// SPDX-License-Identifier: GPL-2.0-or-later /* * NET3 IP device support routines. * * Derived from the IP parts of dev.c 1.0.19 * Authors: Ross Biro * Fred N. van Kempen, * Mark Evans, * * Additional Authors: * Alan Cox, * Alexey Kuznetsov, * * Changes: * Alexey Kuznetsov: pa_* fields are replaced with ifaddr * lists. * Cyrus Durgin: updated for kmod * Matthias Andree: in devinet_ioctl, compare label and * address (4.4BSD alias style support), * fall back to comparing just the label * if no match found. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYSCTL #include #endif #include #include #include #include #include #include #include #include #include static struct ipv4_devconf ipv4_devconf = { .data = { [IPV4_DEVCONF_ACCEPT_REDIRECTS - 1] = 1, [IPV4_DEVCONF_SEND_REDIRECTS - 1] = 1, [IPV4_DEVCONF_SECURE_REDIRECTS - 1] = 1, [IPV4_DEVCONF_SHARED_MEDIA - 1] = 1, [IPV4_DEVCONF_IGMPV2_UNSOLICITED_REPORT_INTERVAL - 1] = 10000 /*ms*/, [IPV4_DEVCONF_IGMPV3_UNSOLICITED_REPORT_INTERVAL - 1] = 1000 /*ms*/, }, }; static struct ipv4_devconf ipv4_devconf_dflt = { .data = { [IPV4_DEVCONF_ACCEPT_REDIRECTS - 1] = 1, [IPV4_DEVCONF_SEND_REDIRECTS - 1] = 1, [IPV4_DEVCONF_SECURE_REDIRECTS - 1] = 1, [IPV4_DEVCONF_SHARED_MEDIA - 1] = 1, [IPV4_DEVCONF_ACCEPT_SOURCE_ROUTE - 1] = 1, [IPV4_DEVCONF_IGMPV2_UNSOLICITED_REPORT_INTERVAL - 1] = 10000 /*ms*/, [IPV4_DEVCONF_IGMPV3_UNSOLICITED_REPORT_INTERVAL - 1] = 1000 /*ms*/, }, }; #define IPV4_DEVCONF_DFLT(net, attr) \ IPV4_DEVCONF((*net->ipv4.devconf_dflt), attr) static const struct nla_policy ifa_ipv4_policy[IFA_MAX+1] = { [IFA_LOCAL] = { .type = NLA_U32 }, [IFA_ADDRESS] = { .type = NLA_U32 }, [IFA_BROADCAST] = { .type = NLA_U32 }, [IFA_LABEL] = { .type = NLA_STRING, .len = IFNAMSIZ - 1 }, [IFA_CACHEINFO] = { .len = sizeof(struct ifa_cacheinfo) }, [IFA_FLAGS] = { .type = NLA_U32 }, [IFA_RT_PRIORITY] = { .type = NLA_U32 }, [IFA_TARGET_NETNSID] = { .type = NLA_S32 }, }; struct inet_fill_args { u32 portid; u32 seq; int event; unsigned int flags; int netnsid; int ifindex; }; #define IN4_ADDR_HSIZE_SHIFT 8 #define IN4_ADDR_HSIZE (1U << IN4_ADDR_HSIZE_SHIFT) static struct hlist_head inet_addr_lst[IN4_ADDR_HSIZE]; static u32 inet_addr_hash(const struct net *net, __be32 addr) { u32 val = (__force u32) addr ^ net_hash_mix(net); return hash_32(val, IN4_ADDR_HSIZE_SHIFT); } static void inet_hash_insert(struct net *net, struct in_ifaddr *ifa) { u32 hash = inet_addr_hash(net, ifa->ifa_local); ASSERT_RTNL(); hlist_add_head_rcu(&ifa->hash, &inet_addr_lst[hash]); } static void inet_hash_remove(struct in_ifaddr *ifa) { ASSERT_RTNL(); hlist_del_init_rcu(&ifa->hash); } /** * __ip_dev_find - find the first device with a given source address. * @net: the net namespace * @addr: the source address * @devref: if true, take a reference on the found device * * If a caller uses devref=false, it should be protected by RCU, or RTNL */ struct net_device *__ip_dev_find(struct net *net, __be32 addr, bool devref) { struct net_device *result = NULL; struct in_ifaddr *ifa; rcu_read_lock(); ifa = inet_lookup_ifaddr_rcu(net, addr); if (!ifa) { struct flowi4 fl4 = { .daddr = addr }; struct fib_result res = { 0 }; struct fib_table *local; /* Fallback to FIB local table so that communication * over loopback subnets work. */ local = fib_get_table(net, RT_TABLE_LOCAL); if (local && !fib_table_lookup(local, &fl4, &res, FIB_LOOKUP_NOREF) && res.type == RTN_LOCAL) result = FIB_RES_DEV(res); } else { result = ifa->ifa_dev->dev; } if (result && devref) dev_hold(result); rcu_read_unlock(); return result; } EXPORT_SYMBOL(__ip_dev_find); /* called under RCU lock */ struct in_ifaddr *inet_lookup_ifaddr_rcu(struct net *net, __be32 addr) { u32 hash = inet_addr_hash(net, addr); struct in_ifaddr *ifa; hlist_for_each_entry_rcu(ifa, &inet_addr_lst[hash], hash) if (ifa->ifa_local == addr && net_eq(dev_net(ifa->ifa_dev->dev), net)) return ifa; return NULL; } static void rtmsg_ifa(int event, struct in_ifaddr *, struct nlmsghdr *, u32); static BLOCKING_NOTIFIER_HEAD(inetaddr_chain); static BLOCKING_NOTIFIER_HEAD(inetaddr_validator_chain); static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr __rcu **ifap, int destroy); #ifdef CONFIG_SYSCTL static int devinet_sysctl_register(struct in_device *idev); static void devinet_sysctl_unregister(struct in_device *idev); #else static int devinet_sysctl_register(struct in_device *idev) { return 0; } static void devinet_sysctl_unregister(struct in_device *idev) { } #endif /* Locks all the inet devices. */ static struct in_ifaddr *inet_alloc_ifa(void) { return kzalloc(sizeof(struct in_ifaddr), GFP_KERNEL); } static void inet_rcu_free_ifa(struct rcu_head *head) { struct in_ifaddr *ifa = container_of(head, struct in_ifaddr, rcu_head); if (ifa->ifa_dev) in_dev_put(ifa->ifa_dev); kfree(ifa); } static void inet_free_ifa(struct in_ifaddr *ifa) { call_rcu(&ifa->rcu_head, inet_rcu_free_ifa); } void in_dev_finish_destroy(struct in_device *idev) { struct net_device *dev = idev->dev; WARN_ON(idev->ifa_list); WARN_ON(idev->mc_list); kfree(rcu_dereference_protected(idev->mc_hash, 1)); #ifdef NET_REFCNT_DEBUG pr_debug("%s: %p=%s\n", __func__, idev, dev ? dev->name : "NIL"); #endif dev_put(dev); if (!idev->dead) pr_err("Freeing alive in_device %p\n", idev); else kfree(idev); } EXPORT_SYMBOL(in_dev_finish_destroy); static struct in_device *inetdev_init(struct net_device *dev) { struct in_device *in_dev; int err = -ENOMEM; ASSERT_RTNL(); in_dev = kzalloc(sizeof(*in_dev), GFP_KERNEL); if (!in_dev) goto out; memcpy(&in_dev->cnf, dev_net(dev)->ipv4.devconf_dflt, sizeof(in_dev->cnf)); in_dev->cnf.sysctl = NULL; in_dev->dev = dev; in_dev->arp_parms = neigh_parms_alloc(dev, &arp_tbl); if (!in_dev->arp_parms) goto out_kfree; if (IPV4_DEVCONF(in_dev->cnf, FORWARDING)) dev_disable_lro(dev); /* Reference in_dev->dev */ dev_hold(dev); /* Account for reference dev->ip_ptr (below) */ refcount_set(&in_dev->refcnt, 1); err = devinet_sysctl_register(in_dev); if (err) { in_dev->dead = 1; in_dev_put(in_dev); in_dev = NULL; goto out; } ip_mc_init_dev(in_dev); if (dev->flags & IFF_UP) ip_mc_up(in_dev); /* we can receive as soon as ip_ptr is set -- do this last */ rcu_assign_pointer(dev->ip_ptr, in_dev); out: return in_dev ?: ERR_PTR(err); out_kfree: kfree(in_dev); in_dev = NULL; goto out; } static void in_dev_rcu_put(struct rcu_head *head) { struct in_device *idev = container_of(head, struct in_device, rcu_head); in_dev_put(idev); } static void inetdev_destroy(struct in_device *in_dev) { struct net_device *dev; struct in_ifaddr *ifa; ASSERT_RTNL(); dev = in_dev->dev; in_dev->dead = 1; ip_mc_destroy_dev(in_dev); while ((ifa = rtnl_dereference(in_dev->ifa_list)) != NULL) { inet_del_ifa(in_dev, &in_dev->ifa_list, 0); inet_free_ifa(ifa); } RCU_INIT_POINTER(dev->ip_ptr, NULL); devinet_sysctl_unregister(in_dev); neigh_parms_release(&arp_tbl, in_dev->arp_parms); arp_ifdown(dev); call_rcu(&in_dev->rcu_head, in_dev_rcu_put); } int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b) { const struct in_ifaddr *ifa; rcu_read_lock(); in_dev_for_each_ifa_rcu(ifa, in_dev) { if (inet_ifa_match(a, ifa)) { if (!b || inet_ifa_match(b, ifa)) { rcu_read_unlock(); return 1; } } } rcu_read_unlock(); return 0; } static void __inet_del_ifa(struct in_device *in_dev, struct in_ifaddr __rcu **ifap, int destroy, struct nlmsghdr *nlh, u32 portid) { struct in_ifaddr *promote = NULL; struct in_ifaddr *ifa, *ifa1; struct in_ifaddr *last_prim; struct in_ifaddr *prev_prom = NULL; int do_promote = IN_DEV_PROMOTE_SECONDARIES(in_dev); ASSERT_RTNL(); ifa1 = rtnl_dereference(*ifap); last_prim = rtnl_dereference(in_dev->ifa_list); if (in_dev->dead) goto no_promotions; /* 1. Deleting primary ifaddr forces deletion all secondaries * unless alias promotion is set **/ if (!(ifa1->ifa_flags & IFA_F_SECONDARY)) { struct in_ifaddr __rcu **ifap1 = &ifa1->ifa_next; while ((ifa = rtnl_dereference(*ifap1)) != NULL) { if (!(ifa->ifa_flags & IFA_F_SECONDARY) && ifa1->ifa_scope <= ifa->ifa_scope) last_prim = ifa; if (!(ifa->ifa_flags & IFA_F_SECONDARY) || ifa1->ifa_mask != ifa->ifa_mask || !inet_ifa_match(ifa1->ifa_address, ifa)) { ifap1 = &ifa->ifa_next; prev_prom = ifa; continue; } if (!do_promote) { inet_hash_remove(ifa); *ifap1 = ifa->ifa_next; rtmsg_ifa(RTM_DELADDR, ifa, nlh, portid); blocking_notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa); inet_free_ifa(ifa); } else { promote = ifa; break; } } } /* On promotion all secondaries from subnet are changing * the primary IP, we must remove all their routes silently * and later to add them back with new prefsrc. Do this * while all addresses are on the device list. */ for (ifa = promote; ifa; ifa = rtnl_dereference(ifa->ifa_next)) { if (ifa1->ifa_mask == ifa->ifa_mask && inet_ifa_match(ifa1->ifa_address, ifa)) fib_del_ifaddr(ifa, ifa1); } no_promotions: /* 2. Unlink it */ *ifap = ifa1->ifa_next; inet_hash_remove(ifa1); /* 3. Announce address deletion */ /* Send message first, then call notifier. At first sight, FIB update triggered by notifier will refer to already deleted ifaddr, that could confuse netlink listeners. It is not true: look, gated sees that route deleted and if it still thinks that ifaddr is valid, it will try to restore deleted routes... Grr. So that, this order is correct. */ rtmsg_ifa(RTM_DELADDR, ifa1, nlh, portid); blocking_notifier_call_chain(&inetaddr_chain, NETDEV_DOWN, ifa1); if (promote) { struct in_ifaddr *next_sec; next_sec = rtnl_dereference(promote->ifa_next); if (prev_prom) { struct in_ifaddr *last_sec; last_sec = rtnl_dereference(last_prim->ifa_next); rcu_assign_pointer(prev_prom->ifa_next, next_sec); rcu_assign_pointer(promote->ifa_next, last_sec); rcu_assign_pointer(last_prim->ifa_next, promote); } promote->ifa_flags &= ~IFA_F_SECONDARY; rtmsg_ifa(RTM_NEWADDR, promote, nlh, portid); blocking_notifier_call_chain(&inetaddr_chain, NETDEV_UP, promote); for (ifa = next_sec; ifa; ifa = rtnl_dereference(ifa->ifa_next)) { if (ifa1->ifa_mask != ifa->ifa_mask || !inet_ifa_match(ifa1->ifa_address, ifa)) continue; fib_add_ifaddr(ifa); } } if (destroy) inet_free_ifa(ifa1); } static void inet_del_ifa(struct in_device *in_dev, struct in_ifaddr __rcu **ifap, int destroy) { __inet_del_ifa(in_dev, ifap, destroy, NULL, 0); } static void check_lifetime(struct work_struct *work); static DECLARE_DELAYED_WORK(check_lifetime_work, check_lifetime); static int __inet_insert_ifa(struct in_ifaddr *ifa, struct nlmsghdr *nlh, u32 portid, struct netlink_ext_ack *extack) { struct in_ifaddr __rcu **last_primary, **ifap; struct in_device *in_dev = ifa->ifa_dev; struct in_validator_info ivi; struct in_ifaddr *ifa1; int ret; ASSERT_RTNL(); if (!ifa->ifa_local) { inet_free_ifa(ifa); return 0; } ifa->ifa_flags &= ~IFA_F_SECONDARY; last_primary = &in_dev->ifa_list; ifap = &in_dev->ifa_list; ifa1 = rtnl_dereference(*ifap); while (ifa1) { if (!(ifa1->ifa_flags & IFA_F_SECONDARY) && ifa->ifa_scope <= ifa1->ifa_scope) last_primary = &ifa1->ifa_next; if (ifa1->ifa_mask == ifa->ifa_mask && inet_ifa_match(ifa1->ifa_address, ifa)) { if (ifa1->ifa_local == ifa->ifa_local) { inet_free_ifa(ifa); return -EEXIST; } if (ifa1->ifa_scope != ifa->ifa_scope) { inet_free_ifa(ifa); return -EINVAL; } ifa->ifa_flags |= IFA_F_SECONDARY; } ifap = &ifa1->ifa_next; ifa1 = rtnl_dereference(*ifap); } /* Allow any devices that wish to register ifaddr validtors to weigh * in now, before changes are committed. The rntl lock is serializing * access here, so the state should not change between a validator call * and a final notify on commit. This isn't invoked on promotion under * the assumption that validators are checking the address itself, and * not the flags. */ ivi.ivi_addr = ifa->ifa_address; ivi.ivi_dev = ifa->ifa_dev; ivi.extack = extack; ret = blocking_notifier_call_chain(&inetaddr_validator_chain, NETDEV_UP, &ivi); ret = notifier_to_errno(ret); if (ret) { inet_free_ifa(ifa); return ret; } if (!(ifa->ifa_flags & IFA_F_SECONDARY)) { prandom_seed((__force u32) ifa->ifa_local); ifap = last_primary; } rcu_assign_pointer(ifa->ifa_next, *ifap); rcu_assign_pointer(*ifap, ifa); inet_hash_insert(dev_net(in_dev->dev), ifa); cancel_delayed_work(&check_lifetime_work); queue_delayed_work(system_power_efficient_wq, &check_lifetime_work, 0); /* Send message first, then call notifier. Notifier will trigger FIB update, so that listeners of netlink will know about new ifaddr */ rtmsg_ifa(RTM_NEWADDR, ifa, nlh, portid); blocking_notifier_call_chain(&inetaddr_chain, NETDEV_UP, ifa); return 0; } static int inet_insert_ifa(struct in_ifaddr *ifa) { return __inet_insert_ifa(ifa, NULL, 0, NULL); } static int inet_set_ifa(struct net_device *dev, struct in_ifaddr *ifa) { struct in_device *in_dev = __in_dev_get_rtnl(dev); ASSERT_RTNL(); if (!in_dev) { inet_free_ifa(ifa); return -ENOBUFS; } ipv4_devconf_setall(in_dev); neigh_parms_data_state_setall(in_dev->arp_parms); if (ifa->ifa_dev != in_dev) { WARN_ON(ifa->ifa_dev); in_dev_hold(in_dev); ifa->ifa_dev = in_dev; } if (ipv4_is_loopback(ifa->ifa_local)) ifa->ifa_scope = RT_SCOPE_HOST; return inet_insert_ifa(ifa); } /* Caller must hold RCU or RTNL : * We dont take a reference on found in_device */ struct in_device *inetdev_by_index(struct net *net, int ifindex) { struct net_device *dev; struct in_device *in_dev = NULL; rcu_read_lock(); dev = dev_get_by_index_rcu(net, ifindex); if (dev) in_dev = rcu_dereference_rtnl(dev->ip_ptr); rcu_read_unlock(); return in_dev; } EXPORT_SYMBOL(inetdev_by_index); /* Called only from RTNL semaphored context. No locks. */ struct in_ifaddr *inet_ifa_byprefix(struct in_device *in_dev, __be32 prefix, __be32 mask) { struct in_ifaddr *ifa; ASSERT_RTNL(); in_dev_for_each_ifa_rtnl(ifa, in_dev) { if (ifa->ifa_mask == mask && inet_ifa_match(prefix, ifa)) return ifa; } return NULL; } static int ip_mc_config(struct sock *sk, bool join, const struct in_ifaddr *ifa) { struct ip_mreqn mreq = { .imr_multiaddr.s_addr = ifa->ifa_address, .imr_ifindex = ifa->ifa_dev->dev->ifindex, }; int ret; ASSERT_RTNL(); lock_sock(sk); if (join) ret = ip_mc_join_group(sk, &mreq); else ret = ip_mc_leave_group(sk, &mreq); release_sock(sk); return ret; } static int inet_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct in_ifaddr __rcu **ifap; struct nlattr *tb[IFA_MAX+1]; struct in_device *in_dev; struct ifaddrmsg *ifm; struct in_ifaddr *ifa; int err = -EINVAL; ASSERT_RTNL(); err = nlmsg_parse_deprecated(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv4_policy, extack); if (err < 0) goto errout; ifm = nlmsg_data(nlh); in_dev = inetdev_by_index(net, ifm->ifa_index); if (!in_dev) { err = -ENODEV; goto errout; } for (ifap = &in_dev->ifa_list; (ifa = rtnl_dereference(*ifap)) != NULL; ifap = &ifa->ifa_next) { if (tb[IFA_LOCAL] && ifa->ifa_local != nla_get_in_addr(tb[IFA_LOCAL])) continue; if (tb[IFA_LABEL] && nla_strcmp(tb[IFA_LABEL], ifa->ifa_label)) continue; if (tb[IFA_ADDRESS] && (ifm->ifa_prefixlen != ifa->ifa_prefixlen || !inet_ifa_match(nla_get_in_addr(tb[IFA_ADDRESS]), ifa))) continue; if (ipv4_is_multicast(ifa->ifa_address)) ip_mc_config(net->ipv4.mc_autojoin_sk, false, ifa); __inet_del_ifa(in_dev, ifap, 1, nlh, NETLINK_CB(skb).portid); return 0; } err = -EADDRNOTAVAIL; errout: return err; } #define INFINITY_LIFE_TIME 0xFFFFFFFF static void check_lifetime(struct work_struct *work) { unsigned long now, next, next_sec, next_sched; struct in_ifaddr *ifa; struct hlist_node *n; int i; now = jiffies; next = round_jiffies_up(now + ADDR_CHECK_FREQUENCY); for (i = 0; i < IN4_ADDR_HSIZE; i++) { bool change_needed = false; rcu_read_lock(); hlist_for_each_entry_rcu(ifa, &inet_addr_lst[i], hash) { unsigned long age; if (ifa->ifa_flags & IFA_F_PERMANENT) continue; /* We try to batch several events at once. */ age = (now - ifa->ifa_tstamp + ADDRCONF_TIMER_FUZZ_MINUS) / HZ; if (ifa->ifa_valid_lft != INFINITY_LIFE_TIME && age >= ifa->ifa_valid_lft) { change_needed = true; } else if (ifa->ifa_preferred_lft == INFINITY_LIFE_TIME) { continue; } else if (age >= ifa->ifa_preferred_lft) { if (time_before(ifa->ifa_tstamp + ifa->ifa_valid_lft * HZ, next)) next = ifa->ifa_tstamp + ifa->ifa_valid_lft * HZ; if (!(ifa->ifa_flags & IFA_F_DEPRECATED)) change_needed = true; } else if (time_before(ifa->ifa_tstamp + ifa->ifa_preferred_lft * HZ, next)) { next = ifa->ifa_tstamp + ifa->ifa_preferred_lft * HZ; } } rcu_read_unlock(); if (!change_needed) continue; rtnl_lock(); hlist_for_each_entry_safe(ifa, n, &inet_addr_lst[i], hash) { unsigned long age; if (ifa->ifa_flags & IFA_F_PERMANENT) continue; /* We try to batch several events at once. */ age = (now - ifa->ifa_tstamp + ADDRCONF_TIMER_FUZZ_MINUS) / HZ; if (ifa->ifa_valid_lft != INFINITY_LIFE_TIME && age >= ifa->ifa_valid_lft) { struct in_ifaddr __rcu **ifap; struct in_ifaddr *tmp; ifap = &ifa->ifa_dev->ifa_list; tmp = rtnl_dereference(*ifap); while (tmp) { if (tmp == ifa) { inet_del_ifa(ifa->ifa_dev, ifap, 1); break; } ifap = &tmp->ifa_next; tmp = rtnl_dereference(*ifap); } } else if (ifa->ifa_preferred_lft != INFINITY_LIFE_TIME && age >= ifa->ifa_preferred_lft && !(ifa->ifa_flags & IFA_F_DEPRECATED)) { ifa->ifa_flags |= IFA_F_DEPRECATED; rtmsg_ifa(RTM_NEWADDR, ifa, NULL, 0); } } rtnl_unlock(); } next_sec = round_jiffies_up(next); next_sched = next; /* If rounded timeout is accurate enough, accept it. */ if (time_before(next_sec, next + ADDRCONF_TIMER_FUZZ)) next_sched = next_sec; now = jiffies; /* And minimum interval is ADDRCONF_TIMER_FUZZ_MAX. */ if (time_before(next_sched, now + ADDRCONF_TIMER_FUZZ_MAX)) next_sched = now + ADDRCONF_TIMER_FUZZ_MAX; queue_delayed_work(system_power_efficient_wq, &check_lifetime_work, next_sched - now); } static void set_ifa_lifetime(struct in_ifaddr *ifa, __u32 valid_lft, __u32 prefered_lft) { unsigned long timeout; ifa->ifa_flags &= ~(IFA_F_PERMANENT | IFA_F_DEPRECATED); timeout = addrconf_timeout_fixup(valid_lft, HZ); if (addrconf_finite_timeout(timeout)) ifa->ifa_valid_lft = timeout; else ifa->ifa_flags |= IFA_F_PERMANENT; timeout = addrconf_timeout_fixup(prefered_lft, HZ); if (addrconf_finite_timeout(timeout)) { if (timeout == 0) ifa->ifa_flags |= IFA_F_DEPRECATED; ifa->ifa_preferred_lft = timeout; } ifa->ifa_tstamp = jiffies; if (!ifa->ifa_cstamp) ifa->ifa_cstamp = ifa->ifa_tstamp; } static struct in_ifaddr *rtm_to_ifaddr(struct net *net, struct nlmsghdr *nlh, __u32 *pvalid_lft, __u32 *pprefered_lft, struct netlink_ext_ack *extack) { struct nlattr *tb[IFA_MAX+1]; struct in_ifaddr *ifa; struct ifaddrmsg *ifm; struct net_device *dev; struct in_device *in_dev; int err; err = nlmsg_parse_deprecated(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv4_policy, extack); if (err < 0) goto errout; ifm = nlmsg_data(nlh); err = -EINVAL; if (ifm->ifa_prefixlen > 32 || !tb[IFA_LOCAL]) goto errout; dev = __dev_get_by_index(net, ifm->ifa_index); err = -ENODEV; if (!dev) goto errout; in_dev = __in_dev_get_rtnl(dev); err = -ENOBUFS; if (!in_dev) goto errout; ifa = inet_alloc_ifa(); if (!ifa) /* * A potential indev allocation can be left alive, it stays * assigned to its device and is destroy with it. */ goto errout; ipv4_devconf_setall(in_dev); neigh_parms_data_state_setall(in_dev->arp_parms); in_dev_hold(in_dev); if (!tb[IFA_ADDRESS]) tb[IFA_ADDRESS] = tb[IFA_LOCAL]; INIT_HLIST_NODE(&ifa->hash); ifa->ifa_prefixlen = ifm->ifa_prefixlen; ifa->ifa_mask = inet_make_mask(ifm->ifa_prefixlen); ifa->ifa_flags = tb[IFA_FLAGS] ? nla_get_u32(tb[IFA_FLAGS]) : ifm->ifa_flags; ifa->ifa_scope = ifm->ifa_scope; ifa->ifa_dev = in_dev; ifa->ifa_local = nla_get_in_addr(tb[IFA_LOCAL]); ifa->ifa_address = nla_get_in_addr(tb[IFA_ADDRESS]); if (tb[IFA_BROADCAST]) ifa->ifa_broadcast = nla_get_in_addr(tb[IFA_BROADCAST]); if (tb[IFA_LABEL]) nla_strlcpy(ifa->ifa_label, tb[IFA_LABEL], IFNAMSIZ); else memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); if (tb[IFA_RT_PRIORITY]) ifa->ifa_rt_priority = nla_get_u32(tb[IFA_RT_PRIORITY]); if (tb[IFA_CACHEINFO]) { struct ifa_cacheinfo *ci; ci = nla_data(tb[IFA_CACHEINFO]); if (!ci->ifa_valid || ci->ifa_prefered > ci->ifa_valid) { err = -EINVAL; goto errout_free; } *pvalid_lft = ci->ifa_valid; *pprefered_lft = ci->ifa_prefered; } return ifa; errout_free: inet_free_ifa(ifa); errout: return ERR_PTR(err); } static struct in_ifaddr *find_matching_ifa(struct in_ifaddr *ifa) { struct in_device *in_dev = ifa->ifa_dev; struct in_ifaddr *ifa1; if (!ifa->ifa_local) return NULL; in_dev_for_each_ifa_rtnl(ifa1, in_dev) { if (ifa1->ifa_mask == ifa->ifa_mask && inet_ifa_match(ifa1->ifa_address, ifa) && ifa1->ifa_local == ifa->ifa_local) return ifa1; } return NULL; } static int inet_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(skb->sk); struct in_ifaddr *ifa; struct in_ifaddr *ifa_existing; __u32 valid_lft = INFINITY_LIFE_TIME; __u32 prefered_lft = INFINITY_LIFE_TIME; ASSERT_RTNL(); ifa = rtm_to_ifaddr(net, nlh, &valid_lft, &prefered_lft, extack); if (IS_ERR(ifa)) return PTR_ERR(ifa); ifa_existing = find_matching_ifa(ifa); if (!ifa_existing) { /* It would be best to check for !NLM_F_CREATE here but * userspace already relies on not having to provide this. */ set_ifa_lifetime(ifa, valid_lft, prefered_lft); if (ifa->ifa_flags & IFA_F_MCAUTOJOIN) { int ret = ip_mc_config(net->ipv4.mc_autojoin_sk, true, ifa); if (ret < 0) { inet_free_ifa(ifa); return ret; } } return __inet_insert_ifa(ifa, nlh, NETLINK_CB(skb).portid, extack); } else { u32 new_metric = ifa->ifa_rt_priority; inet_free_ifa(ifa); if (nlh->nlmsg_flags & NLM_F_EXCL || !(nlh->nlmsg_flags & NLM_F_REPLACE)) return -EEXIST; ifa = ifa_existing; if (ifa->ifa_rt_priority != new_metric) { fib_modify_prefix_metric(ifa, new_metric); ifa->ifa_rt_priority = new_metric; } set_ifa_lifetime(ifa, valid_lft, prefered_lft); cancel_delayed_work(&check_lifetime_work); queue_delayed_work(system_power_efficient_wq, &check_lifetime_work, 0); rtmsg_ifa(RTM_NEWADDR, ifa, nlh, NETLINK_CB(skb).portid); } return 0; } /* * Determine a default network mask, based on the IP address. */ static int inet_abc_len(__be32 addr) { int rc = -1; /* Something else, probably a multicast. */ if (ipv4_is_zeronet(addr) || ipv4_is_lbcast(addr)) rc = 0; else { __u32 haddr = ntohl(addr); if (IN_CLASSA(haddr)) rc = 8; else if (IN_CLASSB(haddr)) rc = 16; else if (IN_CLASSC(haddr)) rc = 24; else if (IN_CLASSE(haddr)) rc = 32; } return rc; } int devinet_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr) { struct sockaddr_in sin_orig; struct sockaddr_in *sin = (struct sockaddr_in *)&ifr->ifr_addr; struct in_ifaddr __rcu **ifap = NULL; struct in_device *in_dev; struct in_ifaddr *ifa = NULL; struct net_device *dev; char *colon; int ret = -EFAULT; int tryaddrmatch = 0; ifr->ifr_name[IFNAMSIZ - 1] = 0; /* save original address for comparison */ memcpy(&sin_orig, sin, sizeof(*sin)); colon = strchr(ifr->ifr_name, ':'); if (colon) *colon = 0; dev_load(net, ifr->ifr_name); switch (cmd) { case SIOCGIFADDR: /* Get interface address */ case SIOCGIFBRDADDR: /* Get the broadcast address */ case SIOCGIFDSTADDR: /* Get the destination address */ case SIOCGIFNETMASK: /* Get the netmask for the interface */ /* Note that these ioctls will not sleep, so that we do not impose a lock. One day we will be forced to put shlock here (I mean SMP) */ tryaddrmatch = (sin_orig.sin_family == AF_INET); memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; break; case SIOCSIFFLAGS: ret = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) goto out; break; case SIOCSIFADDR: /* Set interface address (and family) */ case SIOCSIFBRDADDR: /* Set the broadcast address */ case SIOCSIFDSTADDR: /* Set the destination address */ case SIOCSIFNETMASK: /* Set the netmask for the interface */ ret = -EPERM; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) goto out; ret = -EINVAL; if (sin->sin_family != AF_INET) goto out; break; default: ret = -EINVAL; goto out; } rtnl_lock(); ret = -ENODEV; dev = __dev_get_by_name(net, ifr->ifr_name); if (!dev) goto done; if (colon) *colon = ':'; in_dev = __in_dev_get_rtnl(dev); if (in_dev) { if (tryaddrmatch) { /* Matthias Andree */ /* compare label and address (4.4BSD style) */ /* note: we only do this for a limited set of ioctls and only if the original address family was AF_INET. This is checked above. */ for (ifap = &in_dev->ifa_list; (ifa = rtnl_dereference(*ifap)) != NULL; ifap = &ifa->ifa_next) { if (!strcmp(ifr->ifr_name, ifa->ifa_label) && sin_orig.sin_addr.s_addr == ifa->ifa_local) { break; /* found */ } } } /* we didn't get a match, maybe the application is 4.3BSD-style and passed in junk so we fall back to comparing just the label */ if (!ifa) { for (ifap = &in_dev->ifa_list; (ifa = rtnl_dereference(*ifap)) != NULL; ifap = &ifa->ifa_next) if (!strcmp(ifr->ifr_name, ifa->ifa_label)) break; } } ret = -EADDRNOTAVAIL; if (!ifa && cmd != SIOCSIFADDR && cmd != SIOCSIFFLAGS) goto done; switch (cmd) { case SIOCGIFADDR: /* Get interface address */ ret = 0; sin->sin_addr.s_addr = ifa->ifa_local; break; case SIOCGIFBRDADDR: /* Get the broadcast address */ ret = 0; sin->sin_addr.s_addr = ifa->ifa_broadcast; break; case SIOCGIFDSTADDR: /* Get the destination address */ ret = 0; sin->sin_addr.s_addr = ifa->ifa_address; break; case SIOCGIFNETMASK: /* Get the netmask for the interface */ ret = 0; sin->sin_addr.s_addr = ifa->ifa_mask; break; case SIOCSIFFLAGS: if (colon) { ret = -EADDRNOTAVAIL; if (!ifa) break; ret = 0; if (!(ifr->ifr_flags & IFF_UP)) inet_del_ifa(in_dev, ifap, 1); break; } ret = dev_change_flags(dev, ifr->ifr_flags, NULL); break; case SIOCSIFADDR: /* Set interface address (and family) */ ret = -EINVAL; if (inet_abc_len(sin->sin_addr.s_addr) < 0) break; if (!ifa) { ret = -ENOBUFS; ifa = inet_alloc_ifa(); if (!ifa) break; INIT_HLIST_NODE(&ifa->hash); if (colon) memcpy(ifa->ifa_label, ifr->ifr_name, IFNAMSIZ); else memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); } else { ret = 0; if (ifa->ifa_local == sin->sin_addr.s_addr) break; inet_del_ifa(in_dev, ifap, 0); ifa->ifa_broadcast = 0; ifa->ifa_scope = 0; } ifa->ifa_address = ifa->ifa_local = sin->sin_addr.s_addr; if (!(dev->flags & IFF_POINTOPOINT)) { ifa->ifa_prefixlen = inet_abc_len(ifa->ifa_address); ifa->ifa_mask = inet_make_mask(ifa->ifa_prefixlen); if ((dev->flags & IFF_BROADCAST) && ifa->ifa_prefixlen < 31) ifa->ifa_broadcast = ifa->ifa_address | ~ifa->ifa_mask; } else { ifa->ifa_prefixlen = 32; ifa->ifa_mask = inet_make_mask(32); } set_ifa_lifetime(ifa, INFINITY_LIFE_TIME, INFINITY_LIFE_TIME); ret = inet_set_ifa(dev, ifa); break; case SIOCSIFBRDADDR: /* Set the broadcast address */ ret = 0; if (ifa->ifa_broadcast != sin->sin_addr.s_addr) { inet_del_ifa(in_dev, ifap, 0); ifa->ifa_broadcast = sin->sin_addr.s_addr; inet_insert_ifa(ifa); } break; case SIOCSIFDSTADDR: /* Set the destination address */ ret = 0; if (ifa->ifa_address == sin->sin_addr.s_addr) break; ret = -EINVAL; if (inet_abc_len(sin->sin_addr.s_addr) < 0) break; ret = 0; inet_del_ifa(in_dev, ifap, 0); ifa->ifa_address = sin->sin_addr.s_addr; inet_insert_ifa(ifa); break; case SIOCSIFNETMASK: /* Set the netmask for the interface */ /* * The mask we set must be legal. */ ret = -EINVAL; if (bad_mask(sin->sin_addr.s_addr, 0)) break; ret = 0; if (ifa->ifa_mask != sin->sin_addr.s_addr) { __be32 old_mask = ifa->ifa_mask; inet_del_ifa(in_dev, ifap, 0); ifa->ifa_mask = sin->sin_addr.s_addr; ifa->ifa_prefixlen = inet_mask_len(ifa->ifa_mask); /* See if current broadcast address matches * with current netmask, then recalculate * the broadcast address. Otherwise it's a * funny address, so don't touch it since * the user seems to know what (s)he's doing... */ if ((dev->flags & IFF_BROADCAST) && (ifa->ifa_prefixlen < 31) && (ifa->ifa_broadcast == (ifa->ifa_local|~old_mask))) { ifa->ifa_broadcast = (ifa->ifa_local | ~sin->sin_addr.s_addr); } inet_insert_ifa(ifa); } break; } done: rtnl_unlock(); out: return ret; } static int inet_gifconf(struct net_device *dev, char __user *buf, int len, int size) { struct in_device *in_dev = __in_dev_get_rtnl(dev); const struct in_ifaddr *ifa; struct ifreq ifr; int done = 0; if (WARN_ON(size > sizeof(struct ifreq))) goto out; if (!in_dev) goto out; in_dev_for_each_ifa_rtnl(ifa, in_dev) { if (!buf) { done += size; continue; } if (len < size) break; memset(&ifr, 0, sizeof(struct ifreq)); strcpy(ifr.ifr_name, ifa->ifa_label); (*(struct sockaddr_in *)&ifr.ifr_addr).sin_family = AF_INET; (*(struct sockaddr_in *)&ifr.ifr_addr).sin_addr.s_addr = ifa->ifa_local; if (copy_to_user(buf + done, &ifr, size)) { done = -EFAULT; break; } len -= size; done += size; } out: return done; } static __be32 in_dev_select_addr(const struct in_device *in_dev, int scope) { const struct in_ifaddr *ifa; in_dev_for_each_ifa_rcu(ifa, in_dev) { if (ifa->ifa_flags & IFA_F_SECONDARY) continue; if (ifa->ifa_scope != RT_SCOPE_LINK && ifa->ifa_scope <= scope) return ifa->ifa_local; } return 0; } __be32 inet_select_addr(const struct net_device *dev, __be32 dst, int scope) { const struct in_ifaddr *ifa; __be32 addr = 0; struct in_device *in_dev; struct net *net = dev_net(dev); int master_idx; rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); if (!in_dev) goto no_in_dev; in_dev_for_each_ifa_rcu(ifa, in_dev) { if (ifa->ifa_flags & IFA_F_SECONDARY) continue; if (ifa->ifa_scope > scope) continue; if (!dst || inet_ifa_match(dst, ifa)) { addr = ifa->ifa_local; break; } if (!addr) addr = ifa->ifa_local; } if (addr) goto out_unlock; no_in_dev: master_idx = l3mdev_master_ifindex_rcu(dev); /* For VRFs, the VRF device takes the place of the loopback device, * with addresses on it being preferred. Note in such cases the * loopback device will be among the devices that fail the master_idx * equality check in the loop below. */ if (master_idx && (dev = dev_get_by_index_rcu(net, master_idx)) && (in_dev = __in_dev_get_rcu(dev))) { addr = in_dev_select_addr(in_dev, scope); if (addr) goto out_unlock; } /* Not loopback addresses on loopback should be preferred in this case. It is important that lo is the first interface in dev_base list. */ for_each_netdev_rcu(net, dev) { if (l3mdev_master_ifindex_rcu(dev) != master_idx) continue; in_dev = __in_dev_get_rcu(dev); if (!in_dev) continue; addr = in_dev_select_addr(in_dev, scope); if (addr) goto out_unlock; } out_unlock: rcu_read_unlock(); return addr; } EXPORT_SYMBOL(inet_select_addr); static __be32 confirm_addr_indev(struct in_device *in_dev, __be32 dst, __be32 local, int scope) { const struct in_ifaddr *ifa; __be32 addr = 0; int same = 0; in_dev_for_each_ifa_rcu(ifa, in_dev) { if (!addr && (local == ifa->ifa_local || !local) && ifa->ifa_scope <= scope) { addr = ifa->ifa_local; if (same) break; } if (!same) { same = (!local || inet_ifa_match(local, ifa)) && (!dst || inet_ifa_match(dst, ifa)); if (same && addr) { if (local || !dst) break; /* Is the selected addr into dst subnet? */ if (inet_ifa_match(addr, ifa)) break; /* No, then can we use new local src? */ if (ifa->ifa_scope <= scope) { addr = ifa->ifa_local; break; } /* search for large dst subnet for addr */ same = 0; } } } return same ? addr : 0; } /* * Confirm that local IP address exists using wildcards: * - net: netns to check, cannot be NULL * - in_dev: only on this interface, NULL=any interface * - dst: only in the same subnet as dst, 0=any dst * - local: address, 0=autoselect the local address * - scope: maximum allowed scope value for the local address */ __be32 inet_confirm_addr(struct net *net, struct in_device *in_dev, __be32 dst, __be32 local, int scope) { __be32 addr = 0; struct net_device *dev; if (in_dev) return confirm_addr_indev(in_dev, dst, local, scope); rcu_read_lock(); for_each_netdev_rcu(net, dev) { in_dev = __in_dev_get_rcu(dev); if (in_dev) { addr = confirm_addr_indev(in_dev, dst, local, scope); if (addr) break; } } rcu_read_unlock(); return addr; } EXPORT_SYMBOL(inet_confirm_addr); /* * Device notifier */ int register_inetaddr_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&inetaddr_chain, nb); } EXPORT_SYMBOL(register_inetaddr_notifier); int unregister_inetaddr_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&inetaddr_chain, nb); } EXPORT_SYMBOL(unregister_inetaddr_notifier); int register_inetaddr_validator_notifier(struct notifier_block *nb) { return blocking_notifier_chain_register(&inetaddr_validator_chain, nb); } EXPORT_SYMBOL(register_inetaddr_validator_notifier); int unregister_inetaddr_validator_notifier(struct notifier_block *nb) { return blocking_notifier_chain_unregister(&inetaddr_validator_chain, nb); } EXPORT_SYMBOL(unregister_inetaddr_validator_notifier); /* Rename ifa_labels for a device name change. Make some effort to preserve * existing alias numbering and to create unique labels if possible. */ static void inetdev_changename(struct net_device *dev, struct in_device *in_dev) { struct in_ifaddr *ifa; int named = 0; in_dev_for_each_ifa_rtnl(ifa, in_dev) { char old[IFNAMSIZ], *dot; memcpy(old, ifa->ifa_label, IFNAMSIZ); memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); if (named++ == 0) goto skip; dot = strchr(old, ':'); if (!dot) { sprintf(old, ":%d", named); dot = old; } if (strlen(dot) + strlen(dev->name) < IFNAMSIZ) strcat(ifa->ifa_label, dot); else strcpy(ifa->ifa_label + (IFNAMSIZ - strlen(dot) - 1), dot); skip: rtmsg_ifa(RTM_NEWADDR, ifa, NULL, 0); } } static bool inetdev_valid_mtu(unsigned int mtu) { return mtu >= IPV4_MIN_MTU; } static void inetdev_send_gratuitous_arp(struct net_device *dev, struct in_device *in_dev) { const struct in_ifaddr *ifa; in_dev_for_each_ifa_rtnl(ifa, in_dev) { arp_send(ARPOP_REQUEST, ETH_P_ARP, ifa->ifa_local, dev, ifa->ifa_local, NULL, dev->dev_addr, NULL); } } /* Called only under RTNL semaphore */ static int inetdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct in_device *in_dev = __in_dev_get_rtnl(dev); ASSERT_RTNL(); if (!in_dev) { if (event == NETDEV_REGISTER) { in_dev = inetdev_init(dev); if (IS_ERR(in_dev)) return notifier_from_errno(PTR_ERR(in_dev)); if (dev->flags & IFF_LOOPBACK) { IN_DEV_CONF_SET(in_dev, NOXFRM, 1); IN_DEV_CONF_SET(in_dev, NOPOLICY, 1); } } else if (event == NETDEV_CHANGEMTU) { /* Re-enabling IP */ if (inetdev_valid_mtu(dev->mtu)) in_dev = inetdev_init(dev); } goto out; } switch (event) { case NETDEV_REGISTER: pr_debug("%s: bug\n", __func__); RCU_INIT_POINTER(dev->ip_ptr, NULL); break; case NETDEV_UP: if (!inetdev_valid_mtu(dev->mtu)) break; if (dev->flags & IFF_LOOPBACK) { struct in_ifaddr *ifa = inet_alloc_ifa(); if (ifa) { INIT_HLIST_NODE(&ifa->hash); ifa->ifa_local = ifa->ifa_address = htonl(INADDR_LOOPBACK); ifa->ifa_prefixlen = 8; ifa->ifa_mask = inet_make_mask(8); in_dev_hold(in_dev); ifa->ifa_dev = in_dev; ifa->ifa_scope = RT_SCOPE_HOST; memcpy(ifa->ifa_label, dev->name, IFNAMSIZ); set_ifa_lifetime(ifa, INFINITY_LIFE_TIME, INFINITY_LIFE_TIME); ipv4_devconf_setall(in_dev); neigh_parms_data_state_setall(in_dev->arp_parms); inet_insert_ifa(ifa); } } ip_mc_up(in_dev); /* fall through */ case NETDEV_CHANGEADDR: if (!IN_DEV_ARP_NOTIFY(in_dev)) break; /* fall through */ case NETDEV_NOTIFY_PEERS: /* Send gratuitous ARP to notify of link change */ inetdev_send_gratuitous_arp(dev, in_dev); break; case NETDEV_DOWN: ip_mc_down(in_dev); break; case NETDEV_PRE_TYPE_CHANGE: ip_mc_unmap(in_dev); break; case NETDEV_POST_TYPE_CHANGE: ip_mc_remap(in_dev); break; case NETDEV_CHANGEMTU: if (inetdev_valid_mtu(dev->mtu)) break; /* disable IP when MTU is not enough */ /* fall through */ case NETDEV_UNREGISTER: inetdev_destroy(in_dev); break; case NETDEV_CHANGENAME: /* Do not notify about label change, this event is * not interesting to applications using netlink. */ inetdev_changename(dev, in_dev); devinet_sysctl_unregister(in_dev); devinet_sysctl_register(in_dev); break; } out: return NOTIFY_DONE; } static struct notifier_block ip_netdev_notifier = { .notifier_call = inetdev_event, }; static size_t inet_nlmsg_size(void) { return NLMSG_ALIGN(sizeof(struct ifaddrmsg)) + nla_total_size(4) /* IFA_ADDRESS */ + nla_total_size(4) /* IFA_LOCAL */ + nla_total_size(4) /* IFA_BROADCAST */ + nla_total_size(IFNAMSIZ) /* IFA_LABEL */ + nla_total_size(4) /* IFA_FLAGS */ + nla_total_size(4) /* IFA_RT_PRIORITY */ + nla_total_size(sizeof(struct ifa_cacheinfo)); /* IFA_CACHEINFO */ } static inline u32 cstamp_delta(unsigned long cstamp) { return (cstamp - INITIAL_JIFFIES) * 100UL / HZ; } static int put_cacheinfo(struct sk_buff *skb, unsigned long cstamp, unsigned long tstamp, u32 preferred, u32 valid) { struct ifa_cacheinfo ci; ci.cstamp = cstamp_delta(cstamp); ci.tstamp = cstamp_delta(tstamp); ci.ifa_prefered = preferred; ci.ifa_valid = valid; return nla_put(skb, IFA_CACHEINFO, sizeof(ci), &ci); } static int inet_fill_ifaddr(struct sk_buff *skb, struct in_ifaddr *ifa, struct inet_fill_args *args) { struct ifaddrmsg *ifm; struct nlmsghdr *nlh; u32 preferred, valid; nlh = nlmsg_put(skb, args->portid, args->seq, args->event, sizeof(*ifm), args->flags); if (!nlh) return -EMSGSIZE; ifm = nlmsg_data(nlh); ifm->ifa_family = AF_INET; ifm->ifa_prefixlen = ifa->ifa_prefixlen; ifm->ifa_flags = ifa->ifa_flags; ifm->ifa_scope = ifa->ifa_scope; ifm->ifa_index = ifa->ifa_dev->dev->ifindex; if (args->netnsid >= 0 && nla_put_s32(skb, IFA_TARGET_NETNSID, args->netnsid)) goto nla_put_failure; if (!(ifm->ifa_flags & IFA_F_PERMANENT)) { preferred = ifa->ifa_preferred_lft; valid = ifa->ifa_valid_lft; if (preferred != INFINITY_LIFE_TIME) { long tval = (jiffies - ifa->ifa_tstamp) / HZ; if (preferred > tval) preferred -= tval; else preferred = 0; if (valid != INFINITY_LIFE_TIME) { if (valid > tval) valid -= tval; else valid = 0; } } } else { preferred = INFINITY_LIFE_TIME; valid = INFINITY_LIFE_TIME; } if ((ifa->ifa_address && nla_put_in_addr(skb, IFA_ADDRESS, ifa->ifa_address)) || (ifa->ifa_local && nla_put_in_addr(skb, IFA_LOCAL, ifa->ifa_local)) || (ifa->ifa_broadcast && nla_put_in_addr(skb, IFA_BROADCAST, ifa->ifa_broadcast)) || (ifa->ifa_label[0] && nla_put_string(skb, IFA_LABEL, ifa->ifa_label)) || nla_put_u32(skb, IFA_FLAGS, ifa->ifa_flags) || (ifa->ifa_rt_priority && nla_put_u32(skb, IFA_RT_PRIORITY, ifa->ifa_rt_priority)) || put_cacheinfo(skb, ifa->ifa_cstamp, ifa->ifa_tstamp, preferred, valid)) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int inet_valid_dump_ifaddr_req(const struct nlmsghdr *nlh, struct inet_fill_args *fillargs, struct net **tgt_net, struct sock *sk, struct netlink_callback *cb) { struct netlink_ext_ack *extack = cb->extack; struct nlattr *tb[IFA_MAX+1]; struct ifaddrmsg *ifm; int err, i; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ifm))) { NL_SET_ERR_MSG(extack, "ipv4: Invalid header for address dump request"); return -EINVAL; } ifm = nlmsg_data(nlh); if (ifm->ifa_prefixlen || ifm->ifa_flags || ifm->ifa_scope) { NL_SET_ERR_MSG(extack, "ipv4: Invalid values in header for address dump request"); return -EINVAL; } fillargs->ifindex = ifm->ifa_index; if (fillargs->ifindex) { cb->answer_flags |= NLM_F_DUMP_FILTERED; fillargs->flags |= NLM_F_DUMP_FILTERED; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv4_policy, extack); if (err < 0) return err; for (i = 0; i <= IFA_MAX; ++i) { if (!tb[i]) continue; if (i == IFA_TARGET_NETNSID) { struct net *net; fillargs->netnsid = nla_get_s32(tb[i]); net = rtnl_get_net_ns_capable(sk, fillargs->netnsid); if (IS_ERR(net)) { fillargs->netnsid = -1; NL_SET_ERR_MSG(extack, "ipv4: Invalid target network namespace id"); return PTR_ERR(net); } *tgt_net = net; } else { NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in dump request"); return -EINVAL; } } return 0; } static int in_dev_dump_addr(struct in_device *in_dev, struct sk_buff *skb, struct netlink_callback *cb, int s_ip_idx, struct inet_fill_args *fillargs) { struct in_ifaddr *ifa; int ip_idx = 0; int err; in_dev_for_each_ifa_rtnl(ifa, in_dev) { if (ip_idx < s_ip_idx) { ip_idx++; continue; } err = inet_fill_ifaddr(skb, ifa, fillargs); if (err < 0) goto done; nl_dump_check_consistent(cb, nlmsg_hdr(skb)); ip_idx++; } err = 0; done: cb->args[2] = ip_idx; return err; } static int inet_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb) { const struct nlmsghdr *nlh = cb->nlh; struct inet_fill_args fillargs = { .portid = NETLINK_CB(cb->skb).portid, .seq = nlh->nlmsg_seq, .event = RTM_NEWADDR, .flags = NLM_F_MULTI, .netnsid = -1, }; struct net *net = sock_net(skb->sk); struct net *tgt_net = net; int h, s_h; int idx, s_idx; int s_ip_idx; struct net_device *dev; struct in_device *in_dev; struct hlist_head *head; int err = 0; s_h = cb->args[0]; s_idx = idx = cb->args[1]; s_ip_idx = cb->args[2]; if (cb->strict_check) { err = inet_valid_dump_ifaddr_req(nlh, &fillargs, &tgt_net, skb->sk, cb); if (err < 0) goto put_tgt_net; err = 0; if (fillargs.ifindex) { dev = __dev_get_by_index(tgt_net, fillargs.ifindex); if (!dev) { err = -ENODEV; goto put_tgt_net; } in_dev = __in_dev_get_rtnl(dev); if (in_dev) { err = in_dev_dump_addr(in_dev, skb, cb, s_ip_idx, &fillargs); } goto put_tgt_net; } } for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) { idx = 0; head = &tgt_net->dev_index_head[h]; rcu_read_lock(); cb->seq = atomic_read(&tgt_net->ipv4.dev_addr_genid) ^ tgt_net->dev_base_seq; hlist_for_each_entry_rcu(dev, head, index_hlist) { if (idx < s_idx) goto cont; if (h > s_h || idx > s_idx) s_ip_idx = 0; in_dev = __in_dev_get_rcu(dev); if (!in_dev) goto cont; err = in_dev_dump_addr(in_dev, skb, cb, s_ip_idx, &fillargs); if (err < 0) { rcu_read_unlock(); goto done; } cont: idx++; } rcu_read_unlock(); } done: cb->args[0] = h; cb->args[1] = idx; put_tgt_net: if (fillargs.netnsid >= 0) put_net(tgt_net); return skb->len ? : err; } static void rtmsg_ifa(int event, struct in_ifaddr *ifa, struct nlmsghdr *nlh, u32 portid) { struct inet_fill_args fillargs = { .portid = portid, .seq = nlh ? nlh->nlmsg_seq : 0, .event = event, .flags = 0, .netnsid = -1, }; struct sk_buff *skb; int err = -ENOBUFS; struct net *net; net = dev_net(ifa->ifa_dev->dev); skb = nlmsg_new(inet_nlmsg_size(), GFP_KERNEL); if (!skb) goto errout; err = inet_fill_ifaddr(skb, ifa, &fillargs); if (err < 0) { /* -EMSGSIZE implies BUG in inet_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, portid, RTNLGRP_IPV4_IFADDR, nlh, GFP_KERNEL); return; errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV4_IFADDR, err); } static size_t inet_get_link_af_size(const struct net_device *dev, u32 ext_filter_mask) { struct in_device *in_dev = rcu_dereference_rtnl(dev->ip_ptr); if (!in_dev) return 0; return nla_total_size(IPV4_DEVCONF_MAX * 4); /* IFLA_INET_CONF */ } static int inet_fill_link_af(struct sk_buff *skb, const struct net_device *dev, u32 ext_filter_mask) { struct in_device *in_dev = rcu_dereference_rtnl(dev->ip_ptr); struct nlattr *nla; int i; if (!in_dev) return -ENODATA; nla = nla_reserve(skb, IFLA_INET_CONF, IPV4_DEVCONF_MAX * 4); if (!nla) return -EMSGSIZE; for (i = 0; i < IPV4_DEVCONF_MAX; i++) ((u32 *) nla_data(nla))[i] = in_dev->cnf.data[i]; return 0; } static const struct nla_policy inet_af_policy[IFLA_INET_MAX+1] = { [IFLA_INET_CONF] = { .type = NLA_NESTED }, }; static int inet_validate_link_af(const struct net_device *dev, const struct nlattr *nla) { struct nlattr *a, *tb[IFLA_INET_MAX+1]; int err, rem; if (dev && !__in_dev_get_rcu(dev)) return -EAFNOSUPPORT; err = nla_parse_nested_deprecated(tb, IFLA_INET_MAX, nla, inet_af_policy, NULL); if (err < 0) return err; if (tb[IFLA_INET_CONF]) { nla_for_each_nested(a, tb[IFLA_INET_CONF], rem) { int cfgid = nla_type(a); if (nla_len(a) < 4) return -EINVAL; if (cfgid <= 0 || cfgid > IPV4_DEVCONF_MAX) return -EINVAL; } } return 0; } static int inet_set_link_af(struct net_device *dev, const struct nlattr *nla) { struct in_device *in_dev = __in_dev_get_rcu(dev); struct nlattr *a, *tb[IFLA_INET_MAX+1]; int rem; if (!in_dev) return -EAFNOSUPPORT; if (nla_parse_nested_deprecated(tb, IFLA_INET_MAX, nla, NULL, NULL) < 0) BUG(); if (tb[IFLA_INET_CONF]) { nla_for_each_nested(a, tb[IFLA_INET_CONF], rem) ipv4_devconf_set(in_dev, nla_type(a), nla_get_u32(a)); } return 0; } static int inet_netconf_msgsize_devconf(int type) { int size = NLMSG_ALIGN(sizeof(struct netconfmsg)) + nla_total_size(4); /* NETCONFA_IFINDEX */ bool all = false; if (type == NETCONFA_ALL) all = true; if (all || type == NETCONFA_FORWARDING) size += nla_total_size(4); if (all || type == NETCONFA_RP_FILTER) size += nla_total_size(4); if (all || type == NETCONFA_MC_FORWARDING) size += nla_total_size(4); if (all || type == NETCONFA_BC_FORWARDING) size += nla_total_size(4); if (all || type == NETCONFA_PROXY_NEIGH) size += nla_total_size(4); if (all || type == NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN) size += nla_total_size(4); return size; } static int inet_netconf_fill_devconf(struct sk_buff *skb, int ifindex, struct ipv4_devconf *devconf, u32 portid, u32 seq, int event, unsigned int flags, int type) { struct nlmsghdr *nlh; struct netconfmsg *ncm; bool all = false; nlh = nlmsg_put(skb, portid, seq, event, sizeof(struct netconfmsg), flags); if (!nlh) return -EMSGSIZE; if (type == NETCONFA_ALL) all = true; ncm = nlmsg_data(nlh); ncm->ncm_family = AF_INET; if (nla_put_s32(skb, NETCONFA_IFINDEX, ifindex) < 0) goto nla_put_failure; if (!devconf) goto out; if ((all || type == NETCONFA_FORWARDING) && nla_put_s32(skb, NETCONFA_FORWARDING, IPV4_DEVCONF(*devconf, FORWARDING)) < 0) goto nla_put_failure; if ((all || type == NETCONFA_RP_FILTER) && nla_put_s32(skb, NETCONFA_RP_FILTER, IPV4_DEVCONF(*devconf, RP_FILTER)) < 0) goto nla_put_failure; if ((all || type == NETCONFA_MC_FORWARDING) && nla_put_s32(skb, NETCONFA_MC_FORWARDING, IPV4_DEVCONF(*devconf, MC_FORWARDING)) < 0) goto nla_put_failure; if ((all || type == NETCONFA_BC_FORWARDING) && nla_put_s32(skb, NETCONFA_BC_FORWARDING, IPV4_DEVCONF(*devconf, BC_FORWARDING)) < 0) goto nla_put_failure; if ((all || type == NETCONFA_PROXY_NEIGH) && nla_put_s32(skb, NETCONFA_PROXY_NEIGH, IPV4_DEVCONF(*devconf, PROXY_ARP)) < 0) goto nla_put_failure; if ((all || type == NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN) && nla_put_s32(skb, NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN, IPV4_DEVCONF(*devconf, IGNORE_ROUTES_WITH_LINKDOWN)) < 0) goto nla_put_failure; out: nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } void inet_netconf_notify_devconf(struct net *net, int event, int type, int ifindex, struct ipv4_devconf *devconf) { struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(inet_netconf_msgsize_devconf(type), GFP_KERNEL); if (!skb) goto errout; err = inet_netconf_fill_devconf(skb, ifindex, devconf, 0, 0, event, 0, type); if (err < 0) { /* -EMSGSIZE implies BUG in inet_netconf_msgsize_devconf() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, 0, RTNLGRP_IPV4_NETCONF, NULL, GFP_KERNEL); return; errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV4_NETCONF, err); } static const struct nla_policy devconf_ipv4_policy[NETCONFA_MAX+1] = { [NETCONFA_IFINDEX] = { .len = sizeof(int) }, [NETCONFA_FORWARDING] = { .len = sizeof(int) }, [NETCONFA_RP_FILTER] = { .len = sizeof(int) }, [NETCONFA_PROXY_NEIGH] = { .len = sizeof(int) }, [NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN] = { .len = sizeof(int) }, }; static int inet_netconf_valid_get_req(struct sk_buff *skb, const struct nlmsghdr *nlh, struct nlattr **tb, struct netlink_ext_ack *extack) { int i, err; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(struct netconfmsg))) { NL_SET_ERR_MSG(extack, "ipv4: Invalid header for netconf get request"); return -EINVAL; } if (!netlink_strict_get_check(skb)) return nlmsg_parse_deprecated(nlh, sizeof(struct netconfmsg), tb, NETCONFA_MAX, devconf_ipv4_policy, extack); err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct netconfmsg), tb, NETCONFA_MAX, devconf_ipv4_policy, extack); if (err) return err; for (i = 0; i <= NETCONFA_MAX; i++) { if (!tb[i]) continue; switch (i) { case NETCONFA_IFINDEX: break; default: NL_SET_ERR_MSG(extack, "ipv4: Unsupported attribute in netconf get request"); return -EINVAL; } } return 0; } static int inet_netconf_get_devconf(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct nlattr *tb[NETCONFA_MAX+1]; struct sk_buff *skb; struct ipv4_devconf *devconf; struct in_device *in_dev; struct net_device *dev; int ifindex; int err; err = inet_netconf_valid_get_req(in_skb, nlh, tb, extack); if (err) goto errout; err = -EINVAL; if (!tb[NETCONFA_IFINDEX]) goto errout; ifindex = nla_get_s32(tb[NETCONFA_IFINDEX]); switch (ifindex) { case NETCONFA_IFINDEX_ALL: devconf = net->ipv4.devconf_all; break; case NETCONFA_IFINDEX_DEFAULT: devconf = net->ipv4.devconf_dflt; break; default: dev = __dev_get_by_index(net, ifindex); if (!dev) goto errout; in_dev = __in_dev_get_rtnl(dev); if (!in_dev) goto errout; devconf = &in_dev->cnf; break; } err = -ENOBUFS; skb = nlmsg_new(inet_netconf_msgsize_devconf(NETCONFA_ALL), GFP_KERNEL); if (!skb) goto errout; err = inet_netconf_fill_devconf(skb, ifindex, devconf, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, RTM_NEWNETCONF, 0, NETCONFA_ALL); if (err < 0) { /* -EMSGSIZE implies BUG in inet_netconf_msgsize_devconf() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); errout: return err; } static int inet_netconf_dump_devconf(struct sk_buff *skb, struct netlink_callback *cb) { const struct nlmsghdr *nlh = cb->nlh; struct net *net = sock_net(skb->sk); int h, s_h; int idx, s_idx; struct net_device *dev; struct in_device *in_dev; struct hlist_head *head; if (cb->strict_check) { struct netlink_ext_ack *extack = cb->extack; struct netconfmsg *ncm; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ncm))) { NL_SET_ERR_MSG(extack, "ipv4: Invalid header for netconf dump request"); return -EINVAL; } if (nlmsg_attrlen(nlh, sizeof(*ncm))) { NL_SET_ERR_MSG(extack, "ipv4: Invalid data after header in netconf dump request"); return -EINVAL; } } s_h = cb->args[0]; s_idx = idx = cb->args[1]; for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) { idx = 0; head = &net->dev_index_head[h]; rcu_read_lock(); cb->seq = atomic_read(&net->ipv4.dev_addr_genid) ^ net->dev_base_seq; hlist_for_each_entry_rcu(dev, head, index_hlist) { if (idx < s_idx) goto cont; in_dev = __in_dev_get_rcu(dev); if (!in_dev) goto cont; if (inet_netconf_fill_devconf(skb, dev->ifindex, &in_dev->cnf, NETLINK_CB(cb->skb).portid, nlh->nlmsg_seq, RTM_NEWNETCONF, NLM_F_MULTI, NETCONFA_ALL) < 0) { rcu_read_unlock(); goto done; } nl_dump_check_consistent(cb, nlmsg_hdr(skb)); cont: idx++; } rcu_read_unlock(); } if (h == NETDEV_HASHENTRIES) { if (inet_netconf_fill_devconf(skb, NETCONFA_IFINDEX_ALL, net->ipv4.devconf_all, NETLINK_CB(cb->skb).portid, nlh->nlmsg_seq, RTM_NEWNETCONF, NLM_F_MULTI, NETCONFA_ALL) < 0) goto done; else h++; } if (h == NETDEV_HASHENTRIES + 1) { if (inet_netconf_fill_devconf(skb, NETCONFA_IFINDEX_DEFAULT, net->ipv4.devconf_dflt, NETLINK_CB(cb->skb).portid, nlh->nlmsg_seq, RTM_NEWNETCONF, NLM_F_MULTI, NETCONFA_ALL) < 0) goto done; else h++; } done: cb->args[0] = h; cb->args[1] = idx; return skb->len; } #ifdef CONFIG_SYSCTL static void devinet_copy_dflt_conf(struct net *net, int i) { struct net_device *dev; rcu_read_lock(); for_each_netdev_rcu(net, dev) { struct in_device *in_dev; in_dev = __in_dev_get_rcu(dev); if (in_dev && !test_bit(i, in_dev->cnf.state)) in_dev->cnf.data[i] = net->ipv4.devconf_dflt->data[i]; } rcu_read_unlock(); } /* called with RTNL locked */ static void inet_forward_change(struct net *net) { struct net_device *dev; int on = IPV4_DEVCONF_ALL(net, FORWARDING); IPV4_DEVCONF_ALL(net, ACCEPT_REDIRECTS) = !on; IPV4_DEVCONF_DFLT(net, FORWARDING) = on; inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_FORWARDING, NETCONFA_IFINDEX_ALL, net->ipv4.devconf_all); inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_FORWARDING, NETCONFA_IFINDEX_DEFAULT, net->ipv4.devconf_dflt); for_each_netdev(net, dev) { struct in_device *in_dev; if (on) dev_disable_lro(dev); in_dev = __in_dev_get_rtnl(dev); if (in_dev) { IN_DEV_CONF_SET(in_dev, FORWARDING, on); inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_FORWARDING, dev->ifindex, &in_dev->cnf); } } } static int devinet_conf_ifindex(struct net *net, struct ipv4_devconf *cnf) { if (cnf == net->ipv4.devconf_dflt) return NETCONFA_IFINDEX_DEFAULT; else if (cnf == net->ipv4.devconf_all) return NETCONFA_IFINDEX_ALL; else { struct in_device *idev = container_of(cnf, struct in_device, cnf); return idev->dev->ifindex; } } static int devinet_conf_proc(struct ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int old_value = *(int *)ctl->data; int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); int new_value = *(int *)ctl->data; if (write) { struct ipv4_devconf *cnf = ctl->extra1; struct net *net = ctl->extra2; int i = (int *)ctl->data - cnf->data; int ifindex; set_bit(i, cnf->state); if (cnf == net->ipv4.devconf_dflt) devinet_copy_dflt_conf(net, i); if (i == IPV4_DEVCONF_ACCEPT_LOCAL - 1 || i == IPV4_DEVCONF_ROUTE_LOCALNET - 1) if ((new_value == 0) && (old_value != 0)) rt_cache_flush(net); if (i == IPV4_DEVCONF_BC_FORWARDING - 1 && new_value != old_value) rt_cache_flush(net); if (i == IPV4_DEVCONF_RP_FILTER - 1 && new_value != old_value) { ifindex = devinet_conf_ifindex(net, cnf); inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_RP_FILTER, ifindex, cnf); } if (i == IPV4_DEVCONF_PROXY_ARP - 1 && new_value != old_value) { ifindex = devinet_conf_ifindex(net, cnf); inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_PROXY_NEIGH, ifindex, cnf); } if (i == IPV4_DEVCONF_IGNORE_ROUTES_WITH_LINKDOWN - 1 && new_value != old_value) { ifindex = devinet_conf_ifindex(net, cnf); inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN, ifindex, cnf); } } return ret; } static int devinet_sysctl_forward(struct ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int *valp = ctl->data; int val = *valp; loff_t pos = *ppos; int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); if (write && *valp != val) { struct net *net = ctl->extra2; if (valp != &IPV4_DEVCONF_DFLT(net, FORWARDING)) { if (!rtnl_trylock()) { /* Restore the original values before restarting */ *valp = val; *ppos = pos; return restart_syscall(); } if (valp == &IPV4_DEVCONF_ALL(net, FORWARDING)) { inet_forward_change(net); } else { struct ipv4_devconf *cnf = ctl->extra1; struct in_device *idev = container_of(cnf, struct in_device, cnf); if (*valp) dev_disable_lro(idev->dev); inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_FORWARDING, idev->dev->ifindex, cnf); } rtnl_unlock(); rt_cache_flush(net); } else inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_FORWARDING, NETCONFA_IFINDEX_DEFAULT, net->ipv4.devconf_dflt); } return ret; } static int ipv4_doint_and_flush(struct ctl_table *ctl, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int *valp = ctl->data; int val = *valp; int ret = proc_dointvec(ctl, write, buffer, lenp, ppos); struct net *net = ctl->extra2; if (write && *valp != val) rt_cache_flush(net); return ret; } #define DEVINET_SYSCTL_ENTRY(attr, name, mval, proc) \ { \ .procname = name, \ .data = ipv4_devconf.data + \ IPV4_DEVCONF_ ## attr - 1, \ .maxlen = sizeof(int), \ .mode = mval, \ .proc_handler = proc, \ .extra1 = &ipv4_devconf, \ } #define DEVINET_SYSCTL_RW_ENTRY(attr, name) \ DEVINET_SYSCTL_ENTRY(attr, name, 0644, devinet_conf_proc) #define DEVINET_SYSCTL_RO_ENTRY(attr, name) \ DEVINET_SYSCTL_ENTRY(attr, name, 0444, devinet_conf_proc) #define DEVINET_SYSCTL_COMPLEX_ENTRY(attr, name, proc) \ DEVINET_SYSCTL_ENTRY(attr, name, 0644, proc) #define DEVINET_SYSCTL_FLUSHING_ENTRY(attr, name) \ DEVINET_SYSCTL_COMPLEX_ENTRY(attr, name, ipv4_doint_and_flush) static struct devinet_sysctl_table { struct ctl_table_header *sysctl_header; struct ctl_table devinet_vars[__IPV4_DEVCONF_MAX]; } devinet_sysctl = { .devinet_vars = { DEVINET_SYSCTL_COMPLEX_ENTRY(FORWARDING, "forwarding", devinet_sysctl_forward), DEVINET_SYSCTL_RO_ENTRY(MC_FORWARDING, "mc_forwarding"), DEVINET_SYSCTL_RW_ENTRY(BC_FORWARDING, "bc_forwarding"), DEVINET_SYSCTL_RW_ENTRY(ACCEPT_REDIRECTS, "accept_redirects"), DEVINET_SYSCTL_RW_ENTRY(SECURE_REDIRECTS, "secure_redirects"), DEVINET_SYSCTL_RW_ENTRY(SHARED_MEDIA, "shared_media"), DEVINET_SYSCTL_RW_ENTRY(RP_FILTER, "rp_filter"), DEVINET_SYSCTL_RW_ENTRY(SEND_REDIRECTS, "send_redirects"), DEVINET_SYSCTL_RW_ENTRY(ACCEPT_SOURCE_ROUTE, "accept_source_route"), DEVINET_SYSCTL_RW_ENTRY(ACCEPT_LOCAL, "accept_local"), DEVINET_SYSCTL_RW_ENTRY(SRC_VMARK, "src_valid_mark"), DEVINET_SYSCTL_RW_ENTRY(PROXY_ARP, "proxy_arp"), DEVINET_SYSCTL_RW_ENTRY(MEDIUM_ID, "medium_id"), DEVINET_SYSCTL_RW_ENTRY(BOOTP_RELAY, "bootp_relay"), DEVINET_SYSCTL_RW_ENTRY(LOG_MARTIANS, "log_martians"), DEVINET_SYSCTL_RW_ENTRY(TAG, "tag"), DEVINET_SYSCTL_RW_ENTRY(ARPFILTER, "arp_filter"), DEVINET_SYSCTL_RW_ENTRY(ARP_ANNOUNCE, "arp_announce"), DEVINET_SYSCTL_RW_ENTRY(ARP_IGNORE, "arp_ignore"), DEVINET_SYSCTL_RW_ENTRY(ARP_ACCEPT, "arp_accept"), DEVINET_SYSCTL_RW_ENTRY(ARP_NOTIFY, "arp_notify"), DEVINET_SYSCTL_RW_ENTRY(PROXY_ARP_PVLAN, "proxy_arp_pvlan"), DEVINET_SYSCTL_RW_ENTRY(FORCE_IGMP_VERSION, "force_igmp_version"), DEVINET_SYSCTL_RW_ENTRY(IGMPV2_UNSOLICITED_REPORT_INTERVAL, "igmpv2_unsolicited_report_interval"), DEVINET_SYSCTL_RW_ENTRY(IGMPV3_UNSOLICITED_REPORT_INTERVAL, "igmpv3_unsolicited_report_interval"), DEVINET_SYSCTL_RW_ENTRY(IGNORE_ROUTES_WITH_LINKDOWN, "ignore_routes_with_linkdown"), DEVINET_SYSCTL_RW_ENTRY(DROP_GRATUITOUS_ARP, "drop_gratuitous_arp"), DEVINET_SYSCTL_FLUSHING_ENTRY(NOXFRM, "disable_xfrm"), DEVINET_SYSCTL_FLUSHING_ENTRY(NOPOLICY, "disable_policy"), DEVINET_SYSCTL_FLUSHING_ENTRY(PROMOTE_SECONDARIES, "promote_secondaries"), DEVINET_SYSCTL_FLUSHING_ENTRY(ROUTE_LOCALNET, "route_localnet"), DEVINET_SYSCTL_FLUSHING_ENTRY(DROP_UNICAST_IN_L2_MULTICAST, "drop_unicast_in_l2_multicast"), }, }; static int __devinet_sysctl_register(struct net *net, char *dev_name, int ifindex, struct ipv4_devconf *p) { int i; struct devinet_sysctl_table *t; char path[sizeof("net/ipv4/conf/") + IFNAMSIZ]; t = kmemdup(&devinet_sysctl, sizeof(*t), GFP_KERNEL); if (!t) goto out; for (i = 0; i < ARRAY_SIZE(t->devinet_vars) - 1; i++) { t->devinet_vars[i].data += (char *)p - (char *)&ipv4_devconf; t->devinet_vars[i].extra1 = p; t->devinet_vars[i].extra2 = net; } snprintf(path, sizeof(path), "net/ipv4/conf/%s", dev_name); t->sysctl_header = register_net_sysctl(net, path, t->devinet_vars); if (!t->sysctl_header) goto free; p->sysctl = t; inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_ALL, ifindex, p); return 0; free: kfree(t); out: return -ENOBUFS; } static void __devinet_sysctl_unregister(struct net *net, struct ipv4_devconf *cnf, int ifindex) { struct devinet_sysctl_table *t = cnf->sysctl; if (t) { cnf->sysctl = NULL; unregister_net_sysctl_table(t->sysctl_header); kfree(t); } inet_netconf_notify_devconf(net, RTM_DELNETCONF, 0, ifindex, NULL); } static int devinet_sysctl_register(struct in_device *idev) { int err; if (!sysctl_dev_name_is_allowed(idev->dev->name)) return -EINVAL; err = neigh_sysctl_register(idev->dev, idev->arp_parms, NULL); if (err) return err; err = __devinet_sysctl_register(dev_net(idev->dev), idev->dev->name, idev->dev->ifindex, &idev->cnf); if (err) neigh_sysctl_unregister(idev->arp_parms); return err; } static void devinet_sysctl_unregister(struct in_device *idev) { struct net *net = dev_net(idev->dev); __devinet_sysctl_unregister(net, &idev->cnf, idev->dev->ifindex); neigh_sysctl_unregister(idev->arp_parms); } static struct ctl_table ctl_forward_entry[] = { { .procname = "ip_forward", .data = &ipv4_devconf.data[ IPV4_DEVCONF_FORWARDING - 1], .maxlen = sizeof(int), .mode = 0644, .proc_handler = devinet_sysctl_forward, .extra1 = &ipv4_devconf, .extra2 = &init_net, }, { }, }; #endif static __net_init int devinet_init_net(struct net *net) { int err; struct ipv4_devconf *all, *dflt; #ifdef CONFIG_SYSCTL struct ctl_table *tbl; struct ctl_table_header *forw_hdr; #endif err = -ENOMEM; all = kmemdup(&ipv4_devconf, sizeof(ipv4_devconf), GFP_KERNEL); if (!all) goto err_alloc_all; dflt = kmemdup(&ipv4_devconf_dflt, sizeof(ipv4_devconf_dflt), GFP_KERNEL); if (!dflt) goto err_alloc_dflt; #ifdef CONFIG_SYSCTL tbl = kmemdup(ctl_forward_entry, sizeof(ctl_forward_entry), GFP_KERNEL); if (!tbl) goto err_alloc_ctl; tbl[0].data = &all->data[IPV4_DEVCONF_FORWARDING - 1]; tbl[0].extra1 = all; tbl[0].extra2 = net; #endif if ((!IS_ENABLED(CONFIG_SYSCTL) || sysctl_devconf_inherit_init_net != 2) && !net_eq(net, &init_net)) { memcpy(all, init_net.ipv4.devconf_all, sizeof(ipv4_devconf)); memcpy(dflt, init_net.ipv4.devconf_dflt, sizeof(ipv4_devconf_dflt)); } #ifdef CONFIG_SYSCTL err = __devinet_sysctl_register(net, "all", NETCONFA_IFINDEX_ALL, all); if (err < 0) goto err_reg_all; err = __devinet_sysctl_register(net, "default", NETCONFA_IFINDEX_DEFAULT, dflt); if (err < 0) goto err_reg_dflt; err = -ENOMEM; forw_hdr = register_net_sysctl(net, "net/ipv4", tbl); if (!forw_hdr) goto err_reg_ctl; net->ipv4.forw_hdr = forw_hdr; #endif net->ipv4.devconf_all = all; net->ipv4.devconf_dflt = dflt; return 0; #ifdef CONFIG_SYSCTL err_reg_ctl: __devinet_sysctl_unregister(net, dflt, NETCONFA_IFINDEX_DEFAULT); err_reg_dflt: __devinet_sysctl_unregister(net, all, NETCONFA_IFINDEX_ALL); err_reg_all: kfree(tbl); err_alloc_ctl: #endif kfree(dflt); err_alloc_dflt: kfree(all); err_alloc_all: return err; } static __net_exit void devinet_exit_net(struct net *net) { #ifdef CONFIG_SYSCTL struct ctl_table *tbl; tbl = net->ipv4.forw_hdr->ctl_table_arg; unregister_net_sysctl_table(net->ipv4.forw_hdr); __devinet_sysctl_unregister(net, net->ipv4.devconf_dflt, NETCONFA_IFINDEX_DEFAULT); __devinet_sysctl_unregister(net, net->ipv4.devconf_all, NETCONFA_IFINDEX_ALL); kfree(tbl); #endif kfree(net->ipv4.devconf_dflt); kfree(net->ipv4.devconf_all); } static __net_initdata struct pernet_operations devinet_ops = { .init = devinet_init_net, .exit = devinet_exit_net, }; static struct rtnl_af_ops inet_af_ops __read_mostly = { .family = AF_INET, .fill_link_af = inet_fill_link_af, .get_link_af_size = inet_get_link_af_size, .validate_link_af = inet_validate_link_af, .set_link_af = inet_set_link_af, }; void __init devinet_init(void) { int i; for (i = 0; i < IN4_ADDR_HSIZE; i++) INIT_HLIST_HEAD(&inet_addr_lst[i]); register_pernet_subsys(&devinet_ops); register_gifconf(PF_INET, inet_gifconf); register_netdevice_notifier(&ip_netdev_notifier); queue_delayed_work(system_power_efficient_wq, &check_lifetime_work, 0); rtnl_af_register(&inet_af_ops); rtnl_register(PF_INET, RTM_NEWADDR, inet_rtm_newaddr, NULL, 0); rtnl_register(PF_INET, RTM_DELADDR, inet_rtm_deladdr, NULL, 0); rtnl_register(PF_INET, RTM_GETADDR, NULL, inet_dump_ifaddr, 0); rtnl_register(PF_INET, RTM_GETNETCONF, inet_netconf_get_devconf, inet_netconf_dump_devconf, 0); }