/* * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. * Copyright (c) 2016-2017, Dave Watson . All rights reserved. * Copyright (c) 2016-2017, Lance Chao . All rights reserved. * Copyright (c) 2016, Fridolin Pokorny . All rights reserved. * Copyright (c) 2016, Nikos Mavrogiannopoulos . All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #define MAX_IV_SIZE TLS_CIPHER_AES_GCM_128_IV_SIZE static int tls_do_decryption(struct sock *sk, struct scatterlist *sgin, struct scatterlist *sgout, char *iv_recv, size_t data_len, struct sk_buff *skb, gfp_t flags) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct strp_msg *rxm = strp_msg(skb); struct aead_request *aead_req; int ret; unsigned int req_size = sizeof(struct aead_request) + crypto_aead_reqsize(ctx->aead_recv); aead_req = kzalloc(req_size, flags); if (!aead_req) return -ENOMEM; aead_request_set_tfm(aead_req, ctx->aead_recv); aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); aead_request_set_crypt(aead_req, sgin, sgout, data_len + tls_ctx->rx.tag_size, (u8 *)iv_recv); aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &ctx->async_wait); ret = crypto_wait_req(crypto_aead_decrypt(aead_req), &ctx->async_wait); if (ret < 0) goto out; rxm->offset += tls_ctx->rx.prepend_size; rxm->full_len -= tls_ctx->rx.overhead_size; tls_advance_record_sn(sk, &tls_ctx->rx); ctx->decrypted = true; ctx->saved_data_ready(sk); out: kfree(aead_req); return ret; } static void trim_sg(struct sock *sk, struct scatterlist *sg, int *sg_num_elem, unsigned int *sg_size, int target_size) { int i = *sg_num_elem - 1; int trim = *sg_size - target_size; if (trim <= 0) { WARN_ON(trim < 0); return; } *sg_size = target_size; while (trim >= sg[i].length) { trim -= sg[i].length; sk_mem_uncharge(sk, sg[i].length); put_page(sg_page(&sg[i])); i--; if (i < 0) goto out; } sg[i].length -= trim; sk_mem_uncharge(sk, trim); out: *sg_num_elem = i + 1; } static void trim_both_sgl(struct sock *sk, int target_size) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); trim_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, target_size); if (target_size > 0) target_size += tls_ctx->tx.overhead_size; trim_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem, &ctx->sg_encrypted_size, target_size); } static int alloc_encrypted_sg(struct sock *sk, int len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); int rc = 0; rc = sk_alloc_sg(sk, len, ctx->sg_encrypted_data, 0, &ctx->sg_encrypted_num_elem, &ctx->sg_encrypted_size, 0); return rc; } static int alloc_plaintext_sg(struct sock *sk, int len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); int rc = 0; rc = sk_alloc_sg(sk, len, ctx->sg_plaintext_data, 0, &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, tls_ctx->pending_open_record_frags); return rc; } static void free_sg(struct sock *sk, struct scatterlist *sg, int *sg_num_elem, unsigned int *sg_size) { int i, n = *sg_num_elem; for (i = 0; i < n; ++i) { sk_mem_uncharge(sk, sg[i].length); put_page(sg_page(&sg[i])); } *sg_num_elem = 0; *sg_size = 0; } static void tls_free_both_sg(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); free_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem, &ctx->sg_encrypted_size); free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size); } static int tls_do_encryption(struct tls_context *tls_ctx, struct tls_sw_context_tx *ctx, struct aead_request *aead_req, size_t data_len) { int rc; ctx->sg_encrypted_data[0].offset += tls_ctx->tx.prepend_size; ctx->sg_encrypted_data[0].length -= tls_ctx->tx.prepend_size; aead_request_set_tfm(aead_req, ctx->aead_send); aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE); aead_request_set_crypt(aead_req, ctx->sg_aead_in, ctx->sg_aead_out, data_len, tls_ctx->tx.iv); aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &ctx->async_wait); rc = crypto_wait_req(crypto_aead_encrypt(aead_req), &ctx->async_wait); ctx->sg_encrypted_data[0].offset -= tls_ctx->tx.prepend_size; ctx->sg_encrypted_data[0].length += tls_ctx->tx.prepend_size; return rc; } static int tls_push_record(struct sock *sk, int flags, unsigned char record_type) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct aead_request *req; int rc; req = kzalloc(sizeof(struct aead_request) + crypto_aead_reqsize(ctx->aead_send), sk->sk_allocation); if (!req) return -ENOMEM; sg_mark_end(ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem - 1); sg_mark_end(ctx->sg_encrypted_data + ctx->sg_encrypted_num_elem - 1); tls_make_aad(ctx->aad_space, ctx->sg_plaintext_size, tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size, record_type); tls_fill_prepend(tls_ctx, page_address(sg_page(&ctx->sg_encrypted_data[0])) + ctx->sg_encrypted_data[0].offset, ctx->sg_plaintext_size, record_type); tls_ctx->pending_open_record_frags = 0; set_bit(TLS_PENDING_CLOSED_RECORD, &tls_ctx->flags); rc = tls_do_encryption(tls_ctx, ctx, req, ctx->sg_plaintext_size); if (rc < 0) { /* If we are called from write_space and * we fail, we need to set this SOCK_NOSPACE * to trigger another write_space in the future. */ set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); goto out_req; } free_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size); ctx->sg_encrypted_num_elem = 0; ctx->sg_encrypted_size = 0; /* Only pass through MSG_DONTWAIT and MSG_NOSIGNAL flags */ rc = tls_push_sg(sk, tls_ctx, ctx->sg_encrypted_data, 0, flags); if (rc < 0 && rc != -EAGAIN) tls_err_abort(sk, EBADMSG); tls_advance_record_sn(sk, &tls_ctx->tx); out_req: kfree(req); return rc; } static int tls_sw_push_pending_record(struct sock *sk, int flags) { return tls_push_record(sk, flags, TLS_RECORD_TYPE_DATA); } static int zerocopy_from_iter(struct sock *sk, struct iov_iter *from, int length, int *pages_used, unsigned int *size_used, struct scatterlist *to, int to_max_pages, bool charge) { struct page *pages[MAX_SKB_FRAGS]; size_t offset; ssize_t copied, use; int i = 0; unsigned int size = *size_used; int num_elem = *pages_used; int rc = 0; int maxpages; while (length > 0) { i = 0; maxpages = to_max_pages - num_elem; if (maxpages == 0) { rc = -EFAULT; goto out; } copied = iov_iter_get_pages(from, pages, length, maxpages, &offset); if (copied <= 0) { rc = -EFAULT; goto out; } iov_iter_advance(from, copied); length -= copied; size += copied; while (copied) { use = min_t(int, copied, PAGE_SIZE - offset); sg_set_page(&to[num_elem], pages[i], use, offset); sg_unmark_end(&to[num_elem]); if (charge) sk_mem_charge(sk, use); offset = 0; copied -= use; ++i; ++num_elem; } } out: *size_used = size; *pages_used = num_elem; return rc; } static int memcopy_from_iter(struct sock *sk, struct iov_iter *from, int bytes) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); struct scatterlist *sg = ctx->sg_plaintext_data; int copy, i, rc = 0; for (i = tls_ctx->pending_open_record_frags; i < ctx->sg_plaintext_num_elem; ++i) { copy = sg[i].length; if (copy_from_iter( page_address(sg_page(&sg[i])) + sg[i].offset, copy, from) != copy) { rc = -EFAULT; goto out; } bytes -= copy; ++tls_ctx->pending_open_record_frags; if (!bytes) break; } out: return rc; } int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); int ret = 0; int required_size; long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); bool eor = !(msg->msg_flags & MSG_MORE); size_t try_to_copy, copied = 0; unsigned char record_type = TLS_RECORD_TYPE_DATA; int record_room; bool full_record; int orig_size; if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL)) return -ENOTSUPP; lock_sock(sk); if (tls_complete_pending_work(sk, tls_ctx, msg->msg_flags, &timeo)) goto send_end; if (unlikely(msg->msg_controllen)) { ret = tls_proccess_cmsg(sk, msg, &record_type); if (ret) goto send_end; } while (msg_data_left(msg)) { if (sk->sk_err) { ret = -sk->sk_err; goto send_end; } orig_size = ctx->sg_plaintext_size; full_record = false; try_to_copy = msg_data_left(msg); record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; if (try_to_copy >= record_room) { try_to_copy = record_room; full_record = true; } required_size = ctx->sg_plaintext_size + try_to_copy + tls_ctx->tx.overhead_size; if (!sk_stream_memory_free(sk)) goto wait_for_sndbuf; alloc_encrypted: ret = alloc_encrypted_sg(sk, required_size); if (ret) { if (ret != -ENOSPC) goto wait_for_memory; /* Adjust try_to_copy according to the amount that was * actually allocated. The difference is due * to max sg elements limit */ try_to_copy -= required_size - ctx->sg_encrypted_size; full_record = true; } if (full_record || eor) { ret = zerocopy_from_iter(sk, &msg->msg_iter, try_to_copy, &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, ctx->sg_plaintext_data, ARRAY_SIZE(ctx->sg_plaintext_data), true); if (ret) goto fallback_to_reg_send; copied += try_to_copy; ret = tls_push_record(sk, msg->msg_flags, record_type); if (!ret) continue; if (ret == -EAGAIN) goto send_end; copied -= try_to_copy; fallback_to_reg_send: iov_iter_revert(&msg->msg_iter, ctx->sg_plaintext_size - orig_size); trim_sg(sk, ctx->sg_plaintext_data, &ctx->sg_plaintext_num_elem, &ctx->sg_plaintext_size, orig_size); } required_size = ctx->sg_plaintext_size + try_to_copy; alloc_plaintext: ret = alloc_plaintext_sg(sk, required_size); if (ret) { if (ret != -ENOSPC) goto wait_for_memory; /* Adjust try_to_copy according to the amount that was * actually allocated. The difference is due * to max sg elements limit */ try_to_copy -= required_size - ctx->sg_plaintext_size; full_record = true; trim_sg(sk, ctx->sg_encrypted_data, &ctx->sg_encrypted_num_elem, &ctx->sg_encrypted_size, ctx->sg_plaintext_size + tls_ctx->tx.overhead_size); } ret = memcopy_from_iter(sk, &msg->msg_iter, try_to_copy); if (ret) goto trim_sgl; copied += try_to_copy; if (full_record || eor) { push_record: ret = tls_push_record(sk, msg->msg_flags, record_type); if (ret) { if (ret == -ENOMEM) goto wait_for_memory; goto send_end; } } continue; wait_for_sndbuf: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); wait_for_memory: ret = sk_stream_wait_memory(sk, &timeo); if (ret) { trim_sgl: trim_both_sgl(sk, orig_size); goto send_end; } if (tls_is_pending_closed_record(tls_ctx)) goto push_record; if (ctx->sg_encrypted_size < required_size) goto alloc_encrypted; goto alloc_plaintext; } send_end: ret = sk_stream_error(sk, msg->msg_flags, ret); release_sock(sk); return copied ? copied : ret; } int tls_sw_sendpage(struct sock *sk, struct page *page, int offset, size_t size, int flags) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); int ret = 0; long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); bool eor; size_t orig_size = size; unsigned char record_type = TLS_RECORD_TYPE_DATA; struct scatterlist *sg; bool full_record; int record_room; if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST)) return -ENOTSUPP; /* No MSG_EOR from splice, only look at MSG_MORE */ eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST)); lock_sock(sk); sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); if (tls_complete_pending_work(sk, tls_ctx, flags, &timeo)) goto sendpage_end; /* Call the sk_stream functions to manage the sndbuf mem. */ while (size > 0) { size_t copy, required_size; if (sk->sk_err) { ret = -sk->sk_err; goto sendpage_end; } full_record = false; record_room = TLS_MAX_PAYLOAD_SIZE - ctx->sg_plaintext_size; copy = size; if (copy >= record_room) { copy = record_room; full_record = true; } required_size = ctx->sg_plaintext_size + copy + tls_ctx->tx.overhead_size; if (!sk_stream_memory_free(sk)) goto wait_for_sndbuf; alloc_payload: ret = alloc_encrypted_sg(sk, required_size); if (ret) { if (ret != -ENOSPC) goto wait_for_memory; /* Adjust copy according to the amount that was * actually allocated. The difference is due * to max sg elements limit */ copy -= required_size - ctx->sg_plaintext_size; full_record = true; } get_page(page); sg = ctx->sg_plaintext_data + ctx->sg_plaintext_num_elem; sg_set_page(sg, page, copy, offset); sg_unmark_end(sg); ctx->sg_plaintext_num_elem++; sk_mem_charge(sk, copy); offset += copy; size -= copy; ctx->sg_plaintext_size += copy; tls_ctx->pending_open_record_frags = ctx->sg_plaintext_num_elem; if (full_record || eor || ctx->sg_plaintext_num_elem == ARRAY_SIZE(ctx->sg_plaintext_data)) { push_record: ret = tls_push_record(sk, flags, record_type); if (ret) { if (ret == -ENOMEM) goto wait_for_memory; goto sendpage_end; } } continue; wait_for_sndbuf: set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); wait_for_memory: ret = sk_stream_wait_memory(sk, &timeo); if (ret) { trim_both_sgl(sk, ctx->sg_plaintext_size); goto sendpage_end; } if (tls_is_pending_closed_record(tls_ctx)) goto push_record; goto alloc_payload; } sendpage_end: if (orig_size > size) ret = orig_size - size; else ret = sk_stream_error(sk, flags, ret); release_sock(sk); return ret; } static struct sk_buff *tls_wait_data(struct sock *sk, int flags, long timeo, int *err) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct sk_buff *skb; DEFINE_WAIT_FUNC(wait, woken_wake_function); while (!(skb = ctx->recv_pkt)) { if (sk->sk_err) { *err = sock_error(sk); return NULL; } if (sock_flag(sk, SOCK_DONE)) return NULL; if ((flags & MSG_DONTWAIT) || !timeo) { *err = -EAGAIN; return NULL; } add_wait_queue(sk_sleep(sk), &wait); sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk); sk_wait_event(sk, &timeo, ctx->recv_pkt != skb, &wait); sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk); remove_wait_queue(sk_sleep(sk), &wait); /* Handle signals */ if (signal_pending(current)) { *err = sock_intr_errno(timeo); return NULL; } } return skb; } static int decrypt_skb(struct sock *sk, struct sk_buff *skb, struct scatterlist *sgout) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); char iv[TLS_CIPHER_AES_GCM_128_SALT_SIZE + MAX_IV_SIZE]; struct scatterlist sgin_arr[MAX_SKB_FRAGS + 2]; struct scatterlist *sgin = &sgin_arr[0]; struct strp_msg *rxm = strp_msg(skb); int ret, nsg = ARRAY_SIZE(sgin_arr); struct sk_buff *unused; ret = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE, iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, tls_ctx->rx.iv_size); if (ret < 0) return ret; memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE); if (!sgout) { nsg = skb_cow_data(skb, 0, &unused) + 1; sgin = kmalloc_array(nsg, sizeof(*sgin), sk->sk_allocation); sgout = sgin; } sg_init_table(sgin, nsg); sg_set_buf(&sgin[0], ctx->rx_aad_ciphertext, TLS_AAD_SPACE_SIZE); nsg = skb_to_sgvec(skb, &sgin[1], rxm->offset + tls_ctx->rx.prepend_size, rxm->full_len - tls_ctx->rx.prepend_size); tls_make_aad(ctx->rx_aad_ciphertext, rxm->full_len - tls_ctx->rx.overhead_size, tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size, ctx->control); ret = tls_do_decryption(sk, sgin, sgout, iv, rxm->full_len - tls_ctx->rx.overhead_size, skb, sk->sk_allocation); if (sgin != &sgin_arr[0]) kfree(sgin); return ret; } static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb, unsigned int len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct strp_msg *rxm = strp_msg(skb); if (len < rxm->full_len) { rxm->offset += len; rxm->full_len -= len; return false; } /* Finished with message */ ctx->recv_pkt = NULL; kfree_skb(skb); __strp_unpause(&ctx->strp); return true; } int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, int flags, int *addr_len) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); unsigned char control; struct strp_msg *rxm; struct sk_buff *skb; ssize_t copied = 0; bool cmsg = false; int err = 0; long timeo; flags |= nonblock; if (unlikely(flags & MSG_ERRQUEUE)) return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR); lock_sock(sk); timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); do { bool zc = false; int chunk = 0; skb = tls_wait_data(sk, flags, timeo, &err); if (!skb) goto recv_end; rxm = strp_msg(skb); if (!cmsg) { int cerr; cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE, sizeof(ctx->control), &ctx->control); cmsg = true; control = ctx->control; if (ctx->control != TLS_RECORD_TYPE_DATA) { if (cerr || msg->msg_flags & MSG_CTRUNC) { err = -EIO; goto recv_end; } } } else if (control != ctx->control) { goto recv_end; } if (!ctx->decrypted) { int page_count; int to_copy; page_count = iov_iter_npages(&msg->msg_iter, MAX_SKB_FRAGS); to_copy = rxm->full_len - tls_ctx->rx.overhead_size; if (to_copy <= len && page_count < MAX_SKB_FRAGS && likely(!(flags & MSG_PEEK))) { struct scatterlist sgin[MAX_SKB_FRAGS + 1]; int pages = 0; zc = true; sg_init_table(sgin, MAX_SKB_FRAGS + 1); sg_set_buf(&sgin[0], ctx->rx_aad_plaintext, TLS_AAD_SPACE_SIZE); err = zerocopy_from_iter(sk, &msg->msg_iter, to_copy, &pages, &chunk, &sgin[1], MAX_SKB_FRAGS, false); if (err < 0) goto fallback_to_reg_recv; err = decrypt_skb(sk, skb, sgin); for (; pages > 0; pages--) put_page(sg_page(&sgin[pages])); if (err < 0) { tls_err_abort(sk, EBADMSG); goto recv_end; } } else { fallback_to_reg_recv: err = decrypt_skb(sk, skb, NULL); if (err < 0) { tls_err_abort(sk, EBADMSG); goto recv_end; } } ctx->decrypted = true; } if (!zc) { chunk = min_t(unsigned int, rxm->full_len, len); err = skb_copy_datagram_msg(skb, rxm->offset, msg, chunk); if (err < 0) goto recv_end; } copied += chunk; len -= chunk; if (likely(!(flags & MSG_PEEK))) { u8 control = ctx->control; if (tls_sw_advance_skb(sk, skb, chunk)) { /* Return full control message to * userspace before trying to parse * another message type */ msg->msg_flags |= MSG_EOR; if (control != TLS_RECORD_TYPE_DATA) goto recv_end; } } } while (len); recv_end: release_sock(sk); return copied ? : err; } ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, struct pipe_inode_info *pipe, size_t len, unsigned int flags) { struct tls_context *tls_ctx = tls_get_ctx(sock->sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct strp_msg *rxm = NULL; struct sock *sk = sock->sk; struct sk_buff *skb; ssize_t copied = 0; int err = 0; long timeo; int chunk; lock_sock(sk); timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); skb = tls_wait_data(sk, flags, timeo, &err); if (!skb) goto splice_read_end; /* splice does not support reading control messages */ if (ctx->control != TLS_RECORD_TYPE_DATA) { err = -ENOTSUPP; goto splice_read_end; } if (!ctx->decrypted) { err = decrypt_skb(sk, skb, NULL); if (err < 0) { tls_err_abort(sk, EBADMSG); goto splice_read_end; } ctx->decrypted = true; } rxm = strp_msg(skb); chunk = min_t(unsigned int, rxm->full_len, len); copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags); if (copied < 0) goto splice_read_end; if (likely(!(flags & MSG_PEEK))) tls_sw_advance_skb(sk, skb, copied); splice_read_end: release_sock(sk); return copied ? : err; } __poll_t tls_sw_poll_mask(struct socket *sock, __poll_t events) { struct sock *sk = sock->sk; struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); __poll_t mask; /* Grab EPOLLOUT and EPOLLHUP from the underlying socket */ mask = ctx->sk_poll_mask(sock, events); /* Clear EPOLLIN bits, and set based on recv_pkt */ mask &= ~(EPOLLIN | EPOLLRDNORM); if (ctx->recv_pkt) mask |= EPOLLIN | EPOLLRDNORM; return mask; } static int tls_read_size(struct strparser *strp, struct sk_buff *skb) { struct tls_context *tls_ctx = tls_get_ctx(strp->sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); char header[tls_ctx->rx.prepend_size]; struct strp_msg *rxm = strp_msg(skb); size_t cipher_overhead; size_t data_len = 0; int ret; /* Verify that we have a full TLS header, or wait for more data */ if (rxm->offset + tls_ctx->rx.prepend_size > skb->len) return 0; /* Linearize header to local buffer */ ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size); if (ret < 0) goto read_failure; ctx->control = header[0]; data_len = ((header[4] & 0xFF) | (header[3] << 8)); cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size; if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) { ret = -EMSGSIZE; goto read_failure; } if (data_len < cipher_overhead) { ret = -EBADMSG; goto read_failure; } if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.version) || header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.version)) { ret = -EINVAL; goto read_failure; } return data_len + TLS_HEADER_SIZE; read_failure: tls_err_abort(strp->sk, ret); return ret; } static void tls_queue(struct strparser *strp, struct sk_buff *skb) { struct tls_context *tls_ctx = tls_get_ctx(strp->sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); struct strp_msg *rxm; rxm = strp_msg(skb); ctx->decrypted = false; ctx->recv_pkt = skb; strp_pause(strp); strp->sk->sk_state_change(strp->sk); } static void tls_data_ready(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); strp_data_ready(&ctx->strp); } void tls_sw_free_resources_tx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx); if (ctx->aead_send) crypto_free_aead(ctx->aead_send); tls_free_both_sg(sk); kfree(ctx); } void tls_sw_free_resources_rx(struct sock *sk) { struct tls_context *tls_ctx = tls_get_ctx(sk); struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx); if (ctx->aead_recv) { if (ctx->recv_pkt) { kfree_skb(ctx->recv_pkt); ctx->recv_pkt = NULL; } crypto_free_aead(ctx->aead_recv); strp_stop(&ctx->strp); write_lock_bh(&sk->sk_callback_lock); sk->sk_data_ready = ctx->saved_data_ready; write_unlock_bh(&sk->sk_callback_lock); release_sock(sk); strp_done(&ctx->strp); lock_sock(sk); } kfree(ctx); } int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx) { char keyval[TLS_CIPHER_AES_GCM_128_KEY_SIZE]; struct tls_crypto_info *crypto_info; struct tls12_crypto_info_aes_gcm_128 *gcm_128_info; struct tls_sw_context_tx *sw_ctx_tx = NULL; struct tls_sw_context_rx *sw_ctx_rx = NULL; struct cipher_context *cctx; struct crypto_aead **aead; struct strp_callbacks cb; u16 nonce_size, tag_size, iv_size, rec_seq_size; char *iv, *rec_seq; int rc = 0; if (!ctx) { rc = -EINVAL; goto out; } if (tx) { sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL); if (!sw_ctx_tx) { rc = -ENOMEM; goto out; } crypto_init_wait(&sw_ctx_tx->async_wait); ctx->priv_ctx_tx = sw_ctx_tx; } else { sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL); if (!sw_ctx_rx) { rc = -ENOMEM; goto out; } crypto_init_wait(&sw_ctx_rx->async_wait); ctx->priv_ctx_rx = sw_ctx_rx; } if (tx) { crypto_info = &ctx->crypto_send; cctx = &ctx->tx; aead = &sw_ctx_tx->aead_send; } else { crypto_info = &ctx->crypto_recv; cctx = &ctx->rx; aead = &sw_ctx_rx->aead_recv; } switch (crypto_info->cipher_type) { case TLS_CIPHER_AES_GCM_128: { nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE; iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE; iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv; rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE; rec_seq = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq; gcm_128_info = (struct tls12_crypto_info_aes_gcm_128 *)crypto_info; break; } default: rc = -EINVAL; goto free_priv; } /* Sanity-check the IV size for stack allocations. */ if (iv_size > MAX_IV_SIZE) { rc = -EINVAL; goto free_priv; } cctx->prepend_size = TLS_HEADER_SIZE + nonce_size; cctx->tag_size = tag_size; cctx->overhead_size = cctx->prepend_size + cctx->tag_size; cctx->iv_size = iv_size; cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE, GFP_KERNEL); if (!cctx->iv) { rc = -ENOMEM; goto free_priv; } memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE); memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size); cctx->rec_seq_size = rec_seq_size; cctx->rec_seq = kmalloc(rec_seq_size, GFP_KERNEL); if (!cctx->rec_seq) { rc = -ENOMEM; goto free_iv; } memcpy(cctx->rec_seq, rec_seq, rec_seq_size); if (sw_ctx_tx) { sg_init_table(sw_ctx_tx->sg_encrypted_data, ARRAY_SIZE(sw_ctx_tx->sg_encrypted_data)); sg_init_table(sw_ctx_tx->sg_plaintext_data, ARRAY_SIZE(sw_ctx_tx->sg_plaintext_data)); sg_init_table(sw_ctx_tx->sg_aead_in, 2); sg_set_buf(&sw_ctx_tx->sg_aead_in[0], sw_ctx_tx->aad_space, sizeof(sw_ctx_tx->aad_space)); sg_unmark_end(&sw_ctx_tx->sg_aead_in[1]); sg_chain(sw_ctx_tx->sg_aead_in, 2, sw_ctx_tx->sg_plaintext_data); sg_init_table(sw_ctx_tx->sg_aead_out, 2); sg_set_buf(&sw_ctx_tx->sg_aead_out[0], sw_ctx_tx->aad_space, sizeof(sw_ctx_tx->aad_space)); sg_unmark_end(&sw_ctx_tx->sg_aead_out[1]); sg_chain(sw_ctx_tx->sg_aead_out, 2, sw_ctx_tx->sg_encrypted_data); } if (!*aead) { *aead = crypto_alloc_aead("gcm(aes)", 0, 0); if (IS_ERR(*aead)) { rc = PTR_ERR(*aead); *aead = NULL; goto free_rec_seq; } } ctx->push_pending_record = tls_sw_push_pending_record; memcpy(keyval, gcm_128_info->key, TLS_CIPHER_AES_GCM_128_KEY_SIZE); rc = crypto_aead_setkey(*aead, keyval, TLS_CIPHER_AES_GCM_128_KEY_SIZE); if (rc) goto free_aead; rc = crypto_aead_setauthsize(*aead, cctx->tag_size); if (rc) goto free_aead; if (sw_ctx_rx) { /* Set up strparser */ memset(&cb, 0, sizeof(cb)); cb.rcv_msg = tls_queue; cb.parse_msg = tls_read_size; strp_init(&sw_ctx_rx->strp, sk, &cb); write_lock_bh(&sk->sk_callback_lock); sw_ctx_rx->saved_data_ready = sk->sk_data_ready; sk->sk_data_ready = tls_data_ready; write_unlock_bh(&sk->sk_callback_lock); sw_ctx_rx->sk_poll_mask = sk->sk_socket->ops->poll_mask; strp_check_rcv(&sw_ctx_rx->strp); } goto out; free_aead: crypto_free_aead(*aead); *aead = NULL; free_rec_seq: kfree(cctx->rec_seq); cctx->rec_seq = NULL; free_iv: kfree(cctx->iv); cctx->iv = NULL; free_priv: if (tx) { kfree(ctx->priv_ctx_tx); ctx->priv_ctx_tx = NULL; } else { kfree(ctx->priv_ctx_rx); ctx->priv_ctx_rx = NULL; } out: return rc; }