/* * Copyright (c) 2006 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include "rds_single_path.h" #include "rds.h" /* When transmitting messages in rds_send_xmit, we need to emerge from * time to time and briefly release the CPU. Otherwise the softlock watchdog * will kick our shin. * Also, it seems fairer to not let one busy connection stall all the * others. * * send_batch_count is the number of times we'll loop in send_xmit. Setting * it to 0 will restore the old behavior (where we looped until we had * drained the queue). */ static int send_batch_count = SZ_1K; module_param(send_batch_count, int, 0444); MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue"); static void rds_send_remove_from_sock(struct list_head *messages, int status); /* * Reset the send state. Callers must ensure that this doesn't race with * rds_send_xmit(). */ static void rds_send_path_reset(struct rds_conn_path *cp) { struct rds_message *rm, *tmp; unsigned long flags; if (cp->cp_xmit_rm) { rm = cp->cp_xmit_rm; cp->cp_xmit_rm = NULL; /* Tell the user the RDMA op is no longer mapped by the * transport. This isn't entirely true (it's flushed out * independently) but as the connection is down, there's * no ongoing RDMA to/from that memory */ rds_message_unmapped(rm); rds_message_put(rm); } cp->cp_xmit_sg = 0; cp->cp_xmit_hdr_off = 0; cp->cp_xmit_data_off = 0; cp->cp_xmit_atomic_sent = 0; cp->cp_xmit_rdma_sent = 0; cp->cp_xmit_data_sent = 0; cp->cp_conn->c_map_queued = 0; cp->cp_unacked_packets = rds_sysctl_max_unacked_packets; cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes; /* Mark messages as retransmissions, and move them to the send q */ spin_lock_irqsave(&cp->cp_lock, flags); list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) { set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags); } list_splice_init(&cp->cp_retrans, &cp->cp_send_queue); spin_unlock_irqrestore(&cp->cp_lock, flags); } void rds_send_reset(struct rds_connection *conn) { rds_send_path_reset(&conn->c_path[0]); } EXPORT_SYMBOL_GPL(rds_send_reset); static int acquire_in_xmit(struct rds_connection *conn) { return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0; } static void release_in_xmit(struct rds_connection *conn) { clear_bit(RDS_IN_XMIT, &conn->c_flags); smp_mb__after_atomic(); /* * We don't use wait_on_bit()/wake_up_bit() because our waking is in a * hot path and finding waiters is very rare. We don't want to walk * the system-wide hashed waitqueue buckets in the fast path only to * almost never find waiters. */ if (waitqueue_active(&conn->c_waitq)) wake_up_all(&conn->c_waitq); } /* * We're making the conscious trade-off here to only send one message * down the connection at a time. * Pro: * - tx queueing is a simple fifo list * - reassembly is optional and easily done by transports per conn * - no per flow rx lookup at all, straight to the socket * - less per-frag memory and wire overhead * Con: * - queued acks can be delayed behind large messages * Depends: * - small message latency is higher behind queued large messages * - large message latency isn't starved by intervening small sends */ int rds_send_xmit(struct rds_connection *conn) { struct rds_message *rm; unsigned long flags; unsigned int tmp; struct scatterlist *sg; int ret = 0; LIST_HEAD(to_be_dropped); int batch_count; unsigned long send_gen = 0; restart: batch_count = 0; /* * sendmsg calls here after having queued its message on the send * queue. We only have one task feeding the connection at a time. If * another thread is already feeding the queue then we back off. This * avoids blocking the caller and trading per-connection data between * caches per message. */ if (!acquire_in_xmit(conn)) { rds_stats_inc(s_send_lock_contention); ret = -ENOMEM; goto out; } /* * we record the send generation after doing the xmit acquire. * if someone else manages to jump in and do some work, we'll use * this to avoid a goto restart farther down. * * The acquire_in_xmit() check above ensures that only one * caller can increment c_send_gen at any time. */ conn->c_send_gen++; send_gen = conn->c_send_gen; /* * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT, * we do the opposite to avoid races. */ if (!rds_conn_up(conn)) { release_in_xmit(conn); ret = 0; goto out; } if (conn->c_trans->xmit_prepare) conn->c_trans->xmit_prepare(conn); /* * spin trying to push headers and data down the connection until * the connection doesn't make forward progress. */ while (1) { rm = conn->c_xmit_rm; /* * If between sending messages, we can send a pending congestion * map update. */ if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) { rm = rds_cong_update_alloc(conn); if (IS_ERR(rm)) { ret = PTR_ERR(rm); break; } rm->data.op_active = 1; conn->c_xmit_rm = rm; } /* * If not already working on one, grab the next message. * * c_xmit_rm holds a ref while we're sending this message down * the connction. We can use this ref while holding the * send_sem.. rds_send_reset() is serialized with it. */ if (!rm) { unsigned int len; batch_count++; /* we want to process as big a batch as we can, but * we also want to avoid softlockups. If we've been * through a lot of messages, lets back off and see * if anyone else jumps in */ if (batch_count >= send_batch_count) goto over_batch; spin_lock_irqsave(&conn->c_lock, flags); if (!list_empty(&conn->c_send_queue)) { rm = list_entry(conn->c_send_queue.next, struct rds_message, m_conn_item); rds_message_addref(rm); /* * Move the message from the send queue to the retransmit * list right away. */ list_move_tail(&rm->m_conn_item, &conn->c_retrans); } spin_unlock_irqrestore(&conn->c_lock, flags); if (!rm) break; /* Unfortunately, the way Infiniband deals with * RDMA to a bad MR key is by moving the entire * queue pair to error state. We cold possibly * recover from that, but right now we drop the * connection. * Therefore, we never retransmit messages with RDMA ops. */ if (rm->rdma.op_active && test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) { spin_lock_irqsave(&conn->c_lock, flags); if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) list_move(&rm->m_conn_item, &to_be_dropped); spin_unlock_irqrestore(&conn->c_lock, flags); continue; } /* Require an ACK every once in a while */ len = ntohl(rm->m_inc.i_hdr.h_len); if (conn->c_unacked_packets == 0 || conn->c_unacked_bytes < len) { __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); conn->c_unacked_packets = rds_sysctl_max_unacked_packets; conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes; rds_stats_inc(s_send_ack_required); } else { conn->c_unacked_bytes -= len; conn->c_unacked_packets--; } conn->c_xmit_rm = rm; } /* The transport either sends the whole rdma or none of it */ if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) { rm->m_final_op = &rm->rdma; /* The transport owns the mapped memory for now. * You can't unmap it while it's on the send queue */ set_bit(RDS_MSG_MAPPED, &rm->m_flags); ret = conn->c_trans->xmit_rdma(conn, &rm->rdma); if (ret) { clear_bit(RDS_MSG_MAPPED, &rm->m_flags); wake_up_interruptible(&rm->m_flush_wait); break; } conn->c_xmit_rdma_sent = 1; } if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) { rm->m_final_op = &rm->atomic; /* The transport owns the mapped memory for now. * You can't unmap it while it's on the send queue */ set_bit(RDS_MSG_MAPPED, &rm->m_flags); ret = conn->c_trans->xmit_atomic(conn, &rm->atomic); if (ret) { clear_bit(RDS_MSG_MAPPED, &rm->m_flags); wake_up_interruptible(&rm->m_flush_wait); break; } conn->c_xmit_atomic_sent = 1; } /* * A number of cases require an RDS header to be sent * even if there is no data. * We permit 0-byte sends; rds-ping depends on this. * However, if there are exclusively attached silent ops, * we skip the hdr/data send, to enable silent operation. */ if (rm->data.op_nents == 0) { int ops_present; int all_ops_are_silent = 1; ops_present = (rm->atomic.op_active || rm->rdma.op_active); if (rm->atomic.op_active && !rm->atomic.op_silent) all_ops_are_silent = 0; if (rm->rdma.op_active && !rm->rdma.op_silent) all_ops_are_silent = 0; if (ops_present && all_ops_are_silent && !rm->m_rdma_cookie) rm->data.op_active = 0; } if (rm->data.op_active && !conn->c_xmit_data_sent) { rm->m_final_op = &rm->data; ret = conn->c_trans->xmit(conn, rm, conn->c_xmit_hdr_off, conn->c_xmit_sg, conn->c_xmit_data_off); if (ret <= 0) break; if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) { tmp = min_t(int, ret, sizeof(struct rds_header) - conn->c_xmit_hdr_off); conn->c_xmit_hdr_off += tmp; ret -= tmp; } sg = &rm->data.op_sg[conn->c_xmit_sg]; while (ret) { tmp = min_t(int, ret, sg->length - conn->c_xmit_data_off); conn->c_xmit_data_off += tmp; ret -= tmp; if (conn->c_xmit_data_off == sg->length) { conn->c_xmit_data_off = 0; sg++; conn->c_xmit_sg++; BUG_ON(ret != 0 && conn->c_xmit_sg == rm->data.op_nents); } } if (conn->c_xmit_hdr_off == sizeof(struct rds_header) && (conn->c_xmit_sg == rm->data.op_nents)) conn->c_xmit_data_sent = 1; } /* * A rm will only take multiple times through this loop * if there is a data op. Thus, if the data is sent (or there was * none), then we're done with the rm. */ if (!rm->data.op_active || conn->c_xmit_data_sent) { conn->c_xmit_rm = NULL; conn->c_xmit_sg = 0; conn->c_xmit_hdr_off = 0; conn->c_xmit_data_off = 0; conn->c_xmit_rdma_sent = 0; conn->c_xmit_atomic_sent = 0; conn->c_xmit_data_sent = 0; rds_message_put(rm); } } over_batch: if (conn->c_trans->xmit_complete) conn->c_trans->xmit_complete(conn); release_in_xmit(conn); /* Nuke any messages we decided not to retransmit. */ if (!list_empty(&to_be_dropped)) { /* irqs on here, so we can put(), unlike above */ list_for_each_entry(rm, &to_be_dropped, m_conn_item) rds_message_put(rm); rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED); } /* * Other senders can queue a message after we last test the send queue * but before we clear RDS_IN_XMIT. In that case they'd back off and * not try and send their newly queued message. We need to check the * send queue after having cleared RDS_IN_XMIT so that their message * doesn't get stuck on the send queue. * * If the transport cannot continue (i.e ret != 0), then it must * call us when more room is available, such as from the tx * completion handler. * * We have an extra generation check here so that if someone manages * to jump in after our release_in_xmit, we'll see that they have done * some work and we will skip our goto */ if (ret == 0) { smp_mb(); if ((test_bit(0, &conn->c_map_queued) || !list_empty(&conn->c_send_queue)) && send_gen == conn->c_send_gen) { rds_stats_inc(s_send_lock_queue_raced); if (batch_count < send_batch_count) goto restart; queue_delayed_work(rds_wq, &conn->c_send_w, 1); } } out: return ret; } EXPORT_SYMBOL_GPL(rds_send_xmit); static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm) { u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len); assert_spin_locked(&rs->rs_lock); BUG_ON(rs->rs_snd_bytes < len); rs->rs_snd_bytes -= len; if (rs->rs_snd_bytes == 0) rds_stats_inc(s_send_queue_empty); } static inline int rds_send_is_acked(struct rds_message *rm, u64 ack, is_acked_func is_acked) { if (is_acked) return is_acked(rm, ack); return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack; } /* * This is pretty similar to what happens below in the ACK * handling code - except that we call here as soon as we get * the IB send completion on the RDMA op and the accompanying * message. */ void rds_rdma_send_complete(struct rds_message *rm, int status) { struct rds_sock *rs = NULL; struct rm_rdma_op *ro; struct rds_notifier *notifier; unsigned long flags; spin_lock_irqsave(&rm->m_rs_lock, flags); ro = &rm->rdma; if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && ro->op_active && ro->op_notify && ro->op_notifier) { notifier = ro->op_notifier; rs = rm->m_rs; sock_hold(rds_rs_to_sk(rs)); notifier->n_status = status; spin_lock(&rs->rs_lock); list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); spin_unlock(&rs->rs_lock); ro->op_notifier = NULL; } spin_unlock_irqrestore(&rm->m_rs_lock, flags); if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } } EXPORT_SYMBOL_GPL(rds_rdma_send_complete); /* * Just like above, except looks at atomic op */ void rds_atomic_send_complete(struct rds_message *rm, int status) { struct rds_sock *rs = NULL; struct rm_atomic_op *ao; struct rds_notifier *notifier; unsigned long flags; spin_lock_irqsave(&rm->m_rs_lock, flags); ao = &rm->atomic; if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) && ao->op_active && ao->op_notify && ao->op_notifier) { notifier = ao->op_notifier; rs = rm->m_rs; sock_hold(rds_rs_to_sk(rs)); notifier->n_status = status; spin_lock(&rs->rs_lock); list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); spin_unlock(&rs->rs_lock); ao->op_notifier = NULL; } spin_unlock_irqrestore(&rm->m_rs_lock, flags); if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } } EXPORT_SYMBOL_GPL(rds_atomic_send_complete); /* * This is the same as rds_rdma_send_complete except we * don't do any locking - we have all the ingredients (message, * socket, socket lock) and can just move the notifier. */ static inline void __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status) { struct rm_rdma_op *ro; struct rm_atomic_op *ao; ro = &rm->rdma; if (ro->op_active && ro->op_notify && ro->op_notifier) { ro->op_notifier->n_status = status; list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue); ro->op_notifier = NULL; } ao = &rm->atomic; if (ao->op_active && ao->op_notify && ao->op_notifier) { ao->op_notifier->n_status = status; list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue); ao->op_notifier = NULL; } /* No need to wake the app - caller does this */ } /* * This is called from the IB send completion when we detect * a RDMA operation that failed with remote access error. * So speed is not an issue here. */ struct rds_message *rds_send_get_message(struct rds_connection *conn, struct rm_rdma_op *op) { struct rds_message *rm, *tmp, *found = NULL; unsigned long flags; spin_lock_irqsave(&conn->c_lock, flags); list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { if (&rm->rdma == op) { atomic_inc(&rm->m_refcount); found = rm; goto out; } } list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) { if (&rm->rdma == op) { atomic_inc(&rm->m_refcount); found = rm; break; } } out: spin_unlock_irqrestore(&conn->c_lock, flags); return found; } EXPORT_SYMBOL_GPL(rds_send_get_message); /* * This removes messages from the socket's list if they're on it. The list * argument must be private to the caller, we must be able to modify it * without locks. The messages must have a reference held for their * position on the list. This function will drop that reference after * removing the messages from the 'messages' list regardless of if it found * the messages on the socket list or not. */ static void rds_send_remove_from_sock(struct list_head *messages, int status) { unsigned long flags; struct rds_sock *rs = NULL; struct rds_message *rm; while (!list_empty(messages)) { int was_on_sock = 0; rm = list_entry(messages->next, struct rds_message, m_conn_item); list_del_init(&rm->m_conn_item); /* * If we see this flag cleared then we're *sure* that someone * else beat us to removing it from the sock. If we race * with their flag update we'll get the lock and then really * see that the flag has been cleared. * * The message spinlock makes sure nobody clears rm->m_rs * while we're messing with it. It does not prevent the * message from being removed from the socket, though. */ spin_lock_irqsave(&rm->m_rs_lock, flags); if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) goto unlock_and_drop; if (rs != rm->m_rs) { if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } rs = rm->m_rs; if (rs) sock_hold(rds_rs_to_sk(rs)); } if (!rs) goto unlock_and_drop; spin_lock(&rs->rs_lock); if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) { struct rm_rdma_op *ro = &rm->rdma; struct rds_notifier *notifier; list_del_init(&rm->m_sock_item); rds_send_sndbuf_remove(rs, rm); if (ro->op_active && ro->op_notifier && (ro->op_notify || (ro->op_recverr && status))) { notifier = ro->op_notifier; list_add_tail(¬ifier->n_list, &rs->rs_notify_queue); if (!notifier->n_status) notifier->n_status = status; rm->rdma.op_notifier = NULL; } was_on_sock = 1; rm->m_rs = NULL; } spin_unlock(&rs->rs_lock); unlock_and_drop: spin_unlock_irqrestore(&rm->m_rs_lock, flags); rds_message_put(rm); if (was_on_sock) rds_message_put(rm); } if (rs) { rds_wake_sk_sleep(rs); sock_put(rds_rs_to_sk(rs)); } } /* * Transports call here when they've determined that the receiver queued * messages up to, and including, the given sequence number. Messages are * moved to the retrans queue when rds_send_xmit picks them off the send * queue. This means that in the TCP case, the message may not have been * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked * checks the RDS_MSG_HAS_ACK_SEQ bit. */ void rds_send_drop_acked(struct rds_connection *conn, u64 ack, is_acked_func is_acked) { struct rds_message *rm, *tmp; unsigned long flags; LIST_HEAD(list); spin_lock_irqsave(&conn->c_lock, flags); list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) { if (!rds_send_is_acked(rm, ack, is_acked)) break; list_move(&rm->m_conn_item, &list); clear_bit(RDS_MSG_ON_CONN, &rm->m_flags); } /* order flag updates with spin locks */ if (!list_empty(&list)) smp_mb__after_atomic(); spin_unlock_irqrestore(&conn->c_lock, flags); /* now remove the messages from the sock list as needed */ rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS); } EXPORT_SYMBOL_GPL(rds_send_drop_acked); void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest) { struct rds_message *rm, *tmp; struct rds_connection *conn; unsigned long flags; LIST_HEAD(list); /* get all the messages we're dropping under the rs lock */ spin_lock_irqsave(&rs->rs_lock, flags); list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) { if (dest && (dest->sin_addr.s_addr != rm->m_daddr || dest->sin_port != rm->m_inc.i_hdr.h_dport)) continue; list_move(&rm->m_sock_item, &list); rds_send_sndbuf_remove(rs, rm); clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags); } /* order flag updates with the rs lock */ smp_mb__after_atomic(); spin_unlock_irqrestore(&rs->rs_lock, flags); if (list_empty(&list)) return; /* Remove the messages from the conn */ list_for_each_entry(rm, &list, m_sock_item) { conn = rm->m_inc.i_conn; spin_lock_irqsave(&conn->c_lock, flags); /* * Maybe someone else beat us to removing rm from the conn. * If we race with their flag update we'll get the lock and * then really see that the flag has been cleared. */ if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) { spin_unlock_irqrestore(&conn->c_lock, flags); spin_lock_irqsave(&rm->m_rs_lock, flags); rm->m_rs = NULL; spin_unlock_irqrestore(&rm->m_rs_lock, flags); continue; } list_del_init(&rm->m_conn_item); spin_unlock_irqrestore(&conn->c_lock, flags); /* * Couldn't grab m_rs_lock in top loop (lock ordering), * but we can now. */ spin_lock_irqsave(&rm->m_rs_lock, flags); spin_lock(&rs->rs_lock); __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); spin_unlock(&rs->rs_lock); rm->m_rs = NULL; spin_unlock_irqrestore(&rm->m_rs_lock, flags); rds_message_put(rm); } rds_wake_sk_sleep(rs); while (!list_empty(&list)) { rm = list_entry(list.next, struct rds_message, m_sock_item); list_del_init(&rm->m_sock_item); rds_message_wait(rm); /* just in case the code above skipped this message * because RDS_MSG_ON_CONN wasn't set, run it again here * taking m_rs_lock is the only thing that keeps us * from racing with ack processing. */ spin_lock_irqsave(&rm->m_rs_lock, flags); spin_lock(&rs->rs_lock); __rds_send_complete(rs, rm, RDS_RDMA_CANCELED); spin_unlock(&rs->rs_lock); rm->m_rs = NULL; spin_unlock_irqrestore(&rm->m_rs_lock, flags); rds_message_put(rm); } } /* * we only want this to fire once so we use the callers 'queued'. It's * possible that another thread can race with us and remove the * message from the flow with RDS_CANCEL_SENT_TO. */ static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn, struct rds_message *rm, __be16 sport, __be16 dport, int *queued) { unsigned long flags; u32 len; if (*queued) goto out; len = be32_to_cpu(rm->m_inc.i_hdr.h_len); /* this is the only place which holds both the socket's rs_lock * and the connection's c_lock */ spin_lock_irqsave(&rs->rs_lock, flags); /* * If there is a little space in sndbuf, we don't queue anything, * and userspace gets -EAGAIN. But poll() indicates there's send * room. This can lead to bad behavior (spinning) if snd_bytes isn't * freed up by incoming acks. So we check the *old* value of * rs_snd_bytes here to allow the last msg to exceed the buffer, * and poll() now knows no more data can be sent. */ if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) { rs->rs_snd_bytes += len; /* let recv side know we are close to send space exhaustion. * This is probably not the optimal way to do it, as this * means we set the flag on *all* messages as soon as our * throughput hits a certain threshold. */ if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2) __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags); list_add_tail(&rm->m_sock_item, &rs->rs_send_queue); set_bit(RDS_MSG_ON_SOCK, &rm->m_flags); rds_message_addref(rm); rm->m_rs = rs; /* The code ordering is a little weird, but we're trying to minimize the time we hold c_lock */ rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0); rm->m_inc.i_conn = conn; rds_message_addref(rm); spin_lock(&conn->c_lock); rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++); list_add_tail(&rm->m_conn_item, &conn->c_send_queue); set_bit(RDS_MSG_ON_CONN, &rm->m_flags); spin_unlock(&conn->c_lock); rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n", rm, len, rs, rs->rs_snd_bytes, (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence)); *queued = 1; } spin_unlock_irqrestore(&rs->rs_lock, flags); out: return *queued; } /* * rds_message is getting to be quite complicated, and we'd like to allocate * it all in one go. This figures out how big it needs to be up front. */ static int rds_rm_size(struct msghdr *msg, int data_len) { struct cmsghdr *cmsg; int size = 0; int cmsg_groups = 0; int retval; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_RDS) continue; switch (cmsg->cmsg_type) { case RDS_CMSG_RDMA_ARGS: cmsg_groups |= 1; retval = rds_rdma_extra_size(CMSG_DATA(cmsg)); if (retval < 0) return retval; size += retval; break; case RDS_CMSG_RDMA_DEST: case RDS_CMSG_RDMA_MAP: cmsg_groups |= 2; /* these are valid but do no add any size */ break; case RDS_CMSG_ATOMIC_CSWP: case RDS_CMSG_ATOMIC_FADD: case RDS_CMSG_MASKED_ATOMIC_CSWP: case RDS_CMSG_MASKED_ATOMIC_FADD: cmsg_groups |= 1; size += sizeof(struct scatterlist); break; default: return -EINVAL; } } size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist); /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */ if (cmsg_groups == 3) return -EINVAL; return size; } static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm, struct msghdr *msg, int *allocated_mr) { struct cmsghdr *cmsg; int ret = 0; for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) return -EINVAL; if (cmsg->cmsg_level != SOL_RDS) continue; /* As a side effect, RDMA_DEST and RDMA_MAP will set * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr. */ switch (cmsg->cmsg_type) { case RDS_CMSG_RDMA_ARGS: ret = rds_cmsg_rdma_args(rs, rm, cmsg); break; case RDS_CMSG_RDMA_DEST: ret = rds_cmsg_rdma_dest(rs, rm, cmsg); break; case RDS_CMSG_RDMA_MAP: ret = rds_cmsg_rdma_map(rs, rm, cmsg); if (!ret) *allocated_mr = 1; break; case RDS_CMSG_ATOMIC_CSWP: case RDS_CMSG_ATOMIC_FADD: case RDS_CMSG_MASKED_ATOMIC_CSWP: case RDS_CMSG_MASKED_ATOMIC_FADD: ret = rds_cmsg_atomic(rs, rm, cmsg); break; default: return -EINVAL; } if (ret) break; } return ret; } int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len) { struct sock *sk = sock->sk; struct rds_sock *rs = rds_sk_to_rs(sk); DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); __be32 daddr; __be16 dport; struct rds_message *rm = NULL; struct rds_connection *conn; int ret = 0; int queued = 0, allocated_mr = 0; int nonblock = msg->msg_flags & MSG_DONTWAIT; long timeo = sock_sndtimeo(sk, nonblock); /* Mirror Linux UDP mirror of BSD error message compatibility */ /* XXX: Perhaps MSG_MORE someday */ if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) { ret = -EOPNOTSUPP; goto out; } if (msg->msg_namelen) { /* XXX fail non-unicast destination IPs? */ if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) { ret = -EINVAL; goto out; } daddr = usin->sin_addr.s_addr; dport = usin->sin_port; } else { /* We only care about consistency with ->connect() */ lock_sock(sk); daddr = rs->rs_conn_addr; dport = rs->rs_conn_port; release_sock(sk); } lock_sock(sk); if (daddr == 0 || rs->rs_bound_addr == 0) { release_sock(sk); ret = -ENOTCONN; /* XXX not a great errno */ goto out; } release_sock(sk); if (payload_len > rds_sk_sndbuf(rs)) { ret = -EMSGSIZE; goto out; } /* size of rm including all sgs */ ret = rds_rm_size(msg, payload_len); if (ret < 0) goto out; rm = rds_message_alloc(ret, GFP_KERNEL); if (!rm) { ret = -ENOMEM; goto out; } /* Attach data to the rm */ if (payload_len) { rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE)); if (!rm->data.op_sg) { ret = -ENOMEM; goto out; } ret = rds_message_copy_from_user(rm, &msg->msg_iter); if (ret) goto out; } rm->data.op_active = 1; rm->m_daddr = daddr; /* rds_conn_create has a spinlock that runs with IRQ off. * Caching the conn in the socket helps a lot. */ if (rs->rs_conn && rs->rs_conn->c_faddr == daddr) conn = rs->rs_conn; else { conn = rds_conn_create_outgoing(sock_net(sock->sk), rs->rs_bound_addr, daddr, rs->rs_transport, sock->sk->sk_allocation); if (IS_ERR(conn)) { ret = PTR_ERR(conn); goto out; } rs->rs_conn = conn; } /* Parse any control messages the user may have included. */ ret = rds_cmsg_send(rs, rm, msg, &allocated_mr); if (ret) goto out; if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) { printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n", &rm->rdma, conn->c_trans->xmit_rdma); ret = -EOPNOTSUPP; goto out; } if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) { printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n", &rm->atomic, conn->c_trans->xmit_atomic); ret = -EOPNOTSUPP; goto out; } rds_conn_connect_if_down(conn); ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs); if (ret) { rs->rs_seen_congestion = 1; goto out; } while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port, dport, &queued)) { rds_stats_inc(s_send_queue_full); if (nonblock) { ret = -EAGAIN; goto out; } timeo = wait_event_interruptible_timeout(*sk_sleep(sk), rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port, dport, &queued), timeo); rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo); if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT) continue; ret = timeo; if (ret == 0) ret = -ETIMEDOUT; goto out; } /* * By now we've committed to the send. We reuse rds_send_worker() * to retry sends in the rds thread if the transport asks us to. */ rds_stats_inc(s_send_queued); ret = rds_send_xmit(conn); if (ret == -ENOMEM || ret == -EAGAIN) queue_delayed_work(rds_wq, &conn->c_send_w, 1); rds_message_put(rm); return payload_len; out: /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly. * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN * or in any other way, we need to destroy the MR again */ if (allocated_mr) rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1); if (rm) rds_message_put(rm); return ret; } /* * Reply to a ping packet. */ int rds_send_pong(struct rds_connection *conn, __be16 dport) { struct rds_message *rm; unsigned long flags; int ret = 0; rm = rds_message_alloc(0, GFP_ATOMIC); if (!rm) { ret = -ENOMEM; goto out; } rm->m_daddr = conn->c_faddr; rm->data.op_active = 1; rds_conn_connect_if_down(conn); ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL); if (ret) goto out; spin_lock_irqsave(&conn->c_lock, flags); list_add_tail(&rm->m_conn_item, &conn->c_send_queue); set_bit(RDS_MSG_ON_CONN, &rm->m_flags); rds_message_addref(rm); rm->m_inc.i_conn = conn; rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport, conn->c_next_tx_seq); conn->c_next_tx_seq++; spin_unlock_irqrestore(&conn->c_lock, flags); rds_stats_inc(s_send_queued); rds_stats_inc(s_send_pong); /* schedule the send work on rds_wq */ queue_delayed_work(rds_wq, &conn->c_send_w, 1); rds_message_put(rm); return 0; out: if (rm) rds_message_put(rm); return ret; }