// SPDX-License-Identifier: GPL-2.0 /* * Wireless utility functions * * Copyright 2007-2009 Johannes Berg * Copyright 2013-2014 Intel Mobile Communications GmbH * Copyright 2017 Intel Deutschland GmbH * Copyright (C) 2018-2019 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "rdev-ops.h" struct ieee80211_rate * ieee80211_get_response_rate(struct ieee80211_supported_band *sband, u32 basic_rates, int bitrate) { struct ieee80211_rate *result = &sband->bitrates[0]; int i; for (i = 0; i < sband->n_bitrates; i++) { if (!(basic_rates & BIT(i))) continue; if (sband->bitrates[i].bitrate > bitrate) continue; result = &sband->bitrates[i]; } return result; } EXPORT_SYMBOL(ieee80211_get_response_rate); u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband, enum nl80211_bss_scan_width scan_width) { struct ieee80211_rate *bitrates; u32 mandatory_rates = 0; enum ieee80211_rate_flags mandatory_flag; int i; if (WARN_ON(!sband)) return 1; if (sband->band == NL80211_BAND_2GHZ) { if (scan_width == NL80211_BSS_CHAN_WIDTH_5 || scan_width == NL80211_BSS_CHAN_WIDTH_10) mandatory_flag = IEEE80211_RATE_MANDATORY_G; else mandatory_flag = IEEE80211_RATE_MANDATORY_B; } else { mandatory_flag = IEEE80211_RATE_MANDATORY_A; } bitrates = sband->bitrates; for (i = 0; i < sband->n_bitrates; i++) if (bitrates[i].flags & mandatory_flag) mandatory_rates |= BIT(i); return mandatory_rates; } EXPORT_SYMBOL(ieee80211_mandatory_rates); int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) { /* see 802.11 17.3.8.3.2 and Annex J * there are overlapping channel numbers in 5GHz and 2GHz bands */ if (chan <= 0) return 0; /* not supported */ switch (band) { case NL80211_BAND_2GHZ: if (chan == 14) return 2484; else if (chan < 14) return 2407 + chan * 5; break; case NL80211_BAND_5GHZ: if (chan >= 182 && chan <= 196) return 4000 + chan * 5; else return 5000 + chan * 5; break; case NL80211_BAND_60GHZ: if (chan < 7) return 56160 + chan * 2160; break; default: ; } return 0; /* not supported */ } EXPORT_SYMBOL(ieee80211_channel_to_frequency); int ieee80211_frequency_to_channel(int freq) { /* see 802.11 17.3.8.3.2 and Annex J */ if (freq == 2484) return 14; else if (freq < 2484) return (freq - 2407) / 5; else if (freq >= 4910 && freq <= 4980) return (freq - 4000) / 5; else if (freq <= 45000) /* DMG band lower limit */ return (freq - 5000) / 5; else if (freq >= 58320 && freq <= 70200) return (freq - 56160) / 2160; else return 0; } EXPORT_SYMBOL(ieee80211_frequency_to_channel); struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq) { enum nl80211_band band; struct ieee80211_supported_band *sband; int i; for (band = 0; band < NUM_NL80211_BANDS; band++) { sband = wiphy->bands[band]; if (!sband) continue; for (i = 0; i < sband->n_channels; i++) { if (sband->channels[i].center_freq == freq) return &sband->channels[i]; } } return NULL; } EXPORT_SYMBOL(ieee80211_get_channel); static void set_mandatory_flags_band(struct ieee80211_supported_band *sband) { int i, want; switch (sband->band) { case NL80211_BAND_5GHZ: want = 3; for (i = 0; i < sband->n_bitrates; i++) { if (sband->bitrates[i].bitrate == 60 || sband->bitrates[i].bitrate == 120 || sband->bitrates[i].bitrate == 240) { sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_A; want--; } } WARN_ON(want); break; case NL80211_BAND_2GHZ: want = 7; for (i = 0; i < sband->n_bitrates; i++) { switch (sband->bitrates[i].bitrate) { case 10: case 20: case 55: case 110: sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_B | IEEE80211_RATE_MANDATORY_G; want--; break; case 60: case 120: case 240: sband->bitrates[i].flags |= IEEE80211_RATE_MANDATORY_G; want--; /* fall through */ default: sband->bitrates[i].flags |= IEEE80211_RATE_ERP_G; break; } } WARN_ON(want != 0 && want != 3); break; case NL80211_BAND_60GHZ: /* check for mandatory HT MCS 1..4 */ WARN_ON(!sband->ht_cap.ht_supported); WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e); break; case NUM_NL80211_BANDS: default: WARN_ON(1); break; } } void ieee80211_set_bitrate_flags(struct wiphy *wiphy) { enum nl80211_band band; for (band = 0; band < NUM_NL80211_BANDS; band++) if (wiphy->bands[band]) set_mandatory_flags_band(wiphy->bands[band]); } bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher) { int i; for (i = 0; i < wiphy->n_cipher_suites; i++) if (cipher == wiphy->cipher_suites[i]) return true; return false; } int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev, struct key_params *params, int key_idx, bool pairwise, const u8 *mac_addr) { if (key_idx < 0 || key_idx > 5) return -EINVAL; if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)) return -EINVAL; if (pairwise && !mac_addr) return -EINVAL; switch (params->cipher) { case WLAN_CIPHER_SUITE_TKIP: /* Extended Key ID can only be used with CCMP/GCMP ciphers */ if ((pairwise && key_idx) || params->mode != NL80211_KEY_RX_TX) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: /* IEEE802.11-2016 allows only 0 and - when supporting * Extended Key ID - 1 as index for pairwise keys. * @NL80211_KEY_NO_TX is only allowed for pairwise keys when * the driver supports Extended Key ID. * @NL80211_KEY_SET_TX can't be set when installing and * validating a key. */ if ((params->mode == NL80211_KEY_NO_TX && !pairwise) || params->mode == NL80211_KEY_SET_TX) return -EINVAL; if (wiphy_ext_feature_isset(&rdev->wiphy, NL80211_EXT_FEATURE_EXT_KEY_ID)) { if (pairwise && (key_idx < 0 || key_idx > 1)) return -EINVAL; } else if (pairwise && key_idx) { return -EINVAL; } break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: /* Disallow BIP (group-only) cipher as pairwise cipher */ if (pairwise) return -EINVAL; if (key_idx < 4) return -EINVAL; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: if (key_idx > 3) return -EINVAL; default: break; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: if (params->key_len != WLAN_KEY_LEN_WEP40) return -EINVAL; break; case WLAN_CIPHER_SUITE_TKIP: if (params->key_len != WLAN_KEY_LEN_TKIP) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP: if (params->key_len != WLAN_KEY_LEN_CCMP) return -EINVAL; break; case WLAN_CIPHER_SUITE_CCMP_256: if (params->key_len != WLAN_KEY_LEN_CCMP_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_GCMP: if (params->key_len != WLAN_KEY_LEN_GCMP) return -EINVAL; break; case WLAN_CIPHER_SUITE_GCMP_256: if (params->key_len != WLAN_KEY_LEN_GCMP_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_WEP104: if (params->key_len != WLAN_KEY_LEN_WEP104) return -EINVAL; break; case WLAN_CIPHER_SUITE_AES_CMAC: if (params->key_len != WLAN_KEY_LEN_AES_CMAC) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_CMAC_256: if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_GMAC_128: if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128) return -EINVAL; break; case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256) return -EINVAL; break; default: /* * We don't know anything about this algorithm, * allow using it -- but the driver must check * all parameters! We still check below whether * or not the driver supports this algorithm, * of course. */ break; } if (params->seq) { switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* These ciphers do not use key sequence */ return -EINVAL; case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (params->seq_len != 6) return -EINVAL; break; } } if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher)) return -EINVAL; return 0; } unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc) { unsigned int hdrlen = 24; if (ieee80211_is_data(fc)) { if (ieee80211_has_a4(fc)) hdrlen = 30; if (ieee80211_is_data_qos(fc)) { hdrlen += IEEE80211_QOS_CTL_LEN; if (ieee80211_has_order(fc)) hdrlen += IEEE80211_HT_CTL_LEN; } goto out; } if (ieee80211_is_mgmt(fc)) { if (ieee80211_has_order(fc)) hdrlen += IEEE80211_HT_CTL_LEN; goto out; } if (ieee80211_is_ctl(fc)) { /* * ACK and CTS are 10 bytes, all others 16. To see how * to get this condition consider * subtype mask: 0b0000000011110000 (0x00F0) * ACK subtype: 0b0000000011010000 (0x00D0) * CTS subtype: 0b0000000011000000 (0x00C0) * bits that matter: ^^^ (0x00E0) * value of those: 0b0000000011000000 (0x00C0) */ if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0)) hdrlen = 10; else hdrlen = 16; } out: return hdrlen; } EXPORT_SYMBOL(ieee80211_hdrlen); unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb) { const struct ieee80211_hdr *hdr = (const struct ieee80211_hdr *)skb->data; unsigned int hdrlen; if (unlikely(skb->len < 10)) return 0; hdrlen = ieee80211_hdrlen(hdr->frame_control); if (unlikely(hdrlen > skb->len)) return 0; return hdrlen; } EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb); static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags) { int ae = flags & MESH_FLAGS_AE; /* 802.11-2012, 8.2.4.7.3 */ switch (ae) { default: case 0: return 6; case MESH_FLAGS_AE_A4: return 12; case MESH_FLAGS_AE_A5_A6: return 18; } } unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr) { return __ieee80211_get_mesh_hdrlen(meshhdr->flags); } EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen); int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr, const u8 *addr, enum nl80211_iftype iftype, u8 data_offset) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct { u8 hdr[ETH_ALEN] __aligned(2); __be16 proto; } payload; struct ethhdr tmp; u16 hdrlen; u8 mesh_flags = 0; if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) return -1; hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset; if (skb->len < hdrlen + 8) return -1; /* convert IEEE 802.11 header + possible LLC headers into Ethernet * header * IEEE 802.11 address fields: * ToDS FromDS Addr1 Addr2 Addr3 Addr4 * 0 0 DA SA BSSID n/a * 0 1 DA BSSID SA n/a * 1 0 BSSID SA DA n/a * 1 1 RA TA DA SA */ memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN); memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN); if (iftype == NL80211_IFTYPE_MESH_POINT) skb_copy_bits(skb, hdrlen, &mesh_flags, 1); mesh_flags &= MESH_FLAGS_AE; switch (hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { case cpu_to_le16(IEEE80211_FCTL_TODS): if (unlikely(iftype != NL80211_IFTYPE_AP && iftype != NL80211_IFTYPE_AP_VLAN && iftype != NL80211_IFTYPE_P2P_GO)) return -1; break; case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): if (unlikely(iftype != NL80211_IFTYPE_WDS && iftype != NL80211_IFTYPE_MESH_POINT && iftype != NL80211_IFTYPE_AP_VLAN && iftype != NL80211_IFTYPE_STATION)) return -1; if (iftype == NL80211_IFTYPE_MESH_POINT) { if (mesh_flags == MESH_FLAGS_AE_A4) return -1; if (mesh_flags == MESH_FLAGS_AE_A5_A6) { skb_copy_bits(skb, hdrlen + offsetof(struct ieee80211s_hdr, eaddr1), tmp.h_dest, 2 * ETH_ALEN); } hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); } break; case cpu_to_le16(IEEE80211_FCTL_FROMDS): if ((iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_P2P_CLIENT && iftype != NL80211_IFTYPE_MESH_POINT) || (is_multicast_ether_addr(tmp.h_dest) && ether_addr_equal(tmp.h_source, addr))) return -1; if (iftype == NL80211_IFTYPE_MESH_POINT) { if (mesh_flags == MESH_FLAGS_AE_A5_A6) return -1; if (mesh_flags == MESH_FLAGS_AE_A4) skb_copy_bits(skb, hdrlen + offsetof(struct ieee80211s_hdr, eaddr1), tmp.h_source, ETH_ALEN); hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags); } break; case cpu_to_le16(0): if (iftype != NL80211_IFTYPE_ADHOC && iftype != NL80211_IFTYPE_STATION && iftype != NL80211_IFTYPE_OCB) return -1; break; } skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)); tmp.h_proto = payload.proto; if (likely((ether_addr_equal(payload.hdr, rfc1042_header) && tmp.h_proto != htons(ETH_P_AARP) && tmp.h_proto != htons(ETH_P_IPX)) || ether_addr_equal(payload.hdr, bridge_tunnel_header))) /* remove RFC1042 or Bridge-Tunnel encapsulation and * replace EtherType */ hdrlen += ETH_ALEN + 2; else tmp.h_proto = htons(skb->len - hdrlen); pskb_pull(skb, hdrlen); if (!ehdr) ehdr = skb_push(skb, sizeof(struct ethhdr)); memcpy(ehdr, &tmp, sizeof(tmp)); return 0; } EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr); static void __frame_add_frag(struct sk_buff *skb, struct page *page, void *ptr, int len, int size) { struct skb_shared_info *sh = skb_shinfo(skb); int page_offset; page_ref_inc(page); page_offset = ptr - page_address(page); skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size); } static void __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame, int offset, int len) { struct skb_shared_info *sh = skb_shinfo(skb); const skb_frag_t *frag = &sh->frags[0]; struct page *frag_page; void *frag_ptr; int frag_len, frag_size; int head_size = skb->len - skb->data_len; int cur_len; frag_page = virt_to_head_page(skb->head); frag_ptr = skb->data; frag_size = head_size; while (offset >= frag_size) { offset -= frag_size; frag_page = skb_frag_page(frag); frag_ptr = skb_frag_address(frag); frag_size = skb_frag_size(frag); frag++; } frag_ptr += offset; frag_len = frag_size - offset; cur_len = min(len, frag_len); __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size); len -= cur_len; while (len > 0) { frag_len = skb_frag_size(frag); cur_len = min(len, frag_len); __frame_add_frag(frame, skb_frag_page(frag), skb_frag_address(frag), cur_len, frag_len); len -= cur_len; frag++; } } static struct sk_buff * __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen, int offset, int len, bool reuse_frag) { struct sk_buff *frame; int cur_len = len; if (skb->len - offset < len) return NULL; /* * When reusing framents, copy some data to the head to simplify * ethernet header handling and speed up protocol header processing * in the stack later. */ if (reuse_frag) cur_len = min_t(int, len, 32); /* * Allocate and reserve two bytes more for payload * alignment since sizeof(struct ethhdr) is 14. */ frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len); if (!frame) return NULL; skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2); skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len); len -= cur_len; if (!len) return frame; offset += cur_len; __ieee80211_amsdu_copy_frag(skb, frame, offset, len); return frame; } void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list, const u8 *addr, enum nl80211_iftype iftype, const unsigned int extra_headroom, const u8 *check_da, const u8 *check_sa) { unsigned int hlen = ALIGN(extra_headroom, 4); struct sk_buff *frame = NULL; u16 ethertype; u8 *payload; int offset = 0, remaining; struct ethhdr eth; bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb); bool reuse_skb = false; bool last = false; while (!last) { unsigned int subframe_len; int len; u8 padding; skb_copy_bits(skb, offset, ð, sizeof(eth)); len = ntohs(eth.h_proto); subframe_len = sizeof(struct ethhdr) + len; padding = (4 - subframe_len) & 0x3; /* the last MSDU has no padding */ remaining = skb->len - offset; if (subframe_len > remaining) goto purge; offset += sizeof(struct ethhdr); last = remaining <= subframe_len + padding; /* FIXME: should we really accept multicast DA? */ if ((check_da && !is_multicast_ether_addr(eth.h_dest) && !ether_addr_equal(check_da, eth.h_dest)) || (check_sa && !ether_addr_equal(check_sa, eth.h_source))) { offset += len + padding; continue; } /* reuse skb for the last subframe */ if (!skb_is_nonlinear(skb) && !reuse_frag && last) { skb_pull(skb, offset); frame = skb; reuse_skb = true; } else { frame = __ieee80211_amsdu_copy(skb, hlen, offset, len, reuse_frag); if (!frame) goto purge; offset += len + padding; } skb_reset_network_header(frame); frame->dev = skb->dev; frame->priority = skb->priority; payload = frame->data; ethertype = (payload[6] << 8) | payload[7]; if (likely((ether_addr_equal(payload, rfc1042_header) && ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || ether_addr_equal(payload, bridge_tunnel_header))) { eth.h_proto = htons(ethertype); skb_pull(frame, ETH_ALEN + 2); } memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth)); __skb_queue_tail(list, frame); } if (!reuse_skb) dev_kfree_skb(skb); return; purge: __skb_queue_purge(list); dev_kfree_skb(skb); } EXPORT_SYMBOL(ieee80211_amsdu_to_8023s); /* Given a data frame determine the 802.1p/1d tag to use. */ unsigned int cfg80211_classify8021d(struct sk_buff *skb, struct cfg80211_qos_map *qos_map) { unsigned int dscp; unsigned char vlan_priority; unsigned int ret; /* skb->priority values from 256->263 are magic values to * directly indicate a specific 802.1d priority. This is used * to allow 802.1d priority to be passed directly in from VLAN * tags, etc. */ if (skb->priority >= 256 && skb->priority <= 263) { ret = skb->priority - 256; goto out; } if (skb_vlan_tag_present(skb)) { vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; if (vlan_priority > 0) { ret = vlan_priority; goto out; } } switch (skb->protocol) { case htons(ETH_P_IP): dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc; break; case htons(ETH_P_IPV6): dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc; break; case htons(ETH_P_MPLS_UC): case htons(ETH_P_MPLS_MC): { struct mpls_label mpls_tmp, *mpls; mpls = skb_header_pointer(skb, sizeof(struct ethhdr), sizeof(*mpls), &mpls_tmp); if (!mpls) return 0; ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK) >> MPLS_LS_TC_SHIFT; goto out; } case htons(ETH_P_80221): /* 802.21 is always network control traffic */ return 7; default: return 0; } if (qos_map) { unsigned int i, tmp_dscp = dscp >> 2; for (i = 0; i < qos_map->num_des; i++) { if (tmp_dscp == qos_map->dscp_exception[i].dscp) { ret = qos_map->dscp_exception[i].up; goto out; } } for (i = 0; i < 8; i++) { if (tmp_dscp >= qos_map->up[i].low && tmp_dscp <= qos_map->up[i].high) { ret = i; goto out; } } } ret = dscp >> 5; out: return array_index_nospec(ret, IEEE80211_NUM_TIDS); } EXPORT_SYMBOL(cfg80211_classify8021d); const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id) { const struct cfg80211_bss_ies *ies; ies = rcu_dereference(bss->ies); if (!ies) return NULL; return cfg80211_find_elem(id, ies->data, ies->len); } EXPORT_SYMBOL(ieee80211_bss_get_elem); void cfg80211_upload_connect_keys(struct wireless_dev *wdev) { struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy); struct net_device *dev = wdev->netdev; int i; if (!wdev->connect_keys) return; for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) { if (!wdev->connect_keys->params[i].cipher) continue; if (rdev_add_key(rdev, dev, i, false, NULL, &wdev->connect_keys->params[i])) { netdev_err(dev, "failed to set key %d\n", i); continue; } if (wdev->connect_keys->def == i && rdev_set_default_key(rdev, dev, i, true, true)) { netdev_err(dev, "failed to set defkey %d\n", i); continue; } } kzfree(wdev->connect_keys); wdev->connect_keys = NULL; } void cfg80211_process_wdev_events(struct wireless_dev *wdev) { struct cfg80211_event *ev; unsigned long flags; spin_lock_irqsave(&wdev->event_lock, flags); while (!list_empty(&wdev->event_list)) { ev = list_first_entry(&wdev->event_list, struct cfg80211_event, list); list_del(&ev->list); spin_unlock_irqrestore(&wdev->event_lock, flags); wdev_lock(wdev); switch (ev->type) { case EVENT_CONNECT_RESULT: __cfg80211_connect_result( wdev->netdev, &ev->cr, ev->cr.status == WLAN_STATUS_SUCCESS); break; case EVENT_ROAMED: __cfg80211_roamed(wdev, &ev->rm); break; case EVENT_DISCONNECTED: __cfg80211_disconnected(wdev->netdev, ev->dc.ie, ev->dc.ie_len, ev->dc.reason, !ev->dc.locally_generated); break; case EVENT_IBSS_JOINED: __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid, ev->ij.channel); break; case EVENT_STOPPED: __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev); break; case EVENT_PORT_AUTHORIZED: __cfg80211_port_authorized(wdev, ev->pa.bssid); break; } wdev_unlock(wdev); kfree(ev); spin_lock_irqsave(&wdev->event_lock, flags); } spin_unlock_irqrestore(&wdev->event_lock, flags); } void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev) { struct wireless_dev *wdev; ASSERT_RTNL(); list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) cfg80211_process_wdev_events(wdev); } int cfg80211_change_iface(struct cfg80211_registered_device *rdev, struct net_device *dev, enum nl80211_iftype ntype, struct vif_params *params) { int err; enum nl80211_iftype otype = dev->ieee80211_ptr->iftype; ASSERT_RTNL(); /* don't support changing VLANs, you just re-create them */ if (otype == NL80211_IFTYPE_AP_VLAN) return -EOPNOTSUPP; /* cannot change into P2P device or NAN */ if (ntype == NL80211_IFTYPE_P2P_DEVICE || ntype == NL80211_IFTYPE_NAN) return -EOPNOTSUPP; if (!rdev->ops->change_virtual_intf || !(rdev->wiphy.interface_modes & (1 << ntype))) return -EOPNOTSUPP; /* if it's part of a bridge, reject changing type to station/ibss */ if ((dev->priv_flags & IFF_BRIDGE_PORT) && (ntype == NL80211_IFTYPE_ADHOC || ntype == NL80211_IFTYPE_STATION || ntype == NL80211_IFTYPE_P2P_CLIENT)) return -EBUSY; if (ntype != otype) { dev->ieee80211_ptr->use_4addr = false; dev->ieee80211_ptr->mesh_id_up_len = 0; wdev_lock(dev->ieee80211_ptr); rdev_set_qos_map(rdev, dev, NULL); wdev_unlock(dev->ieee80211_ptr); switch (otype) { case NL80211_IFTYPE_AP: cfg80211_stop_ap(rdev, dev, true); break; case NL80211_IFTYPE_ADHOC: cfg80211_leave_ibss(rdev, dev, false); break; case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: wdev_lock(dev->ieee80211_ptr); cfg80211_disconnect(rdev, dev, WLAN_REASON_DEAUTH_LEAVING, true); wdev_unlock(dev->ieee80211_ptr); break; case NL80211_IFTYPE_MESH_POINT: /* mesh should be handled? */ break; default: break; } cfg80211_process_rdev_events(rdev); } err = rdev_change_virtual_intf(rdev, dev, ntype, params); WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype); if (!err && params && params->use_4addr != -1) dev->ieee80211_ptr->use_4addr = params->use_4addr; if (!err) { dev->priv_flags &= ~IFF_DONT_BRIDGE; switch (ntype) { case NL80211_IFTYPE_STATION: if (dev->ieee80211_ptr->use_4addr) break; /* fall through */ case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_ADHOC: dev->priv_flags |= IFF_DONT_BRIDGE; break; case NL80211_IFTYPE_P2P_GO: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: case NL80211_IFTYPE_WDS: case NL80211_IFTYPE_MESH_POINT: /* bridging OK */ break; case NL80211_IFTYPE_MONITOR: /* monitor can't bridge anyway */ break; case NL80211_IFTYPE_UNSPECIFIED: case NUM_NL80211_IFTYPES: /* not happening */ break; case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_NAN: WARN_ON(1); break; } } if (!err && ntype != otype && netif_running(dev)) { cfg80211_update_iface_num(rdev, ntype, 1); cfg80211_update_iface_num(rdev, otype, -1); } return err; } static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate) { int modulation, streams, bitrate; /* the formula below does only work for MCS values smaller than 32 */ if (WARN_ON_ONCE(rate->mcs >= 32)) return 0; modulation = rate->mcs & 7; streams = (rate->mcs >> 3) + 1; bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000; if (modulation < 4) bitrate *= (modulation + 1); else if (modulation == 4) bitrate *= (modulation + 2); else bitrate *= (modulation + 3); bitrate *= streams; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; } static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate) { static const u32 __mcs2bitrate[] = { /* control PHY */ [0] = 275, /* SC PHY */ [1] = 3850, [2] = 7700, [3] = 9625, [4] = 11550, [5] = 12512, /* 1251.25 mbps */ [6] = 15400, [7] = 19250, [8] = 23100, [9] = 25025, [10] = 30800, [11] = 38500, [12] = 46200, /* OFDM PHY */ [13] = 6930, [14] = 8662, /* 866.25 mbps */ [15] = 13860, [16] = 17325, [17] = 20790, [18] = 27720, [19] = 34650, [20] = 41580, [21] = 45045, [22] = 51975, [23] = 62370, [24] = 67568, /* 6756.75 mbps */ /* LP-SC PHY */ [25] = 6260, [26] = 8340, [27] = 11120, [28] = 12510, [29] = 16680, [30] = 22240, [31] = 25030, }; if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate))) return 0; return __mcs2bitrate[rate->mcs]; } static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate) { static const u32 base[4][10] = { { 6500000, 13000000, 19500000, 26000000, 39000000, 52000000, 58500000, 65000000, 78000000, /* not in the spec, but some devices use this: */ 86500000, }, { 13500000, 27000000, 40500000, 54000000, 81000000, 108000000, 121500000, 135000000, 162000000, 180000000, }, { 29300000, 58500000, 87800000, 117000000, 175500000, 234000000, 263300000, 292500000, 351000000, 390000000, }, { 58500000, 117000000, 175500000, 234000000, 351000000, 468000000, 526500000, 585000000, 702000000, 780000000, }, }; u32 bitrate; int idx; if (rate->mcs > 9) goto warn; switch (rate->bw) { case RATE_INFO_BW_160: idx = 3; break; case RATE_INFO_BW_80: idx = 2; break; case RATE_INFO_BW_40: idx = 1; break; case RATE_INFO_BW_5: case RATE_INFO_BW_10: default: goto warn; case RATE_INFO_BW_20: idx = 0; } bitrate = base[idx][rate->mcs]; bitrate *= rate->nss; if (rate->flags & RATE_INFO_FLAGS_SHORT_GI) bitrate = (bitrate / 9) * 10; /* do NOT round down here */ return (bitrate + 50000) / 100000; warn: WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n", rate->bw, rate->mcs, rate->nss); return 0; } static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate) { #define SCALE 2048 u16 mcs_divisors[12] = { 34133, /* 16.666666... */ 17067, /* 8.333333... */ 11378, /* 5.555555... */ 8533, /* 4.166666... */ 5689, /* 2.777777... */ 4267, /* 2.083333... */ 3923, /* 1.851851... */ 3413, /* 1.666666... */ 2844, /* 1.388888... */ 2560, /* 1.250000... */ 2276, /* 1.111111... */ 2048, /* 1.000000... */ }; u32 rates_160M[3] = { 960777777, 907400000, 816666666 }; u32 rates_969[3] = { 480388888, 453700000, 408333333 }; u32 rates_484[3] = { 229411111, 216666666, 195000000 }; u32 rates_242[3] = { 114711111, 108333333, 97500000 }; u32 rates_106[3] = { 40000000, 37777777, 34000000 }; u32 rates_52[3] = { 18820000, 17777777, 16000000 }; u32 rates_26[3] = { 9411111, 8888888, 8000000 }; u64 tmp; u32 result; if (WARN_ON_ONCE(rate->mcs > 11)) return 0; if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2)) return 0; if (WARN_ON_ONCE(rate->he_ru_alloc > NL80211_RATE_INFO_HE_RU_ALLOC_2x996)) return 0; if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8)) return 0; if (rate->bw == RATE_INFO_BW_160) result = rates_160M[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_80 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996)) result = rates_969[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_40 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484)) result = rates_484[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_20 || (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242)) result = rates_242[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106) result = rates_106[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52) result = rates_52[rate->he_gi]; else if (rate->bw == RATE_INFO_BW_HE_RU && rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26) result = rates_26[rate->he_gi]; else { WARN(1, "invalid HE MCS: bw:%d, ru:%d\n", rate->bw, rate->he_ru_alloc); return 0; } /* now scale to the appropriate MCS */ tmp = result; tmp *= SCALE; do_div(tmp, mcs_divisors[rate->mcs]); result = tmp; /* and take NSS, DCM into account */ result = (result * rate->nss) / 8; if (rate->he_dcm) result /= 2; return result / 10000; } u32 cfg80211_calculate_bitrate(struct rate_info *rate) { if (rate->flags & RATE_INFO_FLAGS_MCS) return cfg80211_calculate_bitrate_ht(rate); if (rate->flags & RATE_INFO_FLAGS_60G) return cfg80211_calculate_bitrate_60g(rate); if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) return cfg80211_calculate_bitrate_vht(rate); if (rate->flags & RATE_INFO_FLAGS_HE_MCS) return cfg80211_calculate_bitrate_he(rate); return rate->legacy; } EXPORT_SYMBOL(cfg80211_calculate_bitrate); int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len, enum ieee80211_p2p_attr_id attr, u8 *buf, unsigned int bufsize) { u8 *out = buf; u16 attr_remaining = 0; bool desired_attr = false; u16 desired_len = 0; while (len > 0) { unsigned int iedatalen; unsigned int copy; const u8 *iedata; if (len < 2) return -EILSEQ; iedatalen = ies[1]; if (iedatalen + 2 > len) return -EILSEQ; if (ies[0] != WLAN_EID_VENDOR_SPECIFIC) goto cont; if (iedatalen < 4) goto cont; iedata = ies + 2; /* check WFA OUI, P2P subtype */ if (iedata[0] != 0x50 || iedata[1] != 0x6f || iedata[2] != 0x9a || iedata[3] != 0x09) goto cont; iedatalen -= 4; iedata += 4; /* check attribute continuation into this IE */ copy = min_t(unsigned int, attr_remaining, iedatalen); if (copy && desired_attr) { desired_len += copy; if (out) { memcpy(out, iedata, min(bufsize, copy)); out += min(bufsize, copy); bufsize -= min(bufsize, copy); } if (copy == attr_remaining) return desired_len; } attr_remaining -= copy; if (attr_remaining) goto cont; iedatalen -= copy; iedata += copy; while (iedatalen > 0) { u16 attr_len; /* P2P attribute ID & size must fit */ if (iedatalen < 3) return -EILSEQ; desired_attr = iedata[0] == attr; attr_len = get_unaligned_le16(iedata + 1); iedatalen -= 3; iedata += 3; copy = min_t(unsigned int, attr_len, iedatalen); if (desired_attr) { desired_len += copy; if (out) { memcpy(out, iedata, min(bufsize, copy)); out += min(bufsize, copy); bufsize -= min(bufsize, copy); } if (copy == attr_len) return desired_len; } iedata += copy; iedatalen -= copy; attr_remaining = attr_len - copy; } cont: len -= ies[1] + 2; ies += ies[1] + 2; } if (attr_remaining && desired_attr) return -EILSEQ; return -ENOENT; } EXPORT_SYMBOL(cfg80211_get_p2p_attr); static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext) { int i; /* Make sure array values are legal */ if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION)) return false; i = 0; while (i < n_ids) { if (ids[i] == WLAN_EID_EXTENSION) { if (id_ext && (ids[i + 1] == id)) return true; i += 2; continue; } if (ids[i] == id && !id_ext) return true; i++; } return false; } static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos) { /* we assume a validly formed IEs buffer */ u8 len = ies[pos + 1]; pos += 2 + len; /* the IE itself must have 255 bytes for fragments to follow */ if (len < 255) return pos; while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) { len = ies[pos + 1]; pos += 2 + len; } return pos; } size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen, const u8 *ids, int n_ids, const u8 *after_ric, int n_after_ric, size_t offset) { size_t pos = offset; while (pos < ielen) { u8 ext = 0; if (ies[pos] == WLAN_EID_EXTENSION) ext = 2; if ((pos + ext) >= ielen) break; if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext], ies[pos] == WLAN_EID_EXTENSION)) break; if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) { pos = skip_ie(ies, ielen, pos); while (pos < ielen) { if (ies[pos] == WLAN_EID_EXTENSION) ext = 2; else ext = 0; if ((pos + ext) >= ielen) break; if (!ieee80211_id_in_list(after_ric, n_after_ric, ies[pos + ext], ext == 2)) pos = skip_ie(ies, ielen, pos); else break; } } else { pos = skip_ie(ies, ielen, pos); } } return pos; } EXPORT_SYMBOL(ieee80211_ie_split_ric); bool ieee80211_operating_class_to_band(u8 operating_class, enum nl80211_band *band) { switch (operating_class) { case 112: case 115 ... 127: case 128 ... 130: *band = NL80211_BAND_5GHZ; return true; case 81: case 82: case 83: case 84: *band = NL80211_BAND_2GHZ; return true; case 180: *band = NL80211_BAND_60GHZ; return true; } return false; } EXPORT_SYMBOL(ieee80211_operating_class_to_band); bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef, u8 *op_class) { u8 vht_opclass; u32 freq = chandef->center_freq1; if (freq >= 2412 && freq <= 2472) { if (chandef->width > NL80211_CHAN_WIDTH_40) return false; /* 2.407 GHz, channels 1..13 */ if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 83; /* HT40+ */ else *op_class = 84; /* HT40- */ } else { *op_class = 81; } return true; } if (freq == 2484) { if (chandef->width > NL80211_CHAN_WIDTH_40) return false; *op_class = 82; /* channel 14 */ return true; } switch (chandef->width) { case NL80211_CHAN_WIDTH_80: vht_opclass = 128; break; case NL80211_CHAN_WIDTH_160: vht_opclass = 129; break; case NL80211_CHAN_WIDTH_80P80: vht_opclass = 130; break; case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_5: return false; /* unsupported for now */ default: vht_opclass = 0; break; } /* 5 GHz, channels 36..48 */ if (freq >= 5180 && freq <= 5240) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 116; else *op_class = 117; } else { *op_class = 115; } return true; } /* 5 GHz, channels 52..64 */ if (freq >= 5260 && freq <= 5320) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 119; else *op_class = 120; } else { *op_class = 118; } return true; } /* 5 GHz, channels 100..144 */ if (freq >= 5500 && freq <= 5720) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 122; else *op_class = 123; } else { *op_class = 121; } return true; } /* 5 GHz, channels 149..169 */ if (freq >= 5745 && freq <= 5845) { if (vht_opclass) { *op_class = vht_opclass; } else if (chandef->width == NL80211_CHAN_WIDTH_40) { if (freq > chandef->chan->center_freq) *op_class = 126; else *op_class = 127; } else if (freq <= 5805) { *op_class = 124; } else { *op_class = 125; } return true; } /* 56.16 GHz, channel 1..4 */ if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) { if (chandef->width >= NL80211_CHAN_WIDTH_40) return false; *op_class = 180; return true; } /* not supported yet */ return false; } EXPORT_SYMBOL(ieee80211_chandef_to_operating_class); static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int, u32 *beacon_int_gcd, bool *beacon_int_different) { struct wireless_dev *wdev; *beacon_int_gcd = 0; *beacon_int_different = false; list_for_each_entry(wdev, &wiphy->wdev_list, list) { if (!wdev->beacon_interval) continue; if (!*beacon_int_gcd) { *beacon_int_gcd = wdev->beacon_interval; continue; } if (wdev->beacon_interval == *beacon_int_gcd) continue; *beacon_int_different = true; *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval); } if (new_beacon_int && *beacon_int_gcd != new_beacon_int) { if (*beacon_int_gcd) *beacon_int_different = true; *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int); } } int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev, enum nl80211_iftype iftype, u32 beacon_int) { /* * This is just a basic pre-condition check; if interface combinations * are possible the driver must already be checking those with a call * to cfg80211_check_combinations(), in which case we'll validate more * through the cfg80211_calculate_bi_data() call and code in * cfg80211_iter_combinations(). */ if (beacon_int < 10 || beacon_int > 10000) return -EINVAL; return 0; } int cfg80211_iter_combinations(struct wiphy *wiphy, struct iface_combination_params *params, void (*iter)(const struct ieee80211_iface_combination *c, void *data), void *data) { const struct ieee80211_regdomain *regdom; enum nl80211_dfs_regions region = 0; int i, j, iftype; int num_interfaces = 0; u32 used_iftypes = 0; u32 beacon_int_gcd; bool beacon_int_different; /* * This is a bit strange, since the iteration used to rely only on * the data given by the driver, but here it now relies on context, * in form of the currently operating interfaces. * This is OK for all current users, and saves us from having to * push the GCD calculations into all the drivers. * In the future, this should probably rely more on data that's in * cfg80211 already - the only thing not would appear to be any new * interfaces (while being brought up) and channel/radar data. */ cfg80211_calculate_bi_data(wiphy, params->new_beacon_int, &beacon_int_gcd, &beacon_int_different); if (params->radar_detect) { rcu_read_lock(); regdom = rcu_dereference(cfg80211_regdomain); if (regdom) region = regdom->dfs_region; rcu_read_unlock(); } for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { num_interfaces += params->iftype_num[iftype]; if (params->iftype_num[iftype] > 0 && !cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) used_iftypes |= BIT(iftype); } for (i = 0; i < wiphy->n_iface_combinations; i++) { const struct ieee80211_iface_combination *c; struct ieee80211_iface_limit *limits; u32 all_iftypes = 0; c = &wiphy->iface_combinations[i]; if (num_interfaces > c->max_interfaces) continue; if (params->num_different_channels > c->num_different_channels) continue; limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits, GFP_KERNEL); if (!limits) return -ENOMEM; for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) { if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1)) continue; for (j = 0; j < c->n_limits; j++) { all_iftypes |= limits[j].types; if (!(limits[j].types & BIT(iftype))) continue; if (limits[j].max < params->iftype_num[iftype]) goto cont; limits[j].max -= params->iftype_num[iftype]; } } if (params->radar_detect != (c->radar_detect_widths & params->radar_detect)) goto cont; if (params->radar_detect && c->radar_detect_regions && !(c->radar_detect_regions & BIT(region))) goto cont; /* Finally check that all iftypes that we're currently * using are actually part of this combination. If they * aren't then we can't use this combination and have * to continue to the next. */ if ((all_iftypes & used_iftypes) != used_iftypes) goto cont; if (beacon_int_gcd) { if (c->beacon_int_min_gcd && beacon_int_gcd < c->beacon_int_min_gcd) goto cont; if (!c->beacon_int_min_gcd && beacon_int_different) goto cont; } /* This combination covered all interface types and * supported the requested numbers, so we're good. */ (*iter)(c, data); cont: kfree(limits); } return 0; } EXPORT_SYMBOL(cfg80211_iter_combinations); static void cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c, void *data) { int *num = data; (*num)++; } int cfg80211_check_combinations(struct wiphy *wiphy, struct iface_combination_params *params) { int err, num = 0; err = cfg80211_iter_combinations(wiphy, params, cfg80211_iter_sum_ifcombs, &num); if (err) return err; if (num == 0) return -EBUSY; return 0; } EXPORT_SYMBOL(cfg80211_check_combinations); int ieee80211_get_ratemask(struct ieee80211_supported_band *sband, const u8 *rates, unsigned int n_rates, u32 *mask) { int i, j; if (!sband) return -EINVAL; if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES) return -EINVAL; *mask = 0; for (i = 0; i < n_rates; i++) { int rate = (rates[i] & 0x7f) * 5; bool found = false; for (j = 0; j < sband->n_bitrates; j++) { if (sband->bitrates[j].bitrate == rate) { found = true; *mask |= BIT(j); break; } } if (!found) return -EINVAL; } /* * mask must have at least one bit set here since we * didn't accept a 0-length rates array nor allowed * entries in the array that didn't exist */ return 0; } unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy) { enum nl80211_band band; unsigned int n_channels = 0; for (band = 0; band < NUM_NL80211_BANDS; band++) if (wiphy->bands[band]) n_channels += wiphy->bands[band]->n_channels; return n_channels; } EXPORT_SYMBOL(ieee80211_get_num_supported_channels); int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr, struct station_info *sinfo) { struct cfg80211_registered_device *rdev; struct wireless_dev *wdev; wdev = dev->ieee80211_ptr; if (!wdev) return -EOPNOTSUPP; rdev = wiphy_to_rdev(wdev->wiphy); if (!rdev->ops->get_station) return -EOPNOTSUPP; memset(sinfo, 0, sizeof(*sinfo)); return rdev_get_station(rdev, dev, mac_addr, sinfo); } EXPORT_SYMBOL(cfg80211_get_station); void cfg80211_free_nan_func(struct cfg80211_nan_func *f) { int i; if (!f) return; kfree(f->serv_spec_info); kfree(f->srf_bf); kfree(f->srf_macs); for (i = 0; i < f->num_rx_filters; i++) kfree(f->rx_filters[i].filter); for (i = 0; i < f->num_tx_filters; i++) kfree(f->tx_filters[i].filter); kfree(f->rx_filters); kfree(f->tx_filters); kfree(f); } EXPORT_SYMBOL(cfg80211_free_nan_func); bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range, u32 center_freq_khz, u32 bw_khz) { u32 start_freq_khz, end_freq_khz; start_freq_khz = center_freq_khz - (bw_khz / 2); end_freq_khz = center_freq_khz + (bw_khz / 2); if (start_freq_khz >= freq_range->start_freq_khz && end_freq_khz <= freq_range->end_freq_khz) return true; return false; } int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp) { sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1, sizeof(*(sinfo->pertid)), gfp); if (!sinfo->pertid) return -ENOMEM; return 0; } EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats); /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */ /* Ethernet-II snap header (RFC1042 for most EtherTypes) */ const unsigned char rfc1042_header[] __aligned(2) = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 }; EXPORT_SYMBOL(rfc1042_header); /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */ const unsigned char bridge_tunnel_header[] __aligned(2) = { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 }; EXPORT_SYMBOL(bridge_tunnel_header); /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */ struct iapp_layer2_update { u8 da[ETH_ALEN]; /* broadcast */ u8 sa[ETH_ALEN]; /* STA addr */ __be16 len; /* 6 */ u8 dsap; /* 0 */ u8 ssap; /* 0 */ u8 control; u8 xid_info[3]; } __packed; void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr) { struct iapp_layer2_update *msg; struct sk_buff *skb; /* Send Level 2 Update Frame to update forwarding tables in layer 2 * bridge devices */ skb = dev_alloc_skb(sizeof(*msg)); if (!skb) return; msg = skb_put(skb, sizeof(*msg)); /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID) * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */ eth_broadcast_addr(msg->da); ether_addr_copy(msg->sa, addr); msg->len = htons(6); msg->dsap = 0; msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */ msg->control = 0xaf; /* XID response lsb.1111F101. * F=0 (no poll command; unsolicited frame) */ msg->xid_info[0] = 0x81; /* XID format identifier */ msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */ msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */ skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); memset(skb->cb, 0, sizeof(skb->cb)); netif_rx_ni(skb); } EXPORT_SYMBOL(cfg80211_send_layer2_update); int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, enum ieee80211_vht_chanwidth bw, int mcs, bool ext_nss_bw_capable) { u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map); int max_vht_nss = 0; int ext_nss_bw; int supp_width; int i, mcs_encoding; if (map == 0xffff) return 0; if (WARN_ON(mcs > 9)) return 0; if (mcs <= 7) mcs_encoding = 0; else if (mcs == 8) mcs_encoding = 1; else mcs_encoding = 2; /* find max_vht_nss for the given MCS */ for (i = 7; i >= 0; i--) { int supp = (map >> (2 * i)) & 3; if (supp == 3) continue; if (supp >= mcs_encoding) { max_vht_nss = i + 1; break; } } if (!(cap->supp_mcs.tx_mcs_map & cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE))) return max_vht_nss; ext_nss_bw = le32_get_bits(cap->vht_cap_info, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); supp_width = le32_get_bits(cap->vht_cap_info, IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); /* if not capable, treat ext_nss_bw as 0 */ if (!ext_nss_bw_capable) ext_nss_bw = 0; /* This is invalid */ if (supp_width == 3) return 0; /* This is an invalid combination so pretend nothing is supported */ if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2)) return 0; /* * Cover all the special cases according to IEEE 802.11-2016 * Table 9-250. All other cases are either factor of 1 or not * valid/supported. */ switch (bw) { case IEEE80211_VHT_CHANWIDTH_USE_HT: case IEEE80211_VHT_CHANWIDTH_80MHZ: if ((supp_width == 1 || supp_width == 2) && ext_nss_bw == 3) return 2 * max_vht_nss; break; case IEEE80211_VHT_CHANWIDTH_160MHZ: if (supp_width == 0 && (ext_nss_bw == 1 || ext_nss_bw == 2)) return max_vht_nss / 2; if (supp_width == 0 && ext_nss_bw == 3) return (3 * max_vht_nss) / 4; if (supp_width == 1 && ext_nss_bw == 3) return 2 * max_vht_nss; break; case IEEE80211_VHT_CHANWIDTH_80P80MHZ: if (supp_width == 0 && ext_nss_bw == 1) return 0; /* not possible */ if (supp_width == 0 && ext_nss_bw == 2) return max_vht_nss / 2; if (supp_width == 0 && ext_nss_bw == 3) return (3 * max_vht_nss) / 4; if (supp_width == 1 && ext_nss_bw == 0) return 0; /* not possible */ if (supp_width == 1 && ext_nss_bw == 1) return max_vht_nss / 2; if (supp_width == 1 && ext_nss_bw == 2) return (3 * max_vht_nss) / 4; break; } /* not covered or invalid combination received */ return max_vht_nss; } EXPORT_SYMBOL(ieee80211_get_vht_max_nss); bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype, bool is_4addr, u8 check_swif) { bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN; switch (check_swif) { case 0: if (is_vlan && is_4addr) return wiphy->flags & WIPHY_FLAG_4ADDR_AP; return wiphy->interface_modes & BIT(iftype); case 1: if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan) return wiphy->flags & WIPHY_FLAG_4ADDR_AP; return wiphy->software_iftypes & BIT(iftype); default: break; } return false; } EXPORT_SYMBOL(cfg80211_iftype_allowed);