/* * IUCV protocol stack for Linux on zSeries * * Copyright IBM Corp. 2006, 2009 * * Author(s): Jennifer Hunt <jenhunt@us.ibm.com> * Hendrik Brueckner <brueckner@linux.vnet.ibm.com> * PM functions: * Ursula Braun <ursula.braun@de.ibm.com> */ #define KMSG_COMPONENT "af_iucv" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/types.h> #include <linux/list.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/poll.h> #include <net/sock.h> #include <asm/ebcdic.h> #include <asm/cpcmd.h> #include <linux/kmod.h> #include <net/iucv/af_iucv.h> #define VERSION "1.2" static char iucv_userid[80]; static const struct proto_ops iucv_sock_ops; static struct proto iucv_proto = { .name = "AF_IUCV", .owner = THIS_MODULE, .obj_size = sizeof(struct iucv_sock), }; static struct iucv_interface *pr_iucv; /* special AF_IUCV IPRM messages */ static const u8 iprm_shutdown[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}; #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class)) #define __iucv_sock_wait(sk, condition, timeo, ret) \ do { \ DEFINE_WAIT(__wait); \ long __timeo = timeo; \ ret = 0; \ prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \ while (!(condition)) { \ if (!__timeo) { \ ret = -EAGAIN; \ break; \ } \ if (signal_pending(current)) { \ ret = sock_intr_errno(__timeo); \ break; \ } \ release_sock(sk); \ __timeo = schedule_timeout(__timeo); \ lock_sock(sk); \ ret = sock_error(sk); \ if (ret) \ break; \ } \ finish_wait(sk_sleep(sk), &__wait); \ } while (0) #define iucv_sock_wait(sk, condition, timeo) \ ({ \ int __ret = 0; \ if (!(condition)) \ __iucv_sock_wait(sk, condition, timeo, __ret); \ __ret; \ }) static void iucv_sock_kill(struct sock *sk); static void iucv_sock_close(struct sock *sk); static void iucv_sever_path(struct sock *, int); static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev); static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock, struct sk_buff *skb, u8 flags); static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify); /* Call Back functions */ static void iucv_callback_rx(struct iucv_path *, struct iucv_message *); static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *); static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]); static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8], u8 ipuser[16]); static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]); static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]); static struct iucv_sock_list iucv_sk_list = { .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock), .autobind_name = ATOMIC_INIT(0) }; static struct iucv_handler af_iucv_handler = { .path_pending = iucv_callback_connreq, .path_complete = iucv_callback_connack, .path_severed = iucv_callback_connrej, .message_pending = iucv_callback_rx, .message_complete = iucv_callback_txdone, .path_quiesced = iucv_callback_shutdown, }; static inline void high_nmcpy(unsigned char *dst, char *src) { memcpy(dst, src, 8); } static inline void low_nmcpy(unsigned char *dst, char *src) { memcpy(&dst[8], src, 8); } static int afiucv_pm_prepare(struct device *dev) { #ifdef CONFIG_PM_DEBUG printk(KERN_WARNING "afiucv_pm_prepare\n"); #endif return 0; } static void afiucv_pm_complete(struct device *dev) { #ifdef CONFIG_PM_DEBUG printk(KERN_WARNING "afiucv_pm_complete\n"); #endif } /** * afiucv_pm_freeze() - Freeze PM callback * @dev: AFIUCV dummy device * * Sever all established IUCV communication pathes */ static int afiucv_pm_freeze(struct device *dev) { struct iucv_sock *iucv; struct sock *sk; int err = 0; #ifdef CONFIG_PM_DEBUG printk(KERN_WARNING "afiucv_pm_freeze\n"); #endif read_lock(&iucv_sk_list.lock); sk_for_each(sk, &iucv_sk_list.head) { iucv = iucv_sk(sk); switch (sk->sk_state) { case IUCV_DISCONN: case IUCV_CLOSING: case IUCV_CONNECTED: iucv_sever_path(sk, 0); break; case IUCV_OPEN: case IUCV_BOUND: case IUCV_LISTEN: case IUCV_CLOSED: default: break; } skb_queue_purge(&iucv->send_skb_q); skb_queue_purge(&iucv->backlog_skb_q); } read_unlock(&iucv_sk_list.lock); return err; } /** * afiucv_pm_restore_thaw() - Thaw and restore PM callback * @dev: AFIUCV dummy device * * socket clean up after freeze */ static int afiucv_pm_restore_thaw(struct device *dev) { struct sock *sk; #ifdef CONFIG_PM_DEBUG printk(KERN_WARNING "afiucv_pm_restore_thaw\n"); #endif read_lock(&iucv_sk_list.lock); sk_for_each(sk, &iucv_sk_list.head) { switch (sk->sk_state) { case IUCV_CONNECTED: sk->sk_err = EPIPE; sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); break; case IUCV_DISCONN: case IUCV_CLOSING: case IUCV_LISTEN: case IUCV_BOUND: case IUCV_OPEN: default: break; } } read_unlock(&iucv_sk_list.lock); return 0; } static const struct dev_pm_ops afiucv_pm_ops = { .prepare = afiucv_pm_prepare, .complete = afiucv_pm_complete, .freeze = afiucv_pm_freeze, .thaw = afiucv_pm_restore_thaw, .restore = afiucv_pm_restore_thaw, }; static struct device_driver af_iucv_driver = { .owner = THIS_MODULE, .name = "afiucv", .bus = NULL, .pm = &afiucv_pm_ops, }; /* dummy device used as trigger for PM functions */ static struct device *af_iucv_dev; /** * iucv_msg_length() - Returns the length of an iucv message. * @msg: Pointer to struct iucv_message, MUST NOT be NULL * * The function returns the length of the specified iucv message @msg of data * stored in a buffer and of data stored in the parameter list (PRMDATA). * * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket * data: * PRMDATA[0..6] socket data (max 7 bytes); * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7]) * * The socket data length is computed by subtracting the socket data length * value from 0xFF. * If the socket data len is greater 7, then PRMDATA can be used for special * notifications (see iucv_sock_shutdown); and further, * if the socket data len is > 7, the function returns 8. * * Use this function to allocate socket buffers to store iucv message data. */ static inline size_t iucv_msg_length(struct iucv_message *msg) { size_t datalen; if (msg->flags & IUCV_IPRMDATA) { datalen = 0xff - msg->rmmsg[7]; return (datalen < 8) ? datalen : 8; } return msg->length; } /** * iucv_sock_in_state() - check for specific states * @sk: sock structure * @state: first iucv sk state * @state: second iucv sk state * * Returns true if the socket in either in the first or second state. */ static int iucv_sock_in_state(struct sock *sk, int state, int state2) { return (sk->sk_state == state || sk->sk_state == state2); } /** * iucv_below_msglim() - function to check if messages can be sent * @sk: sock structure * * Returns true if the send queue length is lower than the message limit. * Always returns true if the socket is not connected (no iucv path for * checking the message limit). */ static inline int iucv_below_msglim(struct sock *sk) { struct iucv_sock *iucv = iucv_sk(sk); if (sk->sk_state != IUCV_CONNECTED) return 1; if (iucv->transport == AF_IUCV_TRANS_IUCV) return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim); else return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) && (atomic_read(&iucv->pendings) <= 0)); } /** * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit */ static void iucv_sock_wake_msglim(struct sock *sk) { struct socket_wq *wq; rcu_read_lock(); wq = rcu_dereference(sk->sk_wq); if (wq_has_sleeper(wq)) wake_up_interruptible_all(&wq->wait); sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); rcu_read_unlock(); } /** * afiucv_hs_send() - send a message through HiperSockets transport */ static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock, struct sk_buff *skb, u8 flags) { struct iucv_sock *iucv = iucv_sk(sock); struct af_iucv_trans_hdr *phs_hdr; struct sk_buff *nskb; int err, confirm_recv = 0; memset(skb->head, 0, ETH_HLEN); phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb, sizeof(struct af_iucv_trans_hdr)); skb_reset_mac_header(skb); skb_reset_network_header(skb); skb_push(skb, ETH_HLEN); skb_reset_mac_header(skb); memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr)); phs_hdr->magic = ETH_P_AF_IUCV; phs_hdr->version = 1; phs_hdr->flags = flags; if (flags == AF_IUCV_FLAG_SYN) phs_hdr->window = iucv->msglimit; else if ((flags == AF_IUCV_FLAG_WIN) || !flags) { confirm_recv = atomic_read(&iucv->msg_recv); phs_hdr->window = confirm_recv; if (confirm_recv) phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN; } memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8); memcpy(phs_hdr->destAppName, iucv->dst_name, 8); memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8); memcpy(phs_hdr->srcAppName, iucv->src_name, 8); ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID)); ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName)); ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID)); ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName)); if (imsg) memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message)); skb->dev = iucv->hs_dev; if (!skb->dev) return -ENODEV; if (!(skb->dev->flags & IFF_UP) || !netif_carrier_ok(skb->dev)) return -ENETDOWN; if (skb->len > skb->dev->mtu) { if (sock->sk_type == SOCK_SEQPACKET) return -EMSGSIZE; else skb_trim(skb, skb->dev->mtu); } skb->protocol = ETH_P_AF_IUCV; nskb = skb_clone(skb, GFP_ATOMIC); if (!nskb) return -ENOMEM; skb_queue_tail(&iucv->send_skb_q, nskb); err = dev_queue_xmit(skb); if (net_xmit_eval(err)) { skb_unlink(nskb, &iucv->send_skb_q); kfree_skb(nskb); } else { atomic_sub(confirm_recv, &iucv->msg_recv); WARN_ON(atomic_read(&iucv->msg_recv) < 0); } return net_xmit_eval(err); } static struct sock *__iucv_get_sock_by_name(char *nm) { struct sock *sk; sk_for_each(sk, &iucv_sk_list.head) if (!memcmp(&iucv_sk(sk)->src_name, nm, 8)) return sk; return NULL; } static void iucv_sock_destruct(struct sock *sk) { skb_queue_purge(&sk->sk_receive_queue); skb_queue_purge(&sk->sk_error_queue); sk_mem_reclaim(sk); if (!sock_flag(sk, SOCK_DEAD)) { pr_err("Attempt to release alive iucv socket %p\n", sk); return; } WARN_ON(atomic_read(&sk->sk_rmem_alloc)); WARN_ON(atomic_read(&sk->sk_wmem_alloc)); WARN_ON(sk->sk_wmem_queued); WARN_ON(sk->sk_forward_alloc); } /* Cleanup Listen */ static void iucv_sock_cleanup_listen(struct sock *parent) { struct sock *sk; /* Close non-accepted connections */ while ((sk = iucv_accept_dequeue(parent, NULL))) { iucv_sock_close(sk); iucv_sock_kill(sk); } parent->sk_state = IUCV_CLOSED; } /* Kill socket (only if zapped and orphaned) */ static void iucv_sock_kill(struct sock *sk) { if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket) return; iucv_sock_unlink(&iucv_sk_list, sk); sock_set_flag(sk, SOCK_DEAD); sock_put(sk); } /* Terminate an IUCV path */ static void iucv_sever_path(struct sock *sk, int with_user_data) { unsigned char user_data[16]; struct iucv_sock *iucv = iucv_sk(sk); struct iucv_path *path = iucv->path; if (iucv->path) { iucv->path = NULL; if (with_user_data) { low_nmcpy(user_data, iucv->src_name); high_nmcpy(user_data, iucv->dst_name); ASCEBC(user_data, sizeof(user_data)); pr_iucv->path_sever(path, user_data); } else pr_iucv->path_sever(path, NULL); iucv_path_free(path); } } /* Send FIN through an IUCV socket for HIPER transport */ static int iucv_send_ctrl(struct sock *sk, u8 flags) { int err = 0; int blen; struct sk_buff *skb; blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN; skb = sock_alloc_send_skb(sk, blen, 1, &err); if (skb) { skb_reserve(skb, blen); err = afiucv_hs_send(NULL, sk, skb, flags); } return err; } /* Close an IUCV socket */ static void iucv_sock_close(struct sock *sk) { struct iucv_sock *iucv = iucv_sk(sk); unsigned long timeo; int err = 0; lock_sock(sk); switch (sk->sk_state) { case IUCV_LISTEN: iucv_sock_cleanup_listen(sk); break; case IUCV_CONNECTED: if (iucv->transport == AF_IUCV_TRANS_HIPER) { err = iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN); sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } case IUCV_DISCONN: /* fall through */ sk->sk_state = IUCV_CLOSING; sk->sk_state_change(sk); if (!err && !skb_queue_empty(&iucv->send_skb_q)) { if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime) timeo = sk->sk_lingertime; else timeo = IUCV_DISCONN_TIMEOUT; iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CLOSED, 0), timeo); } case IUCV_CLOSING: /* fall through */ sk->sk_state = IUCV_CLOSED; sk->sk_state_change(sk); sk->sk_err = ECONNRESET; sk->sk_state_change(sk); skb_queue_purge(&iucv->send_skb_q); skb_queue_purge(&iucv->backlog_skb_q); default: /* fall through */ iucv_sever_path(sk, 1); } if (iucv->hs_dev) { dev_put(iucv->hs_dev); iucv->hs_dev = NULL; sk->sk_bound_dev_if = 0; } /* mark socket for deletion by iucv_sock_kill() */ sock_set_flag(sk, SOCK_ZAPPED); release_sock(sk); } static void iucv_sock_init(struct sock *sk, struct sock *parent) { if (parent) sk->sk_type = parent->sk_type; } static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio) { struct sock *sk; struct iucv_sock *iucv; sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto); if (!sk) return NULL; iucv = iucv_sk(sk); sock_init_data(sock, sk); INIT_LIST_HEAD(&iucv->accept_q); spin_lock_init(&iucv->accept_q_lock); skb_queue_head_init(&iucv->send_skb_q); INIT_LIST_HEAD(&iucv->message_q.list); spin_lock_init(&iucv->message_q.lock); skb_queue_head_init(&iucv->backlog_skb_q); iucv->send_tag = 0; atomic_set(&iucv->pendings, 0); iucv->flags = 0; iucv->msglimit = 0; atomic_set(&iucv->msg_sent, 0); atomic_set(&iucv->msg_recv, 0); iucv->path = NULL; iucv->sk_txnotify = afiucv_hs_callback_txnotify; memset(&iucv->src_user_id , 0, 32); if (pr_iucv) iucv->transport = AF_IUCV_TRANS_IUCV; else iucv->transport = AF_IUCV_TRANS_HIPER; sk->sk_destruct = iucv_sock_destruct; sk->sk_sndtimeo = IUCV_CONN_TIMEOUT; sk->sk_allocation = GFP_DMA; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = proto; sk->sk_state = IUCV_OPEN; iucv_sock_link(&iucv_sk_list, sk); return sk; } /* Create an IUCV socket */ static int iucv_sock_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; if (protocol && protocol != PF_IUCV) return -EPROTONOSUPPORT; sock->state = SS_UNCONNECTED; switch (sock->type) { case SOCK_STREAM: sock->ops = &iucv_sock_ops; break; case SOCK_SEQPACKET: /* currently, proto ops can handle both sk types */ sock->ops = &iucv_sock_ops; break; default: return -ESOCKTNOSUPPORT; } sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL); if (!sk) return -ENOMEM; iucv_sock_init(sk, NULL); return 0; } void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk) { write_lock_bh(&l->lock); sk_add_node(sk, &l->head); write_unlock_bh(&l->lock); } void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk) { write_lock_bh(&l->lock); sk_del_node_init(sk); write_unlock_bh(&l->lock); } void iucv_accept_enqueue(struct sock *parent, struct sock *sk) { unsigned long flags; struct iucv_sock *par = iucv_sk(parent); sock_hold(sk); spin_lock_irqsave(&par->accept_q_lock, flags); list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q); spin_unlock_irqrestore(&par->accept_q_lock, flags); iucv_sk(sk)->parent = parent; sk_acceptq_added(parent); } void iucv_accept_unlink(struct sock *sk) { unsigned long flags; struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent); spin_lock_irqsave(&par->accept_q_lock, flags); list_del_init(&iucv_sk(sk)->accept_q); spin_unlock_irqrestore(&par->accept_q_lock, flags); sk_acceptq_removed(iucv_sk(sk)->parent); iucv_sk(sk)->parent = NULL; sock_put(sk); } struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock) { struct iucv_sock *isk, *n; struct sock *sk; list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) { sk = (struct sock *) isk; lock_sock(sk); if (sk->sk_state == IUCV_CLOSED) { iucv_accept_unlink(sk); release_sock(sk); continue; } if (sk->sk_state == IUCV_CONNECTED || sk->sk_state == IUCV_DISCONN || !newsock) { iucv_accept_unlink(sk); if (newsock) sock_graft(sk, newsock); release_sock(sk); return sk; } release_sock(sk); } return NULL; } static void __iucv_auto_name(struct iucv_sock *iucv) { char name[12]; sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name)); while (__iucv_get_sock_by_name(name)) { sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name)); } memcpy(iucv->src_name, name, 8); } /* Bind an unbound socket */ static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len) { struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr; struct sock *sk = sock->sk; struct iucv_sock *iucv; int err = 0; struct net_device *dev; char uid[9]; /* Verify the input sockaddr */ if (!addr || addr->sa_family != AF_IUCV) return -EINVAL; lock_sock(sk); if (sk->sk_state != IUCV_OPEN) { err = -EBADFD; goto done; } write_lock_bh(&iucv_sk_list.lock); iucv = iucv_sk(sk); if (__iucv_get_sock_by_name(sa->siucv_name)) { err = -EADDRINUSE; goto done_unlock; } if (iucv->path) goto done_unlock; /* Bind the socket */ if (pr_iucv) if (!memcmp(sa->siucv_user_id, iucv_userid, 8)) goto vm_bind; /* VM IUCV transport */ /* try hiper transport */ memcpy(uid, sa->siucv_user_id, sizeof(uid)); ASCEBC(uid, 8); rcu_read_lock(); for_each_netdev_rcu(&init_net, dev) { if (!memcmp(dev->perm_addr, uid, 8)) { memcpy(iucv->src_user_id, sa->siucv_user_id, 8); /* Check for unitialized siucv_name */ if (strncmp(sa->siucv_name, " ", 8) == 0) __iucv_auto_name(iucv); else memcpy(iucv->src_name, sa->siucv_name, 8); sk->sk_bound_dev_if = dev->ifindex; iucv->hs_dev = dev; dev_hold(dev); sk->sk_state = IUCV_BOUND; iucv->transport = AF_IUCV_TRANS_HIPER; if (!iucv->msglimit) iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT; rcu_read_unlock(); goto done_unlock; } } rcu_read_unlock(); vm_bind: if (pr_iucv) { /* use local userid for backward compat */ memcpy(iucv->src_name, sa->siucv_name, 8); memcpy(iucv->src_user_id, iucv_userid, 8); sk->sk_state = IUCV_BOUND; iucv->transport = AF_IUCV_TRANS_IUCV; if (!iucv->msglimit) iucv->msglimit = IUCV_QUEUELEN_DEFAULT; goto done_unlock; } /* found no dev to bind */ err = -ENODEV; done_unlock: /* Release the socket list lock */ write_unlock_bh(&iucv_sk_list.lock); done: release_sock(sk); return err; } /* Automatically bind an unbound socket */ static int iucv_sock_autobind(struct sock *sk) { struct iucv_sock *iucv = iucv_sk(sk); int err = 0; if (unlikely(!pr_iucv)) return -EPROTO; memcpy(iucv->src_user_id, iucv_userid, 8); write_lock_bh(&iucv_sk_list.lock); __iucv_auto_name(iucv); write_unlock_bh(&iucv_sk_list.lock); if (!iucv->msglimit) iucv->msglimit = IUCV_QUEUELEN_DEFAULT; return err; } static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr) { struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr; struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); unsigned char user_data[16]; int err; high_nmcpy(user_data, sa->siucv_name); low_nmcpy(user_data, iucv->src_name); ASCEBC(user_data, sizeof(user_data)); /* Create path. */ iucv->path = iucv_path_alloc(iucv->msglimit, IUCV_IPRMDATA, GFP_KERNEL); if (!iucv->path) { err = -ENOMEM; goto done; } err = pr_iucv->path_connect(iucv->path, &af_iucv_handler, sa->siucv_user_id, NULL, user_data, sk); if (err) { iucv_path_free(iucv->path); iucv->path = NULL; switch (err) { case 0x0b: /* Target communicator is not logged on */ err = -ENETUNREACH; break; case 0x0d: /* Max connections for this guest exceeded */ case 0x0e: /* Max connections for target guest exceeded */ err = -EAGAIN; break; case 0x0f: /* Missing IUCV authorization */ err = -EACCES; break; default: err = -ECONNREFUSED; break; } } done: return err; } /* Connect an unconnected socket */ static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr; struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); int err; if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv)) return -EINVAL; if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND) return -EBADFD; if (sk->sk_state == IUCV_OPEN && iucv->transport == AF_IUCV_TRANS_HIPER) return -EBADFD; /* explicit bind required */ if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET) return -EINVAL; if (sk->sk_state == IUCV_OPEN) { err = iucv_sock_autobind(sk); if (unlikely(err)) return err; } lock_sock(sk); /* Set the destination information */ memcpy(iucv->dst_user_id, sa->siucv_user_id, 8); memcpy(iucv->dst_name, sa->siucv_name, 8); if (iucv->transport == AF_IUCV_TRANS_HIPER) err = iucv_send_ctrl(sock->sk, AF_IUCV_FLAG_SYN); else err = afiucv_path_connect(sock, addr); if (err) goto done; if (sk->sk_state != IUCV_CONNECTED) err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED, IUCV_DISCONN), sock_sndtimeo(sk, flags & O_NONBLOCK)); if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED) err = -ECONNREFUSED; if (err && iucv->transport == AF_IUCV_TRANS_IUCV) iucv_sever_path(sk, 0); done: release_sock(sk); return err; } /* Move a socket into listening state. */ static int iucv_sock_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; int err; lock_sock(sk); err = -EINVAL; if (sk->sk_state != IUCV_BOUND) goto done; if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) goto done; sk->sk_max_ack_backlog = backlog; sk->sk_ack_backlog = 0; sk->sk_state = IUCV_LISTEN; err = 0; done: release_sock(sk); return err; } /* Accept a pending connection */ static int iucv_sock_accept(struct socket *sock, struct socket *newsock, int flags) { DECLARE_WAITQUEUE(wait, current); struct sock *sk = sock->sk, *nsk; long timeo; int err = 0; lock_sock_nested(sk, SINGLE_DEPTH_NESTING); if (sk->sk_state != IUCV_LISTEN) { err = -EBADFD; goto done; } timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); /* Wait for an incoming connection */ add_wait_queue_exclusive(sk_sleep(sk), &wait); while (!(nsk = iucv_accept_dequeue(sk, newsock))) { set_current_state(TASK_INTERRUPTIBLE); if (!timeo) { err = -EAGAIN; break; } release_sock(sk); timeo = schedule_timeout(timeo); lock_sock_nested(sk, SINGLE_DEPTH_NESTING); if (sk->sk_state != IUCV_LISTEN) { err = -EBADFD; break; } if (signal_pending(current)) { err = sock_intr_errno(timeo); break; } } set_current_state(TASK_RUNNING); remove_wait_queue(sk_sleep(sk), &wait); if (err) goto done; newsock->state = SS_CONNECTED; done: release_sock(sk); return err; } static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr, int *len, int peer) { struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr; struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); addr->sa_family = AF_IUCV; *len = sizeof(struct sockaddr_iucv); if (peer) { memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8); memcpy(siucv->siucv_name, iucv->dst_name, 8); } else { memcpy(siucv->siucv_user_id, iucv->src_user_id, 8); memcpy(siucv->siucv_name, iucv->src_name, 8); } memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port)); memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr)); memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid)); return 0; } /** * iucv_send_iprm() - Send socket data in parameter list of an iucv message. * @path: IUCV path * @msg: Pointer to a struct iucv_message * @skb: The socket data to send, skb->len MUST BE <= 7 * * Send the socket data in the parameter list in the iucv message * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter * list and the socket data len at index 7 (last byte). * See also iucv_msg_length(). * * Returns the error code from the iucv_message_send() call. */ static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg, struct sk_buff *skb) { u8 prmdata[8]; memcpy(prmdata, (void *) skb->data, skb->len); prmdata[7] = 0xff - (u8) skb->len; return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0, (void *) prmdata, 8); } static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); struct sk_buff *skb; struct iucv_message txmsg; struct cmsghdr *cmsg; int cmsg_done; long timeo; char user_id[9]; char appl_id[9]; int err; int noblock = msg->msg_flags & MSG_DONTWAIT; err = sock_error(sk); if (err) return err; if (msg->msg_flags & MSG_OOB) return -EOPNOTSUPP; /* SOCK_SEQPACKET: we do not support segmented records */ if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR)) return -EOPNOTSUPP; lock_sock(sk); if (sk->sk_shutdown & SEND_SHUTDOWN) { err = -EPIPE; goto out; } /* Return if the socket is not in connected state */ if (sk->sk_state != IUCV_CONNECTED) { err = -ENOTCONN; goto out; } /* initialize defaults */ cmsg_done = 0; /* check for duplicate headers */ txmsg.class = 0; /* iterate over control messages */ for_each_cmsghdr(cmsg, msg) { if (!CMSG_OK(msg, cmsg)) { err = -EINVAL; goto out; } if (cmsg->cmsg_level != SOL_IUCV) continue; if (cmsg->cmsg_type & cmsg_done) { err = -EINVAL; goto out; } cmsg_done |= cmsg->cmsg_type; switch (cmsg->cmsg_type) { case SCM_IUCV_TRGCLS: if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) { err = -EINVAL; goto out; } /* set iucv message target class */ memcpy(&txmsg.class, (void *) CMSG_DATA(cmsg), TRGCLS_SIZE); break; default: err = -EINVAL; goto out; } } /* allocate one skb for each iucv message: * this is fine for SOCK_SEQPACKET (unless we want to support * segmented records using the MSG_EOR flag), but * for SOCK_STREAM we might want to improve it in future */ if (iucv->transport == AF_IUCV_TRANS_HIPER) skb = sock_alloc_send_skb(sk, len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN, noblock, &err); else skb = sock_alloc_send_skb(sk, len, noblock, &err); if (!skb) { err = -ENOMEM; goto out; } if (iucv->transport == AF_IUCV_TRANS_HIPER) skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN); if (memcpy_from_msg(skb_put(skb, len), msg, len)) { err = -EFAULT; goto fail; } /* wait if outstanding messages for iucv path has reached */ timeo = sock_sndtimeo(sk, noblock); err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo); if (err) goto fail; /* return -ECONNRESET if the socket is no longer connected */ if (sk->sk_state != IUCV_CONNECTED) { err = -ECONNRESET; goto fail; } /* increment and save iucv message tag for msg_completion cbk */ txmsg.tag = iucv->send_tag++; IUCV_SKB_CB(skb)->tag = txmsg.tag; if (iucv->transport == AF_IUCV_TRANS_HIPER) { atomic_inc(&iucv->msg_sent); err = afiucv_hs_send(&txmsg, sk, skb, 0); if (err) { atomic_dec(&iucv->msg_sent); goto fail; } goto release; } skb_queue_tail(&iucv->send_skb_q, skb); if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags) && skb->len <= 7) { err = iucv_send_iprm(iucv->path, &txmsg, skb); /* on success: there is no message_complete callback * for an IPRMDATA msg; remove skb from send queue */ if (err == 0) { skb_unlink(skb, &iucv->send_skb_q); kfree_skb(skb); } /* this error should never happen since the * IUCV_IPRMDATA path flag is set... sever path */ if (err == 0x15) { pr_iucv->path_sever(iucv->path, NULL); skb_unlink(skb, &iucv->send_skb_q); err = -EPIPE; goto fail; } } else err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0, (void *) skb->data, skb->len); if (err) { if (err == 3) { user_id[8] = 0; memcpy(user_id, iucv->dst_user_id, 8); appl_id[8] = 0; memcpy(appl_id, iucv->dst_name, 8); pr_err("Application %s on z/VM guest %s" " exceeds message limit\n", appl_id, user_id); err = -EAGAIN; } else err = -EPIPE; skb_unlink(skb, &iucv->send_skb_q); goto fail; } release: release_sock(sk); return len; fail: kfree_skb(skb); out: release_sock(sk); return err; } /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's * * Locking: must be called with message_q.lock held */ static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len) { int dataleft, size, copied = 0; struct sk_buff *nskb; dataleft = len; while (dataleft) { if (dataleft >= sk->sk_rcvbuf / 4) size = sk->sk_rcvbuf / 4; else size = dataleft; nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA); if (!nskb) return -ENOMEM; /* copy target class to control buffer of new skb */ IUCV_SKB_CB(nskb)->class = IUCV_SKB_CB(skb)->class; /* copy data fragment */ memcpy(nskb->data, skb->data + copied, size); copied += size; dataleft -= size; skb_reset_transport_header(nskb); skb_reset_network_header(nskb); nskb->len = size; skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb); } return 0; } /* iucv_process_message() - Receive a single outstanding IUCV message * * Locking: must be called with message_q.lock held */ static void iucv_process_message(struct sock *sk, struct sk_buff *skb, struct iucv_path *path, struct iucv_message *msg) { int rc; unsigned int len; len = iucv_msg_length(msg); /* store msg target class in the second 4 bytes of skb ctrl buffer */ /* Note: the first 4 bytes are reserved for msg tag */ IUCV_SKB_CB(skb)->class = msg->class; /* check for special IPRM messages (e.g. iucv_sock_shutdown) */ if ((msg->flags & IUCV_IPRMDATA) && len > 7) { if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) { skb->data = NULL; skb->len = 0; } } else { rc = pr_iucv->message_receive(path, msg, msg->flags & IUCV_IPRMDATA, skb->data, len, NULL); if (rc) { kfree_skb(skb); return; } /* we need to fragment iucv messages for SOCK_STREAM only; * for SOCK_SEQPACKET, it is only relevant if we support * record segmentation using MSG_EOR (see also recvmsg()) */ if (sk->sk_type == SOCK_STREAM && skb->truesize >= sk->sk_rcvbuf / 4) { rc = iucv_fragment_skb(sk, skb, len); kfree_skb(skb); skb = NULL; if (rc) { pr_iucv->path_sever(path, NULL); return; } skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q); } else { skb_reset_transport_header(skb); skb_reset_network_header(skb); skb->len = len; } } IUCV_SKB_CB(skb)->offset = 0; if (sock_queue_rcv_skb(sk, skb)) skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb); } /* iucv_process_message_q() - Process outstanding IUCV messages * * Locking: must be called with message_q.lock held */ static void iucv_process_message_q(struct sock *sk) { struct iucv_sock *iucv = iucv_sk(sk); struct sk_buff *skb; struct sock_msg_q *p, *n; list_for_each_entry_safe(p, n, &iucv->message_q.list, list) { skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA); if (!skb) break; iucv_process_message(sk, skb, p->path, &p->msg); list_del(&p->list); kfree(p); if (!skb_queue_empty(&iucv->backlog_skb_q)) break; } } static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t len, int flags) { int noblock = flags & MSG_DONTWAIT; struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); unsigned int copied, rlen; struct sk_buff *skb, *rskb, *cskb; int err = 0; u32 offset; if ((sk->sk_state == IUCV_DISCONN) && skb_queue_empty(&iucv->backlog_skb_q) && skb_queue_empty(&sk->sk_receive_queue) && list_empty(&iucv->message_q.list)) return 0; if (flags & (MSG_OOB)) return -EOPNOTSUPP; /* receive/dequeue next skb: * the function understands MSG_PEEK and, thus, does not dequeue skb */ skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) { if (sk->sk_shutdown & RCV_SHUTDOWN) return 0; return err; } offset = IUCV_SKB_CB(skb)->offset; rlen = skb->len - offset; /* real length of skb */ copied = min_t(unsigned int, rlen, len); if (!rlen) sk->sk_shutdown = sk->sk_shutdown | RCV_SHUTDOWN; cskb = skb; if (skb_copy_datagram_msg(cskb, offset, msg, copied)) { if (!(flags & MSG_PEEK)) skb_queue_head(&sk->sk_receive_queue, skb); return -EFAULT; } /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */ if (sk->sk_type == SOCK_SEQPACKET) { if (copied < rlen) msg->msg_flags |= MSG_TRUNC; /* each iucv message contains a complete record */ msg->msg_flags |= MSG_EOR; } /* create control message to store iucv msg target class: * get the trgcls from the control buffer of the skb due to * fragmentation of original iucv message. */ err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS, sizeof(IUCV_SKB_CB(skb)->class), (void *)&IUCV_SKB_CB(skb)->class); if (err) { if (!(flags & MSG_PEEK)) skb_queue_head(&sk->sk_receive_queue, skb); return err; } /* Mark read part of skb as used */ if (!(flags & MSG_PEEK)) { /* SOCK_STREAM: re-queue skb if it contains unreceived data */ if (sk->sk_type == SOCK_STREAM) { if (copied < rlen) { IUCV_SKB_CB(skb)->offset = offset + copied; skb_queue_head(&sk->sk_receive_queue, skb); goto done; } } kfree_skb(skb); if (iucv->transport == AF_IUCV_TRANS_HIPER) { atomic_inc(&iucv->msg_recv); if (atomic_read(&iucv->msg_recv) > iucv->msglimit) { WARN_ON(1); iucv_sock_close(sk); return -EFAULT; } } /* Queue backlog skbs */ spin_lock_bh(&iucv->message_q.lock); rskb = skb_dequeue(&iucv->backlog_skb_q); while (rskb) { IUCV_SKB_CB(rskb)->offset = 0; if (sock_queue_rcv_skb(sk, rskb)) { skb_queue_head(&iucv->backlog_skb_q, rskb); break; } else { rskb = skb_dequeue(&iucv->backlog_skb_q); } } if (skb_queue_empty(&iucv->backlog_skb_q)) { if (!list_empty(&iucv->message_q.list)) iucv_process_message_q(sk); if (atomic_read(&iucv->msg_recv) >= iucv->msglimit / 2) { err = iucv_send_ctrl(sk, AF_IUCV_FLAG_WIN); if (err) { sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } } } spin_unlock_bh(&iucv->message_q.lock); } done: /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */ if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC)) copied = rlen; return copied; } static inline unsigned int iucv_accept_poll(struct sock *parent) { struct iucv_sock *isk, *n; struct sock *sk; list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) { sk = (struct sock *) isk; if (sk->sk_state == IUCV_CONNECTED) return POLLIN | POLLRDNORM; } return 0; } unsigned int iucv_sock_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; unsigned int mask = 0; sock_poll_wait(file, sk_sleep(sk), wait); if (sk->sk_state == IUCV_LISTEN) return iucv_accept_poll(sk); if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) mask |= POLLERR | (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0); if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= POLLRDHUP; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= POLLHUP; if (!skb_queue_empty(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= POLLIN | POLLRDNORM; if (sk->sk_state == IUCV_CLOSED) mask |= POLLHUP; if (sk->sk_state == IUCV_DISCONN) mask |= POLLIN; if (sock_writeable(sk) && iucv_below_msglim(sk)) mask |= POLLOUT | POLLWRNORM | POLLWRBAND; else set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); return mask; } static int iucv_sock_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); struct iucv_message txmsg; int err = 0; how++; if ((how & ~SHUTDOWN_MASK) || !how) return -EINVAL; lock_sock(sk); switch (sk->sk_state) { case IUCV_LISTEN: case IUCV_DISCONN: case IUCV_CLOSING: case IUCV_CLOSED: err = -ENOTCONN; goto fail; default: break; } if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) { if (iucv->transport == AF_IUCV_TRANS_IUCV) { txmsg.class = 0; txmsg.tag = 0; err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0, (void *) iprm_shutdown, 8); if (err) { switch (err) { case 1: err = -ENOTCONN; break; case 2: err = -ECONNRESET; break; default: err = -ENOTCONN; break; } } } else iucv_send_ctrl(sk, AF_IUCV_FLAG_SHT); } sk->sk_shutdown |= how; if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) { if ((iucv->transport == AF_IUCV_TRANS_IUCV) && iucv->path) { err = pr_iucv->path_quiesce(iucv->path, NULL); if (err) err = -ENOTCONN; /* skb_queue_purge(&sk->sk_receive_queue); */ } skb_queue_purge(&sk->sk_receive_queue); } /* Wake up anyone sleeping in poll */ sk->sk_state_change(sk); fail: release_sock(sk); return err; } static int iucv_sock_release(struct socket *sock) { struct sock *sk = sock->sk; int err = 0; if (!sk) return 0; iucv_sock_close(sk); sock_orphan(sk); iucv_sock_kill(sk); return err; } /* getsockopt and setsockopt */ static int iucv_sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); int val; int rc; if (level != SOL_IUCV) return -ENOPROTOOPT; if (optlen < sizeof(int)) return -EINVAL; if (get_user(val, (int __user *) optval)) return -EFAULT; rc = 0; lock_sock(sk); switch (optname) { case SO_IPRMDATA_MSG: if (val) iucv->flags |= IUCV_IPRMDATA; else iucv->flags &= ~IUCV_IPRMDATA; break; case SO_MSGLIMIT: switch (sk->sk_state) { case IUCV_OPEN: case IUCV_BOUND: if (val < 1 || val > (u16)(~0)) rc = -EINVAL; else iucv->msglimit = val; break; default: rc = -EINVAL; break; } break; default: rc = -ENOPROTOOPT; break; } release_sock(sk); return rc; } static int iucv_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; struct iucv_sock *iucv = iucv_sk(sk); unsigned int val; int len; if (level != SOL_IUCV) return -ENOPROTOOPT; if (get_user(len, optlen)) return -EFAULT; if (len < 0) return -EINVAL; len = min_t(unsigned int, len, sizeof(int)); switch (optname) { case SO_IPRMDATA_MSG: val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0; break; case SO_MSGLIMIT: lock_sock(sk); val = (iucv->path != NULL) ? iucv->path->msglim /* connected */ : iucv->msglimit; /* default */ release_sock(sk); break; case SO_MSGSIZE: if (sk->sk_state == IUCV_OPEN) return -EBADFD; val = (iucv->hs_dev) ? iucv->hs_dev->mtu - sizeof(struct af_iucv_trans_hdr) - ETH_HLEN : 0x7fffffff; break; default: return -ENOPROTOOPT; } if (put_user(len, optlen)) return -EFAULT; if (copy_to_user(optval, &val, len)) return -EFAULT; return 0; } /* Callback wrappers - called from iucv base support */ static int iucv_callback_connreq(struct iucv_path *path, u8 ipvmid[8], u8 ipuser[16]) { unsigned char user_data[16]; unsigned char nuser_data[16]; unsigned char src_name[8]; struct sock *sk, *nsk; struct iucv_sock *iucv, *niucv; int err; memcpy(src_name, ipuser, 8); EBCASC(src_name, 8); /* Find out if this path belongs to af_iucv. */ read_lock(&iucv_sk_list.lock); iucv = NULL; sk = NULL; sk_for_each(sk, &iucv_sk_list.head) if (sk->sk_state == IUCV_LISTEN && !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) { /* * Found a listening socket with * src_name == ipuser[0-7]. */ iucv = iucv_sk(sk); break; } read_unlock(&iucv_sk_list.lock); if (!iucv) /* No socket found, not one of our paths. */ return -EINVAL; bh_lock_sock(sk); /* Check if parent socket is listening */ low_nmcpy(user_data, iucv->src_name); high_nmcpy(user_data, iucv->dst_name); ASCEBC(user_data, sizeof(user_data)); if (sk->sk_state != IUCV_LISTEN) { err = pr_iucv->path_sever(path, user_data); iucv_path_free(path); goto fail; } /* Check for backlog size */ if (sk_acceptq_is_full(sk)) { err = pr_iucv->path_sever(path, user_data); iucv_path_free(path); goto fail; } /* Create the new socket */ nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC); if (!nsk) { err = pr_iucv->path_sever(path, user_data); iucv_path_free(path); goto fail; } niucv = iucv_sk(nsk); iucv_sock_init(nsk, sk); /* Set the new iucv_sock */ memcpy(niucv->dst_name, ipuser + 8, 8); EBCASC(niucv->dst_name, 8); memcpy(niucv->dst_user_id, ipvmid, 8); memcpy(niucv->src_name, iucv->src_name, 8); memcpy(niucv->src_user_id, iucv->src_user_id, 8); niucv->path = path; /* Call iucv_accept */ high_nmcpy(nuser_data, ipuser + 8); memcpy(nuser_data + 8, niucv->src_name, 8); ASCEBC(nuser_data + 8, 8); /* set message limit for path based on msglimit of accepting socket */ niucv->msglimit = iucv->msglimit; path->msglim = iucv->msglimit; err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk); if (err) { iucv_sever_path(nsk, 1); iucv_sock_kill(nsk); goto fail; } iucv_accept_enqueue(sk, nsk); /* Wake up accept */ nsk->sk_state = IUCV_CONNECTED; sk->sk_data_ready(sk); err = 0; fail: bh_unlock_sock(sk); return 0; } static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16]) { struct sock *sk = path->private; sk->sk_state = IUCV_CONNECTED; sk->sk_state_change(sk); } static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg) { struct sock *sk = path->private; struct iucv_sock *iucv = iucv_sk(sk); struct sk_buff *skb; struct sock_msg_q *save_msg; int len; if (sk->sk_shutdown & RCV_SHUTDOWN) { pr_iucv->message_reject(path, msg); return; } spin_lock(&iucv->message_q.lock); if (!list_empty(&iucv->message_q.list) || !skb_queue_empty(&iucv->backlog_skb_q)) goto save_message; len = atomic_read(&sk->sk_rmem_alloc); len += SKB_TRUESIZE(iucv_msg_length(msg)); if (len > sk->sk_rcvbuf) goto save_message; skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA); if (!skb) goto save_message; iucv_process_message(sk, skb, path, msg); goto out_unlock; save_message: save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA); if (!save_msg) goto out_unlock; save_msg->path = path; save_msg->msg = *msg; list_add_tail(&save_msg->list, &iucv->message_q.list); out_unlock: spin_unlock(&iucv->message_q.lock); } static void iucv_callback_txdone(struct iucv_path *path, struct iucv_message *msg) { struct sock *sk = path->private; struct sk_buff *this = NULL; struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q; struct sk_buff *list_skb = list->next; unsigned long flags; bh_lock_sock(sk); if (!skb_queue_empty(list)) { spin_lock_irqsave(&list->lock, flags); while (list_skb != (struct sk_buff *)list) { if (msg->tag == IUCV_SKB_CB(list_skb)->tag) { this = list_skb; break; } list_skb = list_skb->next; } if (this) __skb_unlink(this, list); spin_unlock_irqrestore(&list->lock, flags); if (this) { kfree_skb(this); /* wake up any process waiting for sending */ iucv_sock_wake_msglim(sk); } } if (sk->sk_state == IUCV_CLOSING) { if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) { sk->sk_state = IUCV_CLOSED; sk->sk_state_change(sk); } } bh_unlock_sock(sk); } static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16]) { struct sock *sk = path->private; if (sk->sk_state == IUCV_CLOSED) return; bh_lock_sock(sk); iucv_sever_path(sk, 1); sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); bh_unlock_sock(sk); } /* called if the other communication side shuts down its RECV direction; * in turn, the callback sets SEND_SHUTDOWN to disable sending of data. */ static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16]) { struct sock *sk = path->private; bh_lock_sock(sk); if (sk->sk_state != IUCV_CLOSED) { sk->sk_shutdown |= SEND_SHUTDOWN; sk->sk_state_change(sk); } bh_unlock_sock(sk); } /***************** HiperSockets transport callbacks ********************/ static void afiucv_swap_src_dest(struct sk_buff *skb) { struct af_iucv_trans_hdr *trans_hdr = (struct af_iucv_trans_hdr *)skb->data; char tmpID[8]; char tmpName[8]; ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID)); ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName)); ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID)); ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName)); memcpy(tmpID, trans_hdr->srcUserID, 8); memcpy(tmpName, trans_hdr->srcAppName, 8); memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8); memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8); memcpy(trans_hdr->destUserID, tmpID, 8); memcpy(trans_hdr->destAppName, tmpName, 8); skb_push(skb, ETH_HLEN); memset(skb->data, 0, ETH_HLEN); } /** * afiucv_hs_callback_syn - react on received SYN **/ static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb) { struct sock *nsk; struct iucv_sock *iucv, *niucv; struct af_iucv_trans_hdr *trans_hdr; int err; iucv = iucv_sk(sk); trans_hdr = (struct af_iucv_trans_hdr *)skb->data; if (!iucv) { /* no sock - connection refused */ afiucv_swap_src_dest(skb); trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN; err = dev_queue_xmit(skb); goto out; } nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC); bh_lock_sock(sk); if ((sk->sk_state != IUCV_LISTEN) || sk_acceptq_is_full(sk) || !nsk) { /* error on server socket - connection refused */ afiucv_swap_src_dest(skb); trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN; err = dev_queue_xmit(skb); iucv_sock_kill(nsk); bh_unlock_sock(sk); goto out; } niucv = iucv_sk(nsk); iucv_sock_init(nsk, sk); niucv->transport = AF_IUCV_TRANS_HIPER; niucv->msglimit = iucv->msglimit; if (!trans_hdr->window) niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT; else niucv->msglimit_peer = trans_hdr->window; memcpy(niucv->dst_name, trans_hdr->srcAppName, 8); memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8); memcpy(niucv->src_name, iucv->src_name, 8); memcpy(niucv->src_user_id, iucv->src_user_id, 8); nsk->sk_bound_dev_if = sk->sk_bound_dev_if; niucv->hs_dev = iucv->hs_dev; dev_hold(niucv->hs_dev); afiucv_swap_src_dest(skb); trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK; trans_hdr->window = niucv->msglimit; /* if receiver acks the xmit connection is established */ err = dev_queue_xmit(skb); if (!err) { iucv_accept_enqueue(sk, nsk); nsk->sk_state = IUCV_CONNECTED; sk->sk_data_ready(sk); } else iucv_sock_kill(nsk); bh_unlock_sock(sk); out: return NET_RX_SUCCESS; } /** * afiucv_hs_callback_synack() - react on received SYN-ACK **/ static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); struct af_iucv_trans_hdr *trans_hdr = (struct af_iucv_trans_hdr *)skb->data; if (!iucv) goto out; if (sk->sk_state != IUCV_BOUND) goto out; bh_lock_sock(sk); iucv->msglimit_peer = trans_hdr->window; sk->sk_state = IUCV_CONNECTED; sk->sk_state_change(sk); bh_unlock_sock(sk); out: kfree_skb(skb); return NET_RX_SUCCESS; } /** * afiucv_hs_callback_synfin() - react on received SYN_FIN **/ static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); if (!iucv) goto out; if (sk->sk_state != IUCV_BOUND) goto out; bh_lock_sock(sk); sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); bh_unlock_sock(sk); out: kfree_skb(skb); return NET_RX_SUCCESS; } /** * afiucv_hs_callback_fin() - react on received FIN **/ static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); /* other end of connection closed */ if (!iucv) goto out; bh_lock_sock(sk); if (sk->sk_state == IUCV_CONNECTED) { sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } bh_unlock_sock(sk); out: kfree_skb(skb); return NET_RX_SUCCESS; } /** * afiucv_hs_callback_win() - react on received WIN **/ static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); struct af_iucv_trans_hdr *trans_hdr = (struct af_iucv_trans_hdr *)skb->data; if (!iucv) return NET_RX_SUCCESS; if (sk->sk_state != IUCV_CONNECTED) return NET_RX_SUCCESS; atomic_sub(trans_hdr->window, &iucv->msg_sent); iucv_sock_wake_msglim(sk); return NET_RX_SUCCESS; } /** * afiucv_hs_callback_rx() - react on received data **/ static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb) { struct iucv_sock *iucv = iucv_sk(sk); if (!iucv) { kfree_skb(skb); return NET_RX_SUCCESS; } if (sk->sk_state != IUCV_CONNECTED) { kfree_skb(skb); return NET_RX_SUCCESS; } if (sk->sk_shutdown & RCV_SHUTDOWN) { kfree_skb(skb); return NET_RX_SUCCESS; } /* write stuff from iucv_msg to skb cb */ if (skb->len < sizeof(struct af_iucv_trans_hdr)) { kfree_skb(skb); return NET_RX_SUCCESS; } skb_pull(skb, sizeof(struct af_iucv_trans_hdr)); skb_reset_transport_header(skb); skb_reset_network_header(skb); IUCV_SKB_CB(skb)->offset = 0; spin_lock(&iucv->message_q.lock); if (skb_queue_empty(&iucv->backlog_skb_q)) { if (sock_queue_rcv_skb(sk, skb)) { /* handle rcv queue full */ skb_queue_tail(&iucv->backlog_skb_q, skb); } } else skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb); spin_unlock(&iucv->message_q.lock); return NET_RX_SUCCESS; } /** * afiucv_hs_rcv() - base function for arriving data through HiperSockets * transport * called from netif RX softirq **/ static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct sock *sk; struct iucv_sock *iucv; struct af_iucv_trans_hdr *trans_hdr; char nullstring[8]; int err = 0; skb_pull(skb, ETH_HLEN); trans_hdr = (struct af_iucv_trans_hdr *)skb->data; EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName)); EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID)); EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName)); EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID)); memset(nullstring, 0, sizeof(nullstring)); iucv = NULL; sk = NULL; read_lock(&iucv_sk_list.lock); sk_for_each(sk, &iucv_sk_list.head) { if (trans_hdr->flags == AF_IUCV_FLAG_SYN) { if ((!memcmp(&iucv_sk(sk)->src_name, trans_hdr->destAppName, 8)) && (!memcmp(&iucv_sk(sk)->src_user_id, trans_hdr->destUserID, 8)) && (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) && (!memcmp(&iucv_sk(sk)->dst_user_id, nullstring, 8))) { iucv = iucv_sk(sk); break; } } else { if ((!memcmp(&iucv_sk(sk)->src_name, trans_hdr->destAppName, 8)) && (!memcmp(&iucv_sk(sk)->src_user_id, trans_hdr->destUserID, 8)) && (!memcmp(&iucv_sk(sk)->dst_name, trans_hdr->srcAppName, 8)) && (!memcmp(&iucv_sk(sk)->dst_user_id, trans_hdr->srcUserID, 8))) { iucv = iucv_sk(sk); break; } } } read_unlock(&iucv_sk_list.lock); if (!iucv) sk = NULL; /* no sock how should we send with no sock 1) send without sock no send rc checking? 2) introduce default sock to handle this cases SYN -> send SYN|ACK in good case, send SYN|FIN in bad case data -> send FIN SYN|ACK, SYN|FIN, FIN -> no action? */ switch (trans_hdr->flags) { case AF_IUCV_FLAG_SYN: /* connect request */ err = afiucv_hs_callback_syn(sk, skb); break; case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK): /* connect request confirmed */ err = afiucv_hs_callback_synack(sk, skb); break; case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN): /* connect request refused */ err = afiucv_hs_callback_synfin(sk, skb); break; case (AF_IUCV_FLAG_FIN): /* close request */ err = afiucv_hs_callback_fin(sk, skb); break; case (AF_IUCV_FLAG_WIN): err = afiucv_hs_callback_win(sk, skb); if (skb->len == sizeof(struct af_iucv_trans_hdr)) { kfree_skb(skb); break; } /* fall through and receive non-zero length data */ case (AF_IUCV_FLAG_SHT): /* shutdown request */ /* fall through and receive zero length data */ case 0: /* plain data frame */ IUCV_SKB_CB(skb)->class = trans_hdr->iucv_hdr.class; err = afiucv_hs_callback_rx(sk, skb); break; default: ; } return err; } /** * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets * transport **/ static void afiucv_hs_callback_txnotify(struct sk_buff *skb, enum iucv_tx_notify n) { struct sock *isk = skb->sk; struct sock *sk = NULL; struct iucv_sock *iucv = NULL; struct sk_buff_head *list; struct sk_buff *list_skb; struct sk_buff *nskb; unsigned long flags; read_lock_irqsave(&iucv_sk_list.lock, flags); sk_for_each(sk, &iucv_sk_list.head) if (sk == isk) { iucv = iucv_sk(sk); break; } read_unlock_irqrestore(&iucv_sk_list.lock, flags); if (!iucv || sock_flag(sk, SOCK_ZAPPED)) return; list = &iucv->send_skb_q; spin_lock_irqsave(&list->lock, flags); if (skb_queue_empty(list)) goto out_unlock; list_skb = list->next; nskb = list_skb->next; while (list_skb != (struct sk_buff *)list) { if (skb_shinfo(list_skb) == skb_shinfo(skb)) { switch (n) { case TX_NOTIFY_OK: __skb_unlink(list_skb, list); kfree_skb(list_skb); iucv_sock_wake_msglim(sk); break; case TX_NOTIFY_PENDING: atomic_inc(&iucv->pendings); break; case TX_NOTIFY_DELAYED_OK: __skb_unlink(list_skb, list); atomic_dec(&iucv->pendings); if (atomic_read(&iucv->pendings) <= 0) iucv_sock_wake_msglim(sk); kfree_skb(list_skb); break; case TX_NOTIFY_UNREACHABLE: case TX_NOTIFY_DELAYED_UNREACHABLE: case TX_NOTIFY_TPQFULL: /* not yet used */ case TX_NOTIFY_GENERALERROR: case TX_NOTIFY_DELAYED_GENERALERROR: __skb_unlink(list_skb, list); kfree_skb(list_skb); if (sk->sk_state == IUCV_CONNECTED) { sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } break; } break; } list_skb = nskb; nskb = nskb->next; } out_unlock: spin_unlock_irqrestore(&list->lock, flags); if (sk->sk_state == IUCV_CLOSING) { if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) { sk->sk_state = IUCV_CLOSED; sk->sk_state_change(sk); } } } /* * afiucv_netdev_event: handle netdev notifier chain events */ static int afiucv_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); struct sock *sk; struct iucv_sock *iucv; switch (event) { case NETDEV_REBOOT: case NETDEV_GOING_DOWN: sk_for_each(sk, &iucv_sk_list.head) { iucv = iucv_sk(sk); if ((iucv->hs_dev == event_dev) && (sk->sk_state == IUCV_CONNECTED)) { if (event == NETDEV_GOING_DOWN) iucv_send_ctrl(sk, AF_IUCV_FLAG_FIN); sk->sk_state = IUCV_DISCONN; sk->sk_state_change(sk); } } break; case NETDEV_DOWN: case NETDEV_UNREGISTER: default: break; } return NOTIFY_DONE; } static struct notifier_block afiucv_netdev_notifier = { .notifier_call = afiucv_netdev_event, }; static const struct proto_ops iucv_sock_ops = { .family = PF_IUCV, .owner = THIS_MODULE, .release = iucv_sock_release, .bind = iucv_sock_bind, .connect = iucv_sock_connect, .listen = iucv_sock_listen, .accept = iucv_sock_accept, .getname = iucv_sock_getname, .sendmsg = iucv_sock_sendmsg, .recvmsg = iucv_sock_recvmsg, .poll = iucv_sock_poll, .ioctl = sock_no_ioctl, .mmap = sock_no_mmap, .socketpair = sock_no_socketpair, .shutdown = iucv_sock_shutdown, .setsockopt = iucv_sock_setsockopt, .getsockopt = iucv_sock_getsockopt, }; static const struct net_proto_family iucv_sock_family_ops = { .family = AF_IUCV, .owner = THIS_MODULE, .create = iucv_sock_create, }; static struct packet_type iucv_packet_type = { .type = cpu_to_be16(ETH_P_AF_IUCV), .func = afiucv_hs_rcv, }; static int afiucv_iucv_init(void) { int err; err = pr_iucv->iucv_register(&af_iucv_handler, 0); if (err) goto out; /* establish dummy device */ af_iucv_driver.bus = pr_iucv->bus; err = driver_register(&af_iucv_driver); if (err) goto out_iucv; af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL); if (!af_iucv_dev) { err = -ENOMEM; goto out_driver; } dev_set_name(af_iucv_dev, "af_iucv"); af_iucv_dev->bus = pr_iucv->bus; af_iucv_dev->parent = pr_iucv->root; af_iucv_dev->release = (void (*)(struct device *))kfree; af_iucv_dev->driver = &af_iucv_driver; err = device_register(af_iucv_dev); if (err) goto out_driver; return 0; out_driver: driver_unregister(&af_iucv_driver); out_iucv: pr_iucv->iucv_unregister(&af_iucv_handler, 0); out: return err; } static int __init afiucv_init(void) { int err; if (MACHINE_IS_VM) { cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err); if (unlikely(err)) { WARN_ON(err); err = -EPROTONOSUPPORT; goto out; } pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv"); if (!pr_iucv) { printk(KERN_WARNING "iucv_if lookup failed\n"); memset(&iucv_userid, 0, sizeof(iucv_userid)); } } else { memset(&iucv_userid, 0, sizeof(iucv_userid)); pr_iucv = NULL; } err = proto_register(&iucv_proto, 0); if (err) goto out; err = sock_register(&iucv_sock_family_ops); if (err) goto out_proto; if (pr_iucv) { err = afiucv_iucv_init(); if (err) goto out_sock; } else register_netdevice_notifier(&afiucv_netdev_notifier); dev_add_pack(&iucv_packet_type); return 0; out_sock: sock_unregister(PF_IUCV); out_proto: proto_unregister(&iucv_proto); out: if (pr_iucv) symbol_put(iucv_if); return err; } static void __exit afiucv_exit(void) { if (pr_iucv) { device_unregister(af_iucv_dev); driver_unregister(&af_iucv_driver); pr_iucv->iucv_unregister(&af_iucv_handler, 0); symbol_put(iucv_if); } else unregister_netdevice_notifier(&afiucv_netdev_notifier); dev_remove_pack(&iucv_packet_type); sock_unregister(PF_IUCV); proto_unregister(&iucv_proto); } module_init(afiucv_init); module_exit(afiucv_exit); MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>"); MODULE_DESCRIPTION("IUCV Sockets ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_IUCV);