* Turn PLL off for configuration... */ snd_soc_update_bits(codec, WM8978_POWER_MANAGEMENT_1, 0x20, 0); snd_soc_write(codec, WM8978_PLL_N, (pll_div.div2 << 4) | pll_div.n); snd_soc_write(codec, WM8978_PLL_K1, pll_div.k >> 18); snd_soc_write(codec, WM8978_PLL_K2, (pll_div.k >> 9) & 0x1ff); snd_soc_write(codec, WM8978_PLL_K3, pll_div.k & 0x1ff); /* ...and on again */ snd_soc_update_bits(codec, WM8978_POWER_MANAGEMENT_1, 0x20, 0x20); if (f_opclk) /* Output PLL (OPCLK) to GPIO1 */ snd_soc_update_bits(codec, WM8978_GPIO_CONTROL, 7, 4); return 0; } /* * Configure WM8978 clock dividers. */ static int wm8978_set_dai_clkdiv(struct snd_soc_dai *codec_dai, int div_id, int div) { struct snd_soc_codec *codec = codec_dai->codec; struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec); int ret = 0; switch (div_id) { case WM8978_OPCLKRATE: wm8978->f_opclk = div; if (wm8978->f_mclk) /* * We know the MCLK frequency, the user has requested * OPCLK, configure the PLL based on that and start it * and OPCLK immediately. We will configure PLL to match * user-requested OPCLK frquency as good as possible. * In fact, it is likely, that matching the sampling * rate, when it becomes known, is more important, and * we will not be reconfiguring PLL then, because we * must not interrupt OPCLK. But it should be fine, * because typically the user will request OPCLK to run * at 256fs or 512fs, and for these cases we will also * find an exact MCLK divider configuration - it will * be equal to or double the OPCLK divisor. */ ret = wm8978_configure_pll(codec); break; case WM8978_BCLKDIV: if (div & ~0x1c) return -EINVAL; snd_soc_update_bits(codec, WM8978_CLOCKING, 0x1c, div); break; default: return -EINVAL; } dev_dbg(codec->dev, "%s: ID %d, value %u\n", __func__, div_id, div); return ret; } /* * @freq: when .set_pll() us not used, freq is codec MCLK input frequency */ static int wm8978_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_codec *codec = codec_dai->codec; struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec); int ret = 0; dev_dbg(codec->dev, "%s: ID %d, freq %u\n", __func__, clk_id, freq); if (freq) { wm8978->f_mclk = freq; /* Even if MCLK is used for system clock, might have to drive OPCLK */ if (wm8978->f_opclk) ret = wm8978_configure_pll(codec); /* Our sysclk is fixed to 256 * fs, will configure in .hw_params() */ if (!ret) wm8978->sysclk = clk_id; } if (wm8978->sysclk == WM8978_PLL && (!freq || clk_id == WM8978_MCLK)) { /* Clock CODEC directly from MCLK */ snd_soc_update_bits(codec, WM8978_CLOCKING, 0x100, 0); /* GPIO1 into default mode as input - before configuring PLL */ snd_soc_update_bits(codec, WM8978_GPIO_CONTROL, 7, 0); /* Turn off PLL */ snd_soc_update_bits(codec, WM8978_POWER_MANAGEMENT_1, 0x20, 0); wm8978->sysclk = WM8978_MCLK; wm8978->f_pllout = 0; wm8978->f_opclk = 0; } return ret; } /* * Set ADC and Voice DAC format. */ static int wm8978_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_codec *codec = codec_dai->codec; /* * BCLK polarity mask = 0x100, LRC clock polarity mask = 0x80, * Data Format mask = 0x18: all will be calculated anew */ u16 iface = snd_soc_read(codec, WM8978_AUDIO_INTERFACE) & ~0x198; u16 clk = snd_soc_read(codec, WM8978_CLOCKING); dev_dbg(codec->dev, "%s\n", __func__); /* set master/slave audio interface */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: clk |= 1; break; case SND_SOC_DAIFMT_CBS_CFS: clk &= ~1; break; default: return -EINVAL; } /* interface format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: iface |= 0x10; break; case SND_SOC_DAIFMT_RIGHT_J: break; case SND_SOC_DAIFMT_LEFT_J: iface |= 0x8; break; case SND_SOC_DAIFMT_DSP_A: iface |= 0x18; break; default: return -EINVAL; } /* clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_IF: iface |= 0x180; break; case SND_SOC_DAIFMT_IB_NF: iface |= 0x100; break; case SND_SOC_DAIFMT_NB_IF: iface |= 0x80; break; default: return -EINVAL; } snd_soc_write(codec, WM8978_AUDIO_INTERFACE, iface); snd_soc_write(codec, WM8978_CLOCKING, clk); return 0; } /* * Set PCM DAI bit size and sample rate. */ static int wm8978_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec); /* Word length mask = 0x60 */ u16 iface_ctl = snd_soc_read(codec, WM8978_AUDIO_INTERFACE) & ~0x60; /* Sampling rate mask = 0xe (for filters) */ u16 add_ctl = snd_soc_read(codec, WM8978_ADDITIONAL_CONTROL) & ~0xe; u16 clking = snd_soc_read(codec, WM8978_CLOCKING); enum wm8978_sysclk_src current_clk_id = clking & 0x100 ? WM8978_PLL : WM8978_MCLK; unsigned int f_sel, diff, diff_best = INT_MAX; int i, best = 0; if (!wm8978->f_mclk) return -EINVAL; /* bit size */ switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: break; case SNDRV_PCM_FORMAT_S20_3LE: iface_ctl |= 0x20; break; case SNDRV_PCM_FORMAT_S24_LE: iface_ctl |= 0x40; break; case SNDRV_PCM_FORMAT_S32_LE: iface_ctl |= 0x60; break; } /* filter coefficient */ switch (params_rate(params)) { case 8000: add_ctl |= 0x5 << 1; break; case 11025: add_ctl |= 0x4 << 1; break; case 16000: add_ctl |= 0x3 << 1; break; case 22050: add_ctl |= 0x2 << 1; break; case 32000: add_ctl |= 0x1 << 1; break; case 44100: case 48000: break; } /* Sampling rate is known now, can configure the MCLK divider */ wm8978->f_256fs = params_rate(params) * 256; if (wm8978->sysclk == WM8978_MCLK) { wm8978->mclk_idx = -1; f_sel = wm8978->f_mclk; } else { if (!wm8978->f_pllout) { /* We only enter here, if OPCLK is not used */ int ret = wm8978_configure_pll(codec); if (ret < 0) return ret; } f_sel = wm8978->f_pllout; } if (wm8978->mclk_idx < 0) { /* Either MCLK is used directly, or OPCLK is used */ if (f_sel < wm8978->f_256fs || f_sel > 12 * wm8978->f_256fs) return -EINVAL; for (i = 0; i < ARRAY_SIZE(mclk_numerator); i++) { diff = abs(wm8978->f_256fs * 3 - f_sel * 3 * mclk_denominator[i] / mclk_numerator[i]); if (diff < diff_best) { diff_best = diff; best = i; } if (!diff) break; } } else { /* OPCLK not used, codec driven by PLL */ best = wm8978->mclk_idx; diff = 0; } if (diff) dev_warn(codec->dev, "Imprecise sampling rate: %uHz%s\n", f_sel * mclk_denominator[best] / mclk_numerator[best] / 256, wm8978->sysclk == WM8978_MCLK ? ", consider using PLL" : ""); dev_dbg(codec->dev, "%s: fmt %d, rate %u, MCLK divisor #%d\n", __func__, params_format(params), params_rate(params), best); /* MCLK divisor mask = 0xe0 */ snd_soc_update_bits(codec, WM8978_CLOCKING, 0xe0, best << 5); snd_soc_write(codec, WM8978_AUDIO_INTERFACE, iface_ctl); snd_soc_write(codec, WM8978_ADDITIONAL_CONTROL, add_ctl); if (wm8978->sysclk != current_clk_id) { if (wm8978->sysclk == WM8978_PLL) /* Run CODEC from PLL instead of MCLK */ snd_soc_update_bits(codec, WM8978_CLOCKING, 0x100, 0x100); else /* Clock CODEC directly from MCLK */ snd_soc_update_bits(codec, WM8978_CLOCKING, 0x100, 0); } return 0; } static int wm8978_mute(struct snd_soc_dai *dai, int mute) { struct snd_soc_codec *codec = dai->codec; dev_dbg(codec->dev, "%s: %d\n", __func__, mute); if (mute) snd_soc_update_bits(codec, WM8978_DAC_CONTROL, 0x40, 0x40); else snd_soc_update_bits(codec, WM8978_DAC_CONTROL, 0x40, 0); return 0; } static int wm8978_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { u16 power1 = snd_soc_read(codec, WM8978_POWER_MANAGEMENT_1) & ~3; switch (level) { case SND_SOC_BIAS_ON: case SND_SOC_BIAS_PREPARE: power1 |= 1; /* VMID 75k */ snd_soc_write(codec, WM8978_POWER_MANAGEMENT_1, power1); break; case SND_SOC_BIAS_STANDBY: /* bit 3: enable bias, bit 2: enable I/O tie off buffer */ power1 |= 0xc; if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) { /* Initial cap charge at VMID 5k */ snd_soc_write(codec, WM8978_POWER_MANAGEMENT_1, power1 | 0x3); mdelay(100); } power1 |= 0x2; /* VMID 500k */ snd_soc_write(codec, WM8978_POWER_MANAGEMENT_1, power1); break; case SND_SOC_BIAS_OFF: /* Preserve PLL - OPCLK may be used by someone */ snd_soc_update_bits(codec, WM8978_POWER_MANAGEMENT_1, ~0x20, 0); snd_soc_write(codec, WM8978_POWER_MANAGEMENT_2, 0); snd_soc_write(codec, WM8978_POWER_MANAGEMENT_3, 0); break; } dev_dbg(codec->dev, "%s: %d, %x\n", __func__, level, power1); codec->dapm.bias_level = level; return 0; } #define WM8978_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) static const struct snd_soc_dai_ops wm8978_dai_ops = { .hw_params = wm8978_hw_params, .digital_mute = wm8978_mute, .set_fmt = wm8978_set_dai_fmt, .set_clkdiv = wm8978_set_dai_clkdiv, .set_sysclk = wm8978_set_dai_sysclk, }; /* Also supports 12kHz */ static struct snd_soc_dai_driver wm8978_dai = { .name = "wm8978-hifi", .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000, .formats = WM8978_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_48000, .formats = WM8978_FORMATS, }, .ops = &wm8978_dai_ops, }; static int wm8978_suspend(struct snd_soc_codec *codec) { struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec); wm8978_set_bias_level(codec, SND_SOC_BIAS_OFF); /* Also switch PLL off */ snd_soc_write(codec, WM8978_POWER_MANAGEMENT_1, 0); regcache_mark_dirty(wm8978->regmap); return 0; } static int wm8978_resume(struct snd_soc_codec *codec) { struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec); /* Sync reg_cache with the hardware */ regcache_sync(wm8978->regmap); wm8978_set_bias_level(codec, SND_SOC_BIAS_STANDBY); if (wm8978->f_pllout) /* Switch PLL on */ snd_soc_update_bits(codec, WM8978_POWER_MANAGEMENT_1, 0x20, 0x20); return 0; } /* * These registers contain an "update" bit - bit 8. This means, for example, * that one can write new DAC digital volume for both channels, but only when * the update bit is set, will also the volume be updated - simultaneously for * both channels. */ static const int update_reg[] = { WM8978_LEFT_DAC_DIGITAL_VOLUME, WM8978_RIGHT_DAC_DIGITAL_VOLUME, WM8978_LEFT_ADC_DIGITAL_VOLUME, WM8978_RIGHT_ADC_DIGITAL_VOLUME, WM8978_LEFT_INP_PGA_CONTROL, WM8978_RIGHT_INP_PGA_CONTROL, WM8978_LOUT1_HP_CONTROL, WM8978_ROUT1_HP_CONTROL, WM8978_LOUT2_SPK_CONTROL, WM8978_ROUT2_SPK_CONTROL, }; static int wm8978_probe(struct snd_soc_codec *codec) { struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec); int ret = 0, i; /* * Set default system clock to PLL, it is more precise, this is also the * default hardware setting */ wm8978->sysclk = WM8978_PLL; codec->control_data = wm8978->regmap; ret = snd_soc_codec_set_cache_io(codec, 7, 9, SND_SOC_REGMAP); if (ret < 0) { dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret); return ret; } /* * Set the update bit in all registers, that have one. This way all * writes to those registers will also cause the update bit to be * written. */ for (i = 0; i < ARRAY_SIZE(update_reg); i++) snd_soc_update_bits(codec, update_reg[i], 0x100, 0x100); wm8978_set_bias_level(codec, SND_SOC_BIAS_STANDBY); return 0; } /* power down chip */ static int wm8978_remove(struct snd_soc_codec *codec) { wm8978_set_bias_level(codec, SND_SOC_BIAS_OFF); return 0; } static struct snd_soc_codec_driver soc_codec_dev_wm8978 = { .probe = wm8978_probe, .remove = wm8978_remove, .suspend = wm8978_suspend, .resume = wm8978_resume, .set_bias_level = wm8978_set_bias_level, .controls = wm8978_snd_controls, .num_controls = ARRAY_SIZE(wm8978_snd_controls), .dapm_widgets = wm8978_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(wm8978_dapm_widgets), .dapm_routes = wm8978_dapm_routes, .num_dapm_routes = ARRAY_SIZE(wm8978_dapm_routes), }; static const struct regmap_config wm8978_regmap_config = { .reg_bits = 7, .val_bits = 9, .max_register = WM8978_MAX_REGISTER, .volatile_reg = wm8978_volatile, .cache_type = REGCACHE_RBTREE, .reg_defaults = wm8978_reg_defaults, .num_reg_defaults = ARRAY_SIZE(wm8978_reg_defaults), }; static __devinit int wm8978_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct wm8978_priv *wm8978; int ret; wm8978 = devm_kzalloc(&i2c->dev, sizeof(struct wm8978_priv), GFP_KERNEL); if (wm8978 == NULL) return -ENOMEM; wm8978->regmap = regmap_init_i2c(i2c, &wm8978_regmap_config); if (IS_ERR(wm8978->regmap)) { ret = PTR_ERR(wm8978->regmap); dev_err(&i2c->dev, "Failed to allocate regmap: %d\n", ret); return ret; } i2c_set_clientdata(i2c, wm8978); /* Reset the codec */ ret = regmap_write(wm8978->regmap, WM8978_RESET, 0); if (ret != 0) { dev_err(&i2c->dev, "Failed to issue reset: %d\n", ret); goto err; } ret = snd_soc_register_codec(&i2c->dev, &soc_codec_dev_wm8978, &wm8978_dai, 1); if (ret != 0) { dev_err(&i2c->dev, "Failed to register CODEC: %d\n", ret); goto err; } return 0; err: regmap_exit(wm8978->regmap); return ret; } static __devexit int wm8978_i2c_remove(struct i2c_client *client) { struct wm8978_priv *wm8978 = i2c_get_clientdata(client); snd_soc_unregister_codec(&client->dev); regmap_exit(wm8978->regmap); return 0; } static const struct i2c_device_id wm8978_i2c_id[] = { { "wm8978", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, wm8978_i2c_id); static struct i2c_driver wm8978_i2c_driver = { .driver = { .name = "wm8978", .owner = THIS_MODULE, }, .probe = wm8978_i2c_probe, .remove = __devexit_p(wm8978_i2c_remove), .id_table = wm8978_i2c_id, }; module_i2c_driver(wm8978_i2c_driver); MODULE_DESCRIPTION("ASoC WM8978 codec driver"); MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>"); MODULE_LICENSE("GPL");