/* * net/sched/cls_flow.c Generic flow classifier * * Copyright (c) 2007, 2008 Patrick McHardy * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_NF_CONNTRACK) #include #endif struct flow_head { struct list_head filters; struct rcu_head rcu; }; struct flow_filter { struct list_head list; struct tcf_exts exts; struct tcf_ematch_tree ematches; struct tcf_proto *tp; struct timer_list perturb_timer; u32 perturb_period; u32 handle; u32 nkeys; u32 keymask; u32 mode; u32 mask; u32 xor; u32 rshift; u32 addend; u32 divisor; u32 baseclass; u32 hashrnd; struct rcu_work rwork; }; static inline u32 addr_fold(void *addr) { unsigned long a = (unsigned long)addr; return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0); } static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow) { __be32 src = flow_get_u32_src(flow); if (src) return ntohl(src); return addr_fold(skb->sk); } static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow) { __be32 dst = flow_get_u32_dst(flow); if (dst) return ntohl(dst); return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb); } static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow) { return flow->basic.ip_proto; } static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow) { if (flow->ports.ports) return ntohs(flow->ports.src); return addr_fold(skb->sk); } static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow) { if (flow->ports.ports) return ntohs(flow->ports.dst); return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb); } static u32 flow_get_iif(const struct sk_buff *skb) { return skb->skb_iif; } static u32 flow_get_priority(const struct sk_buff *skb) { return skb->priority; } static u32 flow_get_mark(const struct sk_buff *skb) { return skb->mark; } static u32 flow_get_nfct(const struct sk_buff *skb) { #if IS_ENABLED(CONFIG_NF_CONNTRACK) return addr_fold(skb_nfct(skb)); #else return 0; #endif } #if IS_ENABLED(CONFIG_NF_CONNTRACK) #define CTTUPLE(skb, member) \ ({ \ enum ip_conntrack_info ctinfo; \ const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \ if (ct == NULL) \ goto fallback; \ ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \ }) #else #define CTTUPLE(skb, member) \ ({ \ goto fallback; \ 0; \ }) #endif static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow) { switch (tc_skb_protocol(skb)) { case htons(ETH_P_IP): return ntohl(CTTUPLE(skb, src.u3.ip)); case htons(ETH_P_IPV6): return ntohl(CTTUPLE(skb, src.u3.ip6[3])); } fallback: return flow_get_src(skb, flow); } static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow) { switch (tc_skb_protocol(skb)) { case htons(ETH_P_IP): return ntohl(CTTUPLE(skb, dst.u3.ip)); case htons(ETH_P_IPV6): return ntohl(CTTUPLE(skb, dst.u3.ip6[3])); } fallback: return flow_get_dst(skb, flow); } static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow) { return ntohs(CTTUPLE(skb, src.u.all)); fallback: return flow_get_proto_src(skb, flow); } static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow) { return ntohs(CTTUPLE(skb, dst.u.all)); fallback: return flow_get_proto_dst(skb, flow); } static u32 flow_get_rtclassid(const struct sk_buff *skb) { #ifdef CONFIG_IP_ROUTE_CLASSID if (skb_dst(skb)) return skb_dst(skb)->tclassid; #endif return 0; } static u32 flow_get_skuid(const struct sk_buff *skb) { struct sock *sk = skb_to_full_sk(skb); if (sk && sk->sk_socket && sk->sk_socket->file) { kuid_t skuid = sk->sk_socket->file->f_cred->fsuid; return from_kuid(&init_user_ns, skuid); } return 0; } static u32 flow_get_skgid(const struct sk_buff *skb) { struct sock *sk = skb_to_full_sk(skb); if (sk && sk->sk_socket && sk->sk_socket->file) { kgid_t skgid = sk->sk_socket->file->f_cred->fsgid; return from_kgid(&init_user_ns, skgid); } return 0; } static u32 flow_get_vlan_tag(const struct sk_buff *skb) { u16 uninitialized_var(tag); if (vlan_get_tag(skb, &tag) < 0) return 0; return tag & VLAN_VID_MASK; } static u32 flow_get_rxhash(struct sk_buff *skb) { return skb_get_hash(skb); } static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow) { switch (key) { case FLOW_KEY_SRC: return flow_get_src(skb, flow); case FLOW_KEY_DST: return flow_get_dst(skb, flow); case FLOW_KEY_PROTO: return flow_get_proto(skb, flow); case FLOW_KEY_PROTO_SRC: return flow_get_proto_src(skb, flow); case FLOW_KEY_PROTO_DST: return flow_get_proto_dst(skb, flow); case FLOW_KEY_IIF: return flow_get_iif(skb); case FLOW_KEY_PRIORITY: return flow_get_priority(skb); case FLOW_KEY_MARK: return flow_get_mark(skb); case FLOW_KEY_NFCT: return flow_get_nfct(skb); case FLOW_KEY_NFCT_SRC: return flow_get_nfct_src(skb, flow); case FLOW_KEY_NFCT_DST: return flow_get_nfct_dst(skb, flow); case FLOW_KEY_NFCT_PROTO_SRC: return flow_get_nfct_proto_src(skb, flow); case FLOW_KEY_NFCT_PROTO_DST: return flow_get_nfct_proto_dst(skb, flow); case FLOW_KEY_RTCLASSID: return flow_get_rtclassid(skb); case FLOW_KEY_SKUID: return flow_get_skuid(skb); case FLOW_KEY_SKGID: return flow_get_skgid(skb); case FLOW_KEY_VLAN_TAG: return flow_get_vlan_tag(skb); case FLOW_KEY_RXHASH: return flow_get_rxhash(skb); default: WARN_ON(1); return 0; } } #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \ (1 << FLOW_KEY_DST) | \ (1 << FLOW_KEY_PROTO) | \ (1 << FLOW_KEY_PROTO_SRC) | \ (1 << FLOW_KEY_PROTO_DST) | \ (1 << FLOW_KEY_NFCT_SRC) | \ (1 << FLOW_KEY_NFCT_DST) | \ (1 << FLOW_KEY_NFCT_PROTO_SRC) | \ (1 << FLOW_KEY_NFCT_PROTO_DST)) static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp, struct tcf_result *res) { struct flow_head *head = rcu_dereference_bh(tp->root); struct flow_filter *f; u32 keymask; u32 classid; unsigned int n, key; int r; list_for_each_entry_rcu(f, &head->filters, list) { u32 keys[FLOW_KEY_MAX + 1]; struct flow_keys flow_keys; if (!tcf_em_tree_match(skb, &f->ematches, NULL)) continue; keymask = f->keymask; if (keymask & FLOW_KEYS_NEEDED) skb_flow_dissect_flow_keys(skb, &flow_keys, 0); for (n = 0; n < f->nkeys; n++) { key = ffs(keymask) - 1; keymask &= ~(1 << key); keys[n] = flow_key_get(skb, key, &flow_keys); } if (f->mode == FLOW_MODE_HASH) classid = jhash2(keys, f->nkeys, f->hashrnd); else { classid = keys[0]; classid = (classid & f->mask) ^ f->xor; classid = (classid >> f->rshift) + f->addend; } if (f->divisor) classid %= f->divisor; res->class = 0; res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid); r = tcf_exts_exec(skb, &f->exts, res); if (r < 0) continue; return r; } return -1; } static void flow_perturbation(struct timer_list *t) { struct flow_filter *f = from_timer(f, t, perturb_timer); get_random_bytes(&f->hashrnd, 4); if (f->perturb_period) mod_timer(&f->perturb_timer, jiffies + f->perturb_period); } static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = { [TCA_FLOW_KEYS] = { .type = NLA_U32 }, [TCA_FLOW_MODE] = { .type = NLA_U32 }, [TCA_FLOW_BASECLASS] = { .type = NLA_U32 }, [TCA_FLOW_RSHIFT] = { .type = NLA_U32 }, [TCA_FLOW_ADDEND] = { .type = NLA_U32 }, [TCA_FLOW_MASK] = { .type = NLA_U32 }, [TCA_FLOW_XOR] = { .type = NLA_U32 }, [TCA_FLOW_DIVISOR] = { .type = NLA_U32 }, [TCA_FLOW_ACT] = { .type = NLA_NESTED }, [TCA_FLOW_POLICE] = { .type = NLA_NESTED }, [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED }, [TCA_FLOW_PERTURB] = { .type = NLA_U32 }, }; static void __flow_destroy_filter(struct flow_filter *f) { del_timer_sync(&f->perturb_timer); tcf_exts_destroy(&f->exts); tcf_em_tree_destroy(&f->ematches); tcf_exts_put_net(&f->exts); kfree(f); } static void flow_destroy_filter_work(struct work_struct *work) { struct flow_filter *f = container_of(to_rcu_work(work), struct flow_filter, rwork); rtnl_lock(); __flow_destroy_filter(f); rtnl_unlock(); } static int flow_change(struct net *net, struct sk_buff *in_skb, struct tcf_proto *tp, unsigned long base, u32 handle, struct nlattr **tca, void **arg, bool ovr, struct netlink_ext_ack *extack) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *fold, *fnew; struct nlattr *opt = tca[TCA_OPTIONS]; struct nlattr *tb[TCA_FLOW_MAX + 1]; unsigned int nkeys = 0; unsigned int perturb_period = 0; u32 baseclass = 0; u32 keymask = 0; u32 mode; int err; if (opt == NULL) return -EINVAL; err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy, NULL); if (err < 0) return err; if (tb[TCA_FLOW_BASECLASS]) { baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]); if (TC_H_MIN(baseclass) == 0) return -EINVAL; } if (tb[TCA_FLOW_KEYS]) { keymask = nla_get_u32(tb[TCA_FLOW_KEYS]); nkeys = hweight32(keymask); if (nkeys == 0) return -EINVAL; if (fls(keymask) - 1 > FLOW_KEY_MAX) return -EOPNOTSUPP; if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) && sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns) return -EOPNOTSUPP; } fnew = kzalloc(sizeof(*fnew), GFP_KERNEL); if (!fnew) return -ENOBUFS; err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &fnew->ematches); if (err < 0) goto err1; err = tcf_exts_init(&fnew->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE); if (err < 0) goto err2; err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &fnew->exts, ovr, true, extack); if (err < 0) goto err2; fold = *arg; if (fold) { err = -EINVAL; if (fold->handle != handle && handle) goto err2; /* Copy fold into fnew */ fnew->tp = fold->tp; fnew->handle = fold->handle; fnew->nkeys = fold->nkeys; fnew->keymask = fold->keymask; fnew->mode = fold->mode; fnew->mask = fold->mask; fnew->xor = fold->xor; fnew->rshift = fold->rshift; fnew->addend = fold->addend; fnew->divisor = fold->divisor; fnew->baseclass = fold->baseclass; fnew->hashrnd = fold->hashrnd; mode = fold->mode; if (tb[TCA_FLOW_MODE]) mode = nla_get_u32(tb[TCA_FLOW_MODE]); if (mode != FLOW_MODE_HASH && nkeys > 1) goto err2; if (mode == FLOW_MODE_HASH) perturb_period = fold->perturb_period; if (tb[TCA_FLOW_PERTURB]) { if (mode != FLOW_MODE_HASH) goto err2; perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ; } } else { err = -EINVAL; if (!handle) goto err2; if (!tb[TCA_FLOW_KEYS]) goto err2; mode = FLOW_MODE_MAP; if (tb[TCA_FLOW_MODE]) mode = nla_get_u32(tb[TCA_FLOW_MODE]); if (mode != FLOW_MODE_HASH && nkeys > 1) goto err2; if (tb[TCA_FLOW_PERTURB]) { if (mode != FLOW_MODE_HASH) goto err2; perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ; } if (TC_H_MAJ(baseclass) == 0) { struct Qdisc *q = tcf_block_q(tp->chain->block); baseclass = TC_H_MAKE(q->handle, baseclass); } if (TC_H_MIN(baseclass) == 0) baseclass = TC_H_MAKE(baseclass, 1); fnew->handle = handle; fnew->mask = ~0U; fnew->tp = tp; get_random_bytes(&fnew->hashrnd, 4); } timer_setup(&fnew->perturb_timer, flow_perturbation, TIMER_DEFERRABLE); tcf_block_netif_keep_dst(tp->chain->block); if (tb[TCA_FLOW_KEYS]) { fnew->keymask = keymask; fnew->nkeys = nkeys; } fnew->mode = mode; if (tb[TCA_FLOW_MASK]) fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]); if (tb[TCA_FLOW_XOR]) fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]); if (tb[TCA_FLOW_RSHIFT]) fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]); if (tb[TCA_FLOW_ADDEND]) fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]); if (tb[TCA_FLOW_DIVISOR]) fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]); if (baseclass) fnew->baseclass = baseclass; fnew->perturb_period = perturb_period; if (perturb_period) mod_timer(&fnew->perturb_timer, jiffies + perturb_period); if (!*arg) list_add_tail_rcu(&fnew->list, &head->filters); else list_replace_rcu(&fold->list, &fnew->list); *arg = fnew; if (fold) { tcf_exts_get_net(&fold->exts); tcf_queue_work(&fold->rwork, flow_destroy_filter_work); } return 0; err2: tcf_exts_destroy(&fnew->exts); tcf_em_tree_destroy(&fnew->ematches); err1: kfree(fnew); return err; } static int flow_delete(struct tcf_proto *tp, void *arg, bool *last, struct netlink_ext_ack *extack) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *f = arg; list_del_rcu(&f->list); tcf_exts_get_net(&f->exts); tcf_queue_work(&f->rwork, flow_destroy_filter_work); *last = list_empty(&head->filters); return 0; } static int flow_init(struct tcf_proto *tp) { struct flow_head *head; head = kzalloc(sizeof(*head), GFP_KERNEL); if (head == NULL) return -ENOBUFS; INIT_LIST_HEAD(&head->filters); rcu_assign_pointer(tp->root, head); return 0; } static void flow_destroy(struct tcf_proto *tp, struct netlink_ext_ack *extack) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *f, *next; list_for_each_entry_safe(f, next, &head->filters, list) { list_del_rcu(&f->list); if (tcf_exts_get_net(&f->exts)) tcf_queue_work(&f->rwork, flow_destroy_filter_work); else __flow_destroy_filter(f); } kfree_rcu(head, rcu); } static void *flow_get(struct tcf_proto *tp, u32 handle) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *f; list_for_each_entry(f, &head->filters, list) if (f->handle == handle) return f; return NULL; } static int flow_dump(struct net *net, struct tcf_proto *tp, void *fh, struct sk_buff *skb, struct tcmsg *t) { struct flow_filter *f = fh; struct nlattr *nest; if (f == NULL) return skb->len; t->tcm_handle = f->handle; nest = nla_nest_start(skb, TCA_OPTIONS); if (nest == NULL) goto nla_put_failure; if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) || nla_put_u32(skb, TCA_FLOW_MODE, f->mode)) goto nla_put_failure; if (f->mask != ~0 || f->xor != 0) { if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) || nla_put_u32(skb, TCA_FLOW_XOR, f->xor)) goto nla_put_failure; } if (f->rshift && nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift)) goto nla_put_failure; if (f->addend && nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend)) goto nla_put_failure; if (f->divisor && nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor)) goto nla_put_failure; if (f->baseclass && nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass)) goto nla_put_failure; if (f->perturb_period && nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ)) goto nla_put_failure; if (tcf_exts_dump(skb, &f->exts) < 0) goto nla_put_failure; #ifdef CONFIG_NET_EMATCH if (f->ematches.hdr.nmatches && tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0) goto nla_put_failure; #endif nla_nest_end(skb, nest); if (tcf_exts_dump_stats(skb, &f->exts) < 0) goto nla_put_failure; return skb->len; nla_put_failure: nla_nest_cancel(skb, nest); return -1; } static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg) { struct flow_head *head = rtnl_dereference(tp->root); struct flow_filter *f; list_for_each_entry(f, &head->filters, list) { if (arg->count < arg->skip) goto skip; if (arg->fn(tp, f, arg) < 0) { arg->stop = 1; break; } skip: arg->count++; } } static struct tcf_proto_ops cls_flow_ops __read_mostly = { .kind = "flow", .classify = flow_classify, .init = flow_init, .destroy = flow_destroy, .change = flow_change, .delete = flow_delete, .get = flow_get, .dump = flow_dump, .walk = flow_walk, .owner = THIS_MODULE, }; static int __init cls_flow_init(void) { return register_tcf_proto_ops(&cls_flow_ops); } static void __exit cls_flow_exit(void) { unregister_tcf_proto_ops(&cls_flow_ops); } module_init(cls_flow_init); module_exit(cls_flow_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy "); MODULE_DESCRIPTION("TC flow classifier");