/* * Copyright (c) by Jaroslav Kysela * Routines for control of YMF724/740/744/754 chips * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ymfpci.h" #include #include #include /* * common I/O routines */ static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset) { return readb(chip->reg_area_virt + offset); } static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) { writeb(val, chip->reg_area_virt + offset); } static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) { return readw(chip->reg_area_virt + offset); } static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) { writew(val, chip->reg_area_virt + offset); } static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) { return readl(chip->reg_area_virt + offset); } static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) { writel(val, chip->reg_area_virt + offset); } static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) { unsigned long end_time; u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; end_time = jiffies + msecs_to_jiffies(750); do { if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) return 0; schedule_timeout_uninterruptible(1); } while (time_before(jiffies, end_time)); dev_err(chip->card->dev, "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg)); return -EBUSY; } static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) { struct snd_ymfpci *chip = ac97->private_data; u32 cmd; snd_ymfpci_codec_ready(chip, 0); cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); } static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) { struct snd_ymfpci *chip = ac97->private_data; if (snd_ymfpci_codec_ready(chip, 0)) return ~0; snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); if (snd_ymfpci_codec_ready(chip, 0)) return ~0; if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { int i; for (i = 0; i < 600; i++) snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); } return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); } /* * Misc routines */ static u32 snd_ymfpci_calc_delta(u32 rate) { switch (rate) { case 8000: return 0x02aaab00; case 11025: return 0x03accd00; case 16000: return 0x05555500; case 22050: return 0x07599a00; case 32000: return 0x0aaaab00; case 44100: return 0x0eb33300; default: return ((rate << 16) / 375) << 5; } } static u32 def_rate[8] = { 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 }; static u32 snd_ymfpci_calc_lpfK(u32 rate) { u32 i; static u32 val[8] = { 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 }; if (rate == 44100) return 0x40000000; /* FIXME: What's the right value? */ for (i = 0; i < 8; i++) if (rate <= def_rate[i]) return val[i]; return val[0]; } static u32 snd_ymfpci_calc_lpfQ(u32 rate) { u32 i; static u32 val[8] = { 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 }; if (rate == 44100) return 0x370A0000; for (i = 0; i < 8; i++) if (rate <= def_rate[i]) return val[i]; return val[0]; } /* * Hardware start management */ static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) { unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); if (chip->start_count++ > 0) goto __end; snd_ymfpci_writel(chip, YDSXGR_MODE, snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; __end: spin_unlock_irqrestore(&chip->reg_lock, flags); } static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) { unsigned long flags; long timeout = 1000; spin_lock_irqsave(&chip->reg_lock, flags); if (--chip->start_count > 0) goto __end; snd_ymfpci_writel(chip, YDSXGR_MODE, snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); while (timeout-- > 0) { if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) break; } if (atomic_read(&chip->interrupt_sleep_count)) { atomic_set(&chip->interrupt_sleep_count, 0); wake_up(&chip->interrupt_sleep); } __end: spin_unlock_irqrestore(&chip->reg_lock, flags); } /* * Playback voice management */ static int voice_alloc(struct snd_ymfpci *chip, enum snd_ymfpci_voice_type type, int pair, struct snd_ymfpci_voice **rvoice) { struct snd_ymfpci_voice *voice, *voice2; int idx; *rvoice = NULL; for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { voice = &chip->voices[idx]; voice2 = pair ? &chip->voices[idx+1] : NULL; if (voice->use || (voice2 && voice2->use)) continue; voice->use = 1; if (voice2) voice2->use = 1; switch (type) { case YMFPCI_PCM: voice->pcm = 1; if (voice2) voice2->pcm = 1; break; case YMFPCI_SYNTH: voice->synth = 1; break; case YMFPCI_MIDI: voice->midi = 1; break; } snd_ymfpci_hw_start(chip); if (voice2) snd_ymfpci_hw_start(chip); *rvoice = voice; return 0; } return -ENOMEM; } static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, enum snd_ymfpci_voice_type type, int pair, struct snd_ymfpci_voice **rvoice) { unsigned long flags; int result; if (snd_BUG_ON(!rvoice)) return -EINVAL; if (snd_BUG_ON(pair && type != YMFPCI_PCM)) return -EINVAL; spin_lock_irqsave(&chip->voice_lock, flags); for (;;) { result = voice_alloc(chip, type, pair, rvoice); if (result == 0 || type != YMFPCI_PCM) break; /* TODO: synth/midi voice deallocation */ break; } spin_unlock_irqrestore(&chip->voice_lock, flags); return result; } static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) { unsigned long flags; if (snd_BUG_ON(!pvoice)) return -EINVAL; snd_ymfpci_hw_stop(chip); spin_lock_irqsave(&chip->voice_lock, flags); if (pvoice->number == chip->src441_used) { chip->src441_used = -1; pvoice->ypcm->use_441_slot = 0; } pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; pvoice->ypcm = NULL; pvoice->interrupt = NULL; spin_unlock_irqrestore(&chip->voice_lock, flags); return 0; } /* * PCM part */ static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) { struct snd_ymfpci_pcm *ypcm; u32 pos, delta; if ((ypcm = voice->ypcm) == NULL) return; if (ypcm->substream == NULL) return; spin_lock(&chip->reg_lock); if (ypcm->running) { pos = le32_to_cpu(voice->bank[chip->active_bank].start); if (pos < ypcm->last_pos) delta = pos + (ypcm->buffer_size - ypcm->last_pos); else delta = pos - ypcm->last_pos; ypcm->period_pos += delta; ypcm->last_pos = pos; if (ypcm->period_pos >= ypcm->period_size) { /* dev_dbg(chip->card->dev, "done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start); */ ypcm->period_pos %= ypcm->period_size; spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(ypcm->substream); spin_lock(&chip->reg_lock); } if (unlikely(ypcm->update_pcm_vol)) { unsigned int subs = ypcm->substream->number; unsigned int next_bank = 1 - chip->active_bank; struct snd_ymfpci_playback_bank *bank; u32 volume; bank = &voice->bank[next_bank]; volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); bank->left_gain_end = volume; if (ypcm->output_rear) bank->eff2_gain_end = volume; if (ypcm->voices[1]) bank = &ypcm->voices[1]->bank[next_bank]; volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); bank->right_gain_end = volume; if (ypcm->output_rear) bank->eff3_gain_end = volume; ypcm->update_pcm_vol--; } } spin_unlock(&chip->reg_lock); } static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm = runtime->private_data; struct snd_ymfpci *chip = ypcm->chip; u32 pos, delta; spin_lock(&chip->reg_lock); if (ypcm->running) { pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; if (pos < ypcm->last_pos) delta = pos + (ypcm->buffer_size - ypcm->last_pos); else delta = pos - ypcm->last_pos; ypcm->period_pos += delta; ypcm->last_pos = pos; if (ypcm->period_pos >= ypcm->period_size) { ypcm->period_pos %= ypcm->period_size; /* dev_dbg(chip->card->dev, "done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start); */ spin_unlock(&chip->reg_lock); snd_pcm_period_elapsed(substream); spin_lock(&chip->reg_lock); } } spin_unlock(&chip->reg_lock); } static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; struct snd_kcontrol *kctl = NULL; int result = 0; spin_lock(&chip->reg_lock); if (ypcm->voices[0] == NULL) { result = -EINVAL; goto __unlock; } switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); ypcm->running = 1; break; case SNDRV_PCM_TRIGGER_STOP: if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { kctl = chip->pcm_mixer[substream->number].ctl; kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; } /* fall through */ case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; ypcm->running = 0; break; default: result = -EINVAL; break; } __unlock: spin_unlock(&chip->reg_lock); if (kctl) snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); return result; } static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; int result = 0; u32 tmp; spin_lock(&chip->reg_lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); ypcm->running = 1; break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_SUSPEND: tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); ypcm->running = 0; break; default: result = -EINVAL; break; } spin_unlock(&chip->reg_lock); return result; } static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) { int err; if (ypcm->voices[1] != NULL && voices < 2) { snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); ypcm->voices[1] = NULL; } if (voices == 1 && ypcm->voices[0] != NULL) return 0; /* already allocated */ if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) return 0; /* already allocated */ if (voices > 1) { if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); ypcm->voices[0] = NULL; } } err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); if (err < 0) return err; ypcm->voices[0]->ypcm = ypcm; ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; if (voices > 1) { ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; ypcm->voices[1]->ypcm = ypcm; } return 0; } static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, struct snd_pcm_runtime *runtime, int has_pcm_volume) { struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; u32 format; u32 delta = snd_ymfpci_calc_delta(runtime->rate); u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); struct snd_ymfpci_playback_bank *bank; unsigned int nbank; u32 vol_left, vol_right; u8 use_left, use_right; unsigned long flags; if (snd_BUG_ON(!voice)) return; if (runtime->channels == 1) { use_left = 1; use_right = 1; } else { use_left = (voiceidx & 1) == 0; use_right = !use_left; } if (has_pcm_volume) { vol_left = cpu_to_le32(ypcm->chip->pcm_mixer [ypcm->substream->number].left << 15); vol_right = cpu_to_le32(ypcm->chip->pcm_mixer [ypcm->substream->number].right << 15); } else { vol_left = cpu_to_le32(0x40000000); vol_right = cpu_to_le32(0x40000000); } spin_lock_irqsave(&ypcm->chip->voice_lock, flags); format = runtime->channels == 2 ? 0x00010000 : 0; if (snd_pcm_format_width(runtime->format) == 8) format |= 0x80000000; else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && runtime->rate == 44100 && runtime->channels == 2 && voiceidx == 0 && (ypcm->chip->src441_used == -1 || ypcm->chip->src441_used == voice->number)) { ypcm->chip->src441_used = voice->number; ypcm->use_441_slot = 1; format |= 0x10000000; } if (ypcm->chip->src441_used == voice->number && (format & 0x10000000) == 0) { ypcm->chip->src441_used = -1; ypcm->use_441_slot = 0; } if (runtime->channels == 2 && (voiceidx & 1) != 0) format |= 1; spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); for (nbank = 0; nbank < 2; nbank++) { bank = &voice->bank[nbank]; memset(bank, 0, sizeof(*bank)); bank->format = cpu_to_le32(format); bank->base = cpu_to_le32(runtime->dma_addr); bank->loop_end = cpu_to_le32(ypcm->buffer_size); bank->lpfQ = cpu_to_le32(lpfQ); bank->delta = bank->delta_end = cpu_to_le32(delta); bank->lpfK = bank->lpfK_end = cpu_to_le32(lpfK); bank->eg_gain = bank->eg_gain_end = cpu_to_le32(0x40000000); if (ypcm->output_front) { if (use_left) { bank->left_gain = bank->left_gain_end = vol_left; } if (use_right) { bank->right_gain = bank->right_gain_end = vol_right; } } if (ypcm->output_rear) { if (!ypcm->swap_rear) { if (use_left) { bank->eff2_gain = bank->eff2_gain_end = vol_left; } if (use_right) { bank->eff3_gain = bank->eff3_gain_end = vol_right; } } else { /* The SPDIF out channels seem to be swapped, so we have * to swap them here, too. The rear analog out channels * will be wrong, but otherwise AC3 would not work. */ if (use_left) { bank->eff3_gain = bank->eff3_gain_end = vol_left; } if (use_right) { bank->eff2_gain = bank->eff2_gain_end = vol_right; } } } } } static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip) { if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 4096, &chip->ac3_tmp_base) < 0) return -ENOMEM; chip->bank_effect[3][0]->base = chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); chip->bank_effect[3][0]->loop_end = chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); chip->bank_effect[4][0]->base = chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); chip->bank_effect[4][0]->loop_end = chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); spin_lock_irq(&chip->reg_lock); snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) { spin_lock_irq(&chip->reg_lock); snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); spin_unlock_irq(&chip->reg_lock); // snd_ymfpci_irq_wait(chip); if (chip->ac3_tmp_base.area) { snd_dma_free_pages(&chip->ac3_tmp_base); chip->ac3_tmp_base.area = NULL; } return 0; } static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm = runtime->private_data; int err; if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0) return err; if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0) return err; return 0; } static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm; if (runtime->private_data == NULL) return 0; ypcm = runtime->private_data; /* wait, until the PCI operations are not finished */ snd_ymfpci_irq_wait(chip); snd_pcm_lib_free_pages(substream); if (ypcm->voices[1]) { snd_ymfpci_voice_free(chip, ypcm->voices[1]); ypcm->voices[1] = NULL; } if (ypcm->voices[0]) { snd_ymfpci_voice_free(chip, ypcm->voices[0]); ypcm->voices[0] = NULL; } return 0; } static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm = runtime->private_data; struct snd_kcontrol *kctl; unsigned int nvoice; ypcm->period_size = runtime->period_size; ypcm->buffer_size = runtime->buffer_size; ypcm->period_pos = 0; ypcm->last_pos = 0; for (nvoice = 0; nvoice < runtime->channels; nvoice++) snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, substream->pcm == chip->pcm); if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { kctl = chip->pcm_mixer[substream->number].ctl; kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); } return 0; } static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); } static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); /* wait, until the PCI operations are not finished */ snd_ymfpci_irq_wait(chip); return snd_pcm_lib_free_pages(substream); } static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm = runtime->private_data; struct snd_ymfpci_capture_bank * bank; int nbank; u32 rate, format; ypcm->period_size = runtime->period_size; ypcm->buffer_size = runtime->buffer_size; ypcm->period_pos = 0; ypcm->last_pos = 0; ypcm->shift = 0; rate = ((48000 * 4096) / runtime->rate) - 1; format = 0; if (runtime->channels == 2) { format |= 2; ypcm->shift++; } if (snd_pcm_format_width(runtime->format) == 8) format |= 1; else ypcm->shift++; switch (ypcm->capture_bank_number) { case 0: snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); break; case 1: snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); break; } for (nbank = 0; nbank < 2; nbank++) { bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; bank->base = cpu_to_le32(runtime->dma_addr); bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); bank->start = 0; bank->num_of_loops = 0; } return 0; } static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm = runtime->private_data; struct snd_ymfpci_voice *voice = ypcm->voices[0]; if (!(ypcm->running && voice)) return 0; return le32_to_cpu(voice->bank[chip->active_bank].start); } static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm = runtime->private_data; if (!ypcm->running) return 0; return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; } static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) { wait_queue_entry_t wait; int loops = 4; while (loops-- > 0) { if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) continue; init_waitqueue_entry(&wait, current); add_wait_queue(&chip->interrupt_sleep, &wait); atomic_inc(&chip->interrupt_sleep_count); schedule_timeout_uninterruptible(msecs_to_jiffies(50)); remove_wait_queue(&chip->interrupt_sleep, &wait); } } static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) { struct snd_ymfpci *chip = dev_id; u32 status, nvoice, mode; struct snd_ymfpci_voice *voice; status = snd_ymfpci_readl(chip, YDSXGR_STATUS); if (status & 0x80000000) { chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; spin_lock(&chip->voice_lock); for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { voice = &chip->voices[nvoice]; if (voice->interrupt) voice->interrupt(chip, voice); } for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { if (chip->capture_substream[nvoice]) snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); } #if 0 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { if (chip->effect_substream[nvoice]) snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); } #endif spin_unlock(&chip->voice_lock); spin_lock(&chip->reg_lock); snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; snd_ymfpci_writel(chip, YDSXGR_MODE, mode); spin_unlock(&chip->reg_lock); if (atomic_read(&chip->interrupt_sleep_count)) { atomic_set(&chip->interrupt_sleep_count, 0); wake_up(&chip->interrupt_sleep); } } status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); if (status & 1) { if (chip->timer) snd_timer_interrupt(chip->timer, chip->timer_ticks); } snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); if (chip->rawmidi) snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); return IRQ_HANDLED; } static const struct snd_pcm_hardware snd_ymfpci_playback = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 8000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ .period_bytes_min = 64, .period_bytes_max = 256 * 1024, /* FIXME: enough? */ .periods_min = 3, .periods_max = 1024, .fifo_size = 0, }; static const struct snd_pcm_hardware snd_ymfpci_capture = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME), .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, .rate_min = 8000, .rate_max = 48000, .channels_min = 1, .channels_max = 2, .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ .period_bytes_min = 64, .period_bytes_max = 256 * 1024, /* FIXME: enough? */ .periods_min = 3, .periods_max = 1024, .fifo_size = 0, }; static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) { kfree(runtime->private_data); } static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm; int err; runtime->hw = snd_ymfpci_playback; /* FIXME? True value is 256/48 = 5.33333 ms */ err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5334, UINT_MAX); if (err < 0) return err; err = snd_pcm_hw_rule_noresample(runtime, 48000); if (err < 0) return err; ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); if (ypcm == NULL) return -ENOMEM; ypcm->chip = chip; ypcm->type = PLAYBACK_VOICE; ypcm->substream = substream; runtime->private_data = ypcm; runtime->private_free = snd_ymfpci_pcm_free_substream; return 0; } /* call with spinlock held */ static void ymfpci_open_extension(struct snd_ymfpci *chip) { if (! chip->rear_opened) { if (! chip->spdif_opened) /* set AC3 */ snd_ymfpci_writel(chip, YDSXGR_MODE, snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); /* enable second codec (4CHEN) */ snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); } } /* call with spinlock held */ static void ymfpci_close_extension(struct snd_ymfpci *chip) { if (! chip->rear_opened) { if (! chip->spdif_opened) snd_ymfpci_writel(chip, YDSXGR_MODE, snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); } } static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm; int err; if ((err = snd_ymfpci_playback_open_1(substream)) < 0) return err; ypcm = runtime->private_data; ypcm->output_front = 1; ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; ypcm->swap_rear = 0; spin_lock_irq(&chip->reg_lock); if (ypcm->output_rear) { ymfpci_open_extension(chip); chip->rear_opened++; } spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm; int err; if ((err = snd_ymfpci_playback_open_1(substream)) < 0) return err; ypcm = runtime->private_data; ypcm->output_front = 0; ypcm->output_rear = 1; ypcm->swap_rear = 1; spin_lock_irq(&chip->reg_lock); snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); ymfpci_open_extension(chip); chip->spdif_pcm_bits = chip->spdif_bits; snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); chip->spdif_opened++; spin_unlock_irq(&chip->reg_lock); chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); return 0; } static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm; int err; if ((err = snd_ymfpci_playback_open_1(substream)) < 0) return err; ypcm = runtime->private_data; ypcm->output_front = 0; ypcm->output_rear = 1; ypcm->swap_rear = 0; spin_lock_irq(&chip->reg_lock); ymfpci_open_extension(chip); chip->rear_opened++; spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, u32 capture_bank_number) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm; int err; runtime->hw = snd_ymfpci_capture; /* FIXME? True value is 256/48 = 5.33333 ms */ err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5334, UINT_MAX); if (err < 0) return err; err = snd_pcm_hw_rule_noresample(runtime, 48000); if (err < 0) return err; ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); if (ypcm == NULL) return -ENOMEM; ypcm->chip = chip; ypcm->type = capture_bank_number + CAPTURE_REC; ypcm->substream = substream; ypcm->capture_bank_number = capture_bank_number; chip->capture_substream[capture_bank_number] = substream; runtime->private_data = ypcm; runtime->private_free = snd_ymfpci_pcm_free_substream; snd_ymfpci_hw_start(chip); return 0; } static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) { return snd_ymfpci_capture_open(substream, 0); } static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) { return snd_ymfpci_capture_open(substream, 1); } static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) { return 0; } static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; spin_lock_irq(&chip->reg_lock); if (ypcm->output_rear && chip->rear_opened > 0) { chip->rear_opened--; ymfpci_close_extension(chip); } spin_unlock_irq(&chip->reg_lock); return snd_ymfpci_playback_close_1(substream); } static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); spin_lock_irq(&chip->reg_lock); chip->spdif_opened = 0; ymfpci_close_extension(chip); snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); spin_unlock_irq(&chip->reg_lock); chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); return snd_ymfpci_playback_close_1(substream); } static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); spin_lock_irq(&chip->reg_lock); if (chip->rear_opened > 0) { chip->rear_opened--; ymfpci_close_extension(chip); } spin_unlock_irq(&chip->reg_lock); return snd_ymfpci_playback_close_1(substream); } static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) { struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; struct snd_ymfpci_pcm *ypcm = runtime->private_data; if (ypcm != NULL) { chip->capture_substream[ypcm->capture_bank_number] = NULL; snd_ymfpci_hw_stop(chip); } return 0; } static const struct snd_pcm_ops snd_ymfpci_playback_ops = { .open = snd_ymfpci_playback_open, .close = snd_ymfpci_playback_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ymfpci_playback_hw_params, .hw_free = snd_ymfpci_playback_hw_free, .prepare = snd_ymfpci_playback_prepare, .trigger = snd_ymfpci_playback_trigger, .pointer = snd_ymfpci_playback_pointer, }; static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { .open = snd_ymfpci_capture_rec_open, .close = snd_ymfpci_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ymfpci_capture_hw_params, .hw_free = snd_ymfpci_capture_hw_free, .prepare = snd_ymfpci_capture_prepare, .trigger = snd_ymfpci_capture_trigger, .pointer = snd_ymfpci_capture_pointer, }; int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device) { struct snd_pcm *pcm; int err; if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0) return err; pcm->private_data = chip; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); /* global setup */ pcm->info_flags = 0; strcpy(pcm->name, "YMFPCI"); chip->pcm = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 64*1024, 256*1024); return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, snd_pcm_std_chmaps, 2, 0, NULL); } static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { .open = snd_ymfpci_capture_ac97_open, .close = snd_ymfpci_capture_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ymfpci_capture_hw_params, .hw_free = snd_ymfpci_capture_hw_free, .prepare = snd_ymfpci_capture_prepare, .trigger = snd_ymfpci_capture_trigger, .pointer = snd_ymfpci_capture_pointer, }; int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device) { struct snd_pcm *pcm; int err; if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0) return err; pcm->private_data = chip; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); /* global setup */ pcm->info_flags = 0; sprintf(pcm->name, "YMFPCI - %s", chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); chip->pcm2 = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 64*1024, 256*1024); return 0; } static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { .open = snd_ymfpci_playback_spdif_open, .close = snd_ymfpci_playback_spdif_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ymfpci_playback_hw_params, .hw_free = snd_ymfpci_playback_hw_free, .prepare = snd_ymfpci_playback_prepare, .trigger = snd_ymfpci_playback_trigger, .pointer = snd_ymfpci_playback_pointer, }; int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device) { struct snd_pcm *pcm; int err; if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0) return err; pcm->private_data = chip; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); /* global setup */ pcm->info_flags = 0; strcpy(pcm->name, "YMFPCI - IEC958"); chip->pcm_spdif = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 64*1024, 256*1024); return 0; } static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { .open = snd_ymfpci_playback_4ch_open, .close = snd_ymfpci_playback_4ch_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = snd_ymfpci_playback_hw_params, .hw_free = snd_ymfpci_playback_hw_free, .prepare = snd_ymfpci_playback_prepare, .trigger = snd_ymfpci_playback_trigger, .pointer = snd_ymfpci_playback_pointer, }; static const struct snd_pcm_chmap_elem surround_map[] = { { .channels = 1, .map = { SNDRV_CHMAP_MONO } }, { .channels = 2, .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, { } }; int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device) { struct snd_pcm *pcm; int err; if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0) return err; pcm->private_data = chip; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); /* global setup */ pcm->info_flags = 0; strcpy(pcm->name, "YMFPCI - Rear PCM"); chip->pcm_4ch = pcm; snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 64*1024, 256*1024); return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, surround_map, 2, 0, NULL); } static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); spin_lock_irq(&chip->reg_lock); ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | (ucontrol->value.iec958.status[1] << 8); spin_lock_irq(&chip->reg_lock); change = chip->spdif_bits != val; chip->spdif_bits = val; if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); spin_unlock_irq(&chip->reg_lock); return change; } static const struct snd_kcontrol_new snd_ymfpci_spdif_default = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = snd_ymfpci_spdif_default_info, .get = snd_ymfpci_spdif_default_get, .put = snd_ymfpci_spdif_default_put }; static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); spin_lock_irq(&chip->reg_lock); ucontrol->value.iec958.status[0] = 0x3e; ucontrol->value.iec958.status[1] = 0xff; spin_unlock_irq(&chip->reg_lock); return 0; } static const struct snd_kcontrol_new snd_ymfpci_spdif_mask = { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), .info = snd_ymfpci_spdif_mask_info, .get = snd_ymfpci_spdif_mask_get, }; static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); spin_lock_irq(&chip->reg_lock); ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; spin_unlock_irq(&chip->reg_lock); return 0; } static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | (ucontrol->value.iec958.status[1] << 8); spin_lock_irq(&chip->reg_lock); change = chip->spdif_pcm_bits != val; chip->spdif_pcm_bits = val; if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); spin_unlock_irq(&chip->reg_lock); return change; } static const struct snd_kcontrol_new snd_ymfpci_spdif_stream = { .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), .info = snd_ymfpci_spdif_stream_info, .get = snd_ymfpci_spdif_stream_get, .put = snd_ymfpci_spdif_stream_put }; static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"}; return snd_ctl_enum_info(info, 1, 3, texts); } static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); u16 reg; spin_lock_irq(&chip->reg_lock); reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); spin_unlock_irq(&chip->reg_lock); if (!(reg & 0x100)) value->value.enumerated.item[0] = 0; else value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); return 0; } static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); u16 reg, old_reg; spin_lock_irq(&chip->reg_lock); old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); if (value->value.enumerated.item[0] == 0) reg = old_reg & ~0x100; else reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); spin_unlock_irq(&chip->reg_lock); return reg != old_reg; } static const struct snd_kcontrol_new snd_ymfpci_drec_source = { .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Direct Recording Source", .info = snd_ymfpci_drec_source_info, .get = snd_ymfpci_drec_source_get, .put = snd_ymfpci_drec_source_put }; /* * Mixer controls */ #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ .info = snd_ymfpci_info_single, \ .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ .private_value = ((reg) | ((shift) << 16)) } #define snd_ymfpci_info_single snd_ctl_boolean_mono_info static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xffff; unsigned int shift = (kcontrol->private_value >> 16) & 0xff; unsigned int mask = 1; switch (reg) { case YDSXGR_SPDIFOUTCTRL: break; case YDSXGR_SPDIFINCTRL: break; default: return -EINVAL; } ucontrol->value.integer.value[0] = (snd_ymfpci_readl(chip, reg) >> shift) & mask; return 0; } static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xffff; unsigned int shift = (kcontrol->private_value >> 16) & 0xff; unsigned int mask = 1; int change; unsigned int val, oval; switch (reg) { case YDSXGR_SPDIFOUTCTRL: break; case YDSXGR_SPDIFINCTRL: break; default: return -EINVAL; } val = (ucontrol->value.integer.value[0] & mask); val <<= shift; spin_lock_irq(&chip->reg_lock); oval = snd_ymfpci_readl(chip, reg); val = (oval & ~(mask << shift)) | val; change = val != oval; snd_ymfpci_writel(chip, reg, val); spin_unlock_irq(&chip->reg_lock); return change; } static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); #define YMFPCI_DOUBLE(xname, xindex, reg) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ .info = snd_ymfpci_info_double, \ .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ .private_value = reg, \ .tlv = { .p = db_scale_native } } static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { unsigned int reg = kcontrol->private_value; if (reg < 0x80 || reg >= 0xc0) return -EINVAL; uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 16383; return 0; } static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); unsigned int reg = kcontrol->private_value; unsigned int shift_left = 0, shift_right = 16, mask = 16383; unsigned int val; if (reg < 0x80 || reg >= 0xc0) return -EINVAL; spin_lock_irq(&chip->reg_lock); val = snd_ymfpci_readl(chip, reg); spin_unlock_irq(&chip->reg_lock); ucontrol->value.integer.value[0] = (val >> shift_left) & mask; ucontrol->value.integer.value[1] = (val >> shift_right) & mask; return 0; } static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); unsigned int reg = kcontrol->private_value; unsigned int shift_left = 0, shift_right = 16, mask = 16383; int change; unsigned int val1, val2, oval; if (reg < 0x80 || reg >= 0xc0) return -EINVAL; val1 = ucontrol->value.integer.value[0] & mask; val2 = ucontrol->value.integer.value[1] & mask; val1 <<= shift_left; val2 <<= shift_right; spin_lock_irq(&chip->reg_lock); oval = snd_ymfpci_readl(chip, reg); val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; change = val1 != oval; snd_ymfpci_writel(chip, reg, val1); spin_unlock_irq(&chip->reg_lock); return change; } static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); unsigned int reg = YDSXGR_NATIVEDACOUTVOL; unsigned int reg2 = YDSXGR_BUF441OUTVOL; int change; unsigned int value, oval; value = ucontrol->value.integer.value[0] & 0x3fff; value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; spin_lock_irq(&chip->reg_lock); oval = snd_ymfpci_readl(chip, reg); change = value != oval; snd_ymfpci_writel(chip, reg, value); snd_ymfpci_writel(chip, reg2, value); spin_unlock_irq(&chip->reg_lock); return change; } /* * 4ch duplication */ #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); ucontrol->value.integer.value[0] = chip->mode_dup4ch; return 0; } static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); int change; change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); if (change) chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; return change; } static const struct snd_kcontrol_new snd_ymfpci_dup4ch = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "4ch Duplication", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_ymfpci_info_dup4ch, .get = snd_ymfpci_get_dup4ch, .put = snd_ymfpci_put_dup4ch, }; static struct snd_kcontrol_new snd_ymfpci_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Wave Playback Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, .info = snd_ymfpci_info_double, .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_nativedacvol, .private_value = YDSXGR_NATIVEDACOUTVOL, .tlv = { .p = db_scale_native }, }, YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL), YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), }; /* * GPIO */ static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) { u16 reg, mode; unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); reg &= ~(1 << (pin + 8)); reg |= (1 << pin); snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); /* set the level mode for input line */ mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); mode &= ~(3 << (pin * 2)); snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); spin_unlock_irqrestore(&chip->reg_lock, flags); return (mode >> pin) & 1; } static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) { u16 reg; unsigned long flags; spin_lock_irqsave(&chip->reg_lock, flags); reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); reg &= ~(1 << pin); reg &= ~(1 << (pin + 8)); snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); int pin = (int)kcontrol->private_value; ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); return 0; } static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); int pin = (int)kcontrol->private_value; if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); return 1; } return 0; } static const struct snd_kcontrol_new snd_ymfpci_rear_shared = { .name = "Shared Rear/Line-In Switch", .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .info = snd_ymfpci_gpio_sw_info, .get = snd_ymfpci_gpio_sw_get, .put = snd_ymfpci_gpio_sw_put, .private_value = 2, }; /* * PCM voice volume */ static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 0x8000; return 0; } static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); unsigned int subs = kcontrol->id.subdevice; ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; return 0; } static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); unsigned int subs = kcontrol->id.subdevice; struct snd_pcm_substream *substream; unsigned long flags; if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; if (chip->pcm_mixer[subs].left > 0x8000) chip->pcm_mixer[subs].left = 0x8000; if (chip->pcm_mixer[subs].right > 0x8000) chip->pcm_mixer[subs].right = 0x8000; substream = (struct snd_pcm_substream *)kcontrol->private_value; spin_lock_irqsave(&chip->voice_lock, flags); if (substream->runtime && substream->runtime->private_data) { struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; if (!ypcm->use_441_slot) ypcm->update_pcm_vol = 2; } spin_unlock_irqrestore(&chip->voice_lock, flags); return 1; } return 0; } static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "PCM Playback Volume", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, .info = snd_ymfpci_pcm_vol_info, .get = snd_ymfpci_pcm_vol_get, .put = snd_ymfpci_pcm_vol_put, }; /* * Mixer routines */ static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) { struct snd_ymfpci *chip = bus->private_data; chip->ac97_bus = NULL; } static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) { struct snd_ymfpci *chip = ac97->private_data; chip->ac97 = NULL; } int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) { struct snd_ac97_template ac97; struct snd_kcontrol *kctl; struct snd_pcm_substream *substream; unsigned int idx; int err; static struct snd_ac97_bus_ops ops = { .write = snd_ymfpci_codec_write, .read = snd_ymfpci_codec_read, }; if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) return err; chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ memset(&ac97, 0, sizeof(ac97)); ac97.private_data = chip; ac97.private_free = snd_ymfpci_mixer_free_ac97; if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) return err; /* to be sure */ snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, AC97_EA_VRA|AC97_EA_VRM, 0); for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0) return err; } if (chip->ac97->ext_id & AC97_EI_SDAC) { kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip); err = snd_ctl_add(chip->card, kctl); if (err < 0) return err; } /* add S/PDIF control */ if (snd_BUG_ON(!chip->pcm_spdif)) return -ENXIO; if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0) return err; kctl->id.device = chip->pcm_spdif->device; if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0) return err; kctl->id.device = chip->pcm_spdif->device; if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0) return err; kctl->id.device = chip->pcm_spdif->device; chip->spdif_pcm_ctl = kctl; /* direct recording source */ if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0) return err; /* * shared rear/line-in */ if (rear_switch) { if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0) return err; } /* per-voice volume */ substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; for (idx = 0; idx < 32; ++idx) { kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); if (!kctl) return -ENOMEM; kctl->id.device = chip->pcm->device; kctl->id.subdevice = idx; kctl->private_value = (unsigned long)substream; if ((err = snd_ctl_add(chip->card, kctl)) < 0) return err; chip->pcm_mixer[idx].left = 0x8000; chip->pcm_mixer[idx].right = 0x8000; chip->pcm_mixer[idx].ctl = kctl; substream = substream->next; } return 0; } /* * timer */ static int snd_ymfpci_timer_start(struct snd_timer *timer) { struct snd_ymfpci *chip; unsigned long flags; unsigned int count; chip = snd_timer_chip(timer); spin_lock_irqsave(&chip->reg_lock, flags); if (timer->sticks > 1) { chip->timer_ticks = timer->sticks; count = timer->sticks - 1; } else { /* * Divisor 1 is not allowed; fake it by using divisor 2 and * counting two ticks for each interrupt. */ chip->timer_ticks = 2; count = 2 - 1; } snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } static int snd_ymfpci_timer_stop(struct snd_timer *timer) { struct snd_ymfpci *chip; unsigned long flags; chip = snd_timer_chip(timer); spin_lock_irqsave(&chip->reg_lock, flags); snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); spin_unlock_irqrestore(&chip->reg_lock, flags); return 0; } static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, unsigned long *num, unsigned long *den) { *num = 1; *den = 96000; return 0; } static struct snd_timer_hardware snd_ymfpci_timer_hw = { .flags = SNDRV_TIMER_HW_AUTO, .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */ .ticks = 0x10000, .start = snd_ymfpci_timer_start, .stop = snd_ymfpci_timer_stop, .precise_resolution = snd_ymfpci_timer_precise_resolution, }; int snd_ymfpci_timer(struct snd_ymfpci *chip, int device) { struct snd_timer *timer = NULL; struct snd_timer_id tid; int err; tid.dev_class = SNDRV_TIMER_CLASS_CARD; tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; tid.card = chip->card->number; tid.device = device; tid.subdevice = 0; if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) { strcpy(timer->name, "YMFPCI timer"); timer->private_data = chip; timer->hw = snd_ymfpci_timer_hw; } chip->timer = timer; return err; } /* * proc interface */ static void snd_ymfpci_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { struct snd_ymfpci *chip = entry->private_data; int i; snd_iprintf(buffer, "YMFPCI\n\n"); for (i = 0; i <= YDSXGR_WORKBASE; i += 4) snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); } static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) { struct snd_info_entry *entry; if (! snd_card_proc_new(card, "ymfpci", &entry)) snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read); return 0; } /* * initialization routines */ static void snd_ymfpci_aclink_reset(struct pci_dev * pci) { u8 cmd; pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); #if 0 // force to reset if (cmd & 0x03) { #endif pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); #if 0 } #endif } static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) { snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); } static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) { u32 val; int timeout = 1000; val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); if (val) snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); while (timeout-- > 0) { val = snd_ymfpci_readl(chip, YDSXGR_STATUS); if ((val & 0x00000002) == 0) break; } } static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) { int err, is_1e; const char *name; err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", &chip->pci->dev); if (err >= 0) { if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { dev_err(chip->card->dev, "DSP microcode has wrong size\n"); err = -EINVAL; } } if (err < 0) return err; is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || chip->device_id == PCI_DEVICE_ID_YAMAHA_754; name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; err = request_firmware(&chip->controller_microcode, name, &chip->pci->dev); if (err >= 0) { if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { dev_err(chip->card->dev, "controller microcode has wrong size\n"); err = -EINVAL; } } if (err < 0) return err; return 0; } MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); static void snd_ymfpci_download_image(struct snd_ymfpci *chip) { int i; u16 ctrl; const __le32 *inst; snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); snd_ymfpci_disable_dsp(chip); snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); /* setup DSP instruction code */ inst = (const __le32 *)chip->dsp_microcode->data; for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), le32_to_cpu(inst[i])); /* setup control instruction code */ inst = (const __le32 *)chip->controller_microcode->data; for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), le32_to_cpu(inst[i])); snd_ymfpci_enable_dsp(chip); } static int snd_ymfpci_memalloc(struct snd_ymfpci *chip) { long size, playback_ctrl_size; int voice, bank, reg; u8 *ptr; dma_addr_t ptr_addr; playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; chip->work_size = YDSXG_DEFAULT_WORK_SIZE; size = ALIGN(playback_ctrl_size, 0x100) + ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + chip->work_size; /* work_ptr must be aligned to 256 bytes, but it's already covered with the kernel page allocation mechanism */ if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), size, &chip->work_ptr) < 0) return -ENOMEM; ptr = chip->work_ptr.area; ptr_addr = chip->work_ptr.addr; memset(ptr, 0, size); /* for sure */ chip->bank_base_playback = ptr; chip->bank_base_playback_addr = ptr_addr; chip->ctrl_playback = (u32 *)ptr; chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); ptr += ALIGN(playback_ctrl_size, 0x100); ptr_addr += ALIGN(playback_ctrl_size, 0x100); for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { chip->voices[voice].number = voice; chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; chip->voices[voice].bank_addr = ptr_addr; for (bank = 0; bank < 2; bank++) { chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; ptr += chip->bank_size_playback; ptr_addr += chip->bank_size_playback; } } ptr = (char *)ALIGN((unsigned long)ptr, 0x100); ptr_addr = ALIGN(ptr_addr, 0x100); chip->bank_base_capture = ptr; chip->bank_base_capture_addr = ptr_addr; for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) for (bank = 0; bank < 2; bank++) { chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; ptr += chip->bank_size_capture; ptr_addr += chip->bank_size_capture; } ptr = (char *)ALIGN((unsigned long)ptr, 0x100); ptr_addr = ALIGN(ptr_addr, 0x100); chip->bank_base_effect = ptr; chip->bank_base_effect_addr = ptr_addr; for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) for (bank = 0; bank < 2; bank++) { chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; ptr += chip->bank_size_effect; ptr_addr += chip->bank_size_effect; } ptr = (char *)ALIGN((unsigned long)ptr, 0x100); ptr_addr = ALIGN(ptr_addr, 0x100); chip->work_base = ptr; chip->work_base_addr = ptr_addr; snd_BUG_ON(ptr + chip->work_size != chip->work_ptr.area + chip->work_ptr.bytes); snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); /* S/PDIF output initialization */ chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); /* S/PDIF input initialization */ snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); /* digital mixer setup */ for (reg = 0x80; reg < 0xc0; reg += 4) snd_ymfpci_writel(chip, reg, 0); snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); return 0; } static int snd_ymfpci_free(struct snd_ymfpci *chip) { u16 ctrl; if (snd_BUG_ON(!chip)) return -EINVAL; if (chip->res_reg_area) { /* don't touch busy hardware */ snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); snd_ymfpci_disable_dsp(chip); snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); } snd_ymfpci_ac3_done(chip); /* Set PCI device to D3 state */ #if 0 /* FIXME: temporarily disabled, otherwise we cannot fire up * the chip again unless reboot. ACPI bug? */ pci_set_power_state(chip->pci, PCI_D3hot); #endif #ifdef CONFIG_PM_SLEEP kfree(chip->saved_regs); #endif if (chip->irq >= 0) free_irq(chip->irq, chip); release_and_free_resource(chip->mpu_res); release_and_free_resource(chip->fm_res); snd_ymfpci_free_gameport(chip); iounmap(chip->reg_area_virt); if (chip->work_ptr.area) snd_dma_free_pages(&chip->work_ptr); release_and_free_resource(chip->res_reg_area); pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl); pci_disable_device(chip->pci); release_firmware(chip->dsp_microcode); release_firmware(chip->controller_microcode); kfree(chip); return 0; } static int snd_ymfpci_dev_free(struct snd_device *device) { struct snd_ymfpci *chip = device->device_data; return snd_ymfpci_free(chip); } #ifdef CONFIG_PM_SLEEP static int saved_regs_index[] = { /* spdif */ YDSXGR_SPDIFOUTCTRL, YDSXGR_SPDIFOUTSTATUS, YDSXGR_SPDIFINCTRL, /* volumes */ YDSXGR_PRIADCLOOPVOL, YDSXGR_NATIVEDACINVOL, YDSXGR_NATIVEDACOUTVOL, YDSXGR_BUF441OUTVOL, YDSXGR_NATIVEADCINVOL, YDSXGR_SPDIFLOOPVOL, YDSXGR_SPDIFOUTVOL, YDSXGR_ZVOUTVOL, YDSXGR_LEGACYOUTVOL, /* address bases */ YDSXGR_PLAYCTRLBASE, YDSXGR_RECCTRLBASE, YDSXGR_EFFCTRLBASE, YDSXGR_WORKBASE, /* capture set up */ YDSXGR_MAPOFREC, YDSXGR_RECFORMAT, YDSXGR_RECSLOTSR, YDSXGR_ADCFORMAT, YDSXGR_ADCSLOTSR, }; #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index) static int snd_ymfpci_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct snd_ymfpci *chip = card->private_data; unsigned int i; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); snd_pcm_suspend_all(chip->pcm); snd_pcm_suspend_all(chip->pcm2); snd_pcm_suspend_all(chip->pcm_spdif); snd_pcm_suspend_all(chip->pcm_4ch); snd_ac97_suspend(chip->ac97); for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY, &chip->saved_dsxg_legacy); pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY, &chip->saved_dsxg_elegacy); snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); snd_ymfpci_disable_dsp(chip); return 0; } static int snd_ymfpci_resume(struct device *dev) { struct pci_dev *pci = to_pci_dev(dev); struct snd_card *card = dev_get_drvdata(dev); struct snd_ymfpci *chip = card->private_data; unsigned int i; snd_ymfpci_aclink_reset(pci); snd_ymfpci_codec_ready(chip, 0); snd_ymfpci_download_image(chip); udelay(100); for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); snd_ac97_resume(chip->ac97); pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY, chip->saved_dsxg_legacy); pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY, chip->saved_dsxg_elegacy); /* start hw again */ if (chip->start_count > 0) { spin_lock_irq(&chip->reg_lock); snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); spin_unlock_irq(&chip->reg_lock); } snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume); #endif /* CONFIG_PM_SLEEP */ int snd_ymfpci_create(struct snd_card *card, struct pci_dev *pci, unsigned short old_legacy_ctrl, struct snd_ymfpci **rchip) { struct snd_ymfpci *chip; int err; static struct snd_device_ops ops = { .dev_free = snd_ymfpci_dev_free, }; *rchip = NULL; /* enable PCI device */ if ((err = pci_enable_device(pci)) < 0) return err; chip = kzalloc(sizeof(*chip), GFP_KERNEL); if (chip == NULL) { pci_disable_device(pci); return -ENOMEM; } chip->old_legacy_ctrl = old_legacy_ctrl; spin_lock_init(&chip->reg_lock); spin_lock_init(&chip->voice_lock); init_waitqueue_head(&chip->interrupt_sleep); atomic_set(&chip->interrupt_sleep_count, 0); chip->card = card; chip->pci = pci; chip->irq = -1; chip->device_id = pci->device; chip->rev = pci->revision; chip->reg_area_phys = pci_resource_start(pci, 0); chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000); pci_set_master(pci); chip->src441_used = -1; if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) { dev_err(chip->card->dev, "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); err = -EBUSY; goto free_chip; } if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, KBUILD_MODNAME, chip)) { dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq); err = -EBUSY; goto free_chip; } chip->irq = pci->irq; snd_ymfpci_aclink_reset(pci); if (snd_ymfpci_codec_ready(chip, 0) < 0) { err = -EIO; goto free_chip; } err = snd_ymfpci_request_firmware(chip); if (err < 0) { dev_err(chip->card->dev, "firmware request failed: %d\n", err); goto free_chip; } snd_ymfpci_download_image(chip); udelay(100); /* seems we need a delay after downloading image.. */ if (snd_ymfpci_memalloc(chip) < 0) { err = -EIO; goto free_chip; } err = snd_ymfpci_ac3_init(chip); if (err < 0) goto free_chip; #ifdef CONFIG_PM_SLEEP chip->saved_regs = kmalloc_array(YDSXGR_NUM_SAVED_REGS, sizeof(u32), GFP_KERNEL); if (chip->saved_regs == NULL) { err = -ENOMEM; goto free_chip; } #endif err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); if (err < 0) goto free_chip; snd_ymfpci_proc_init(card, chip); *rchip = chip; return 0; free_chip: snd_ymfpci_free(chip); return err; }