// SPDX-License-Identifier: GPL-2.0 /* * Slab allocator functions that are independent of the allocator strategy * * (C) 2012 Christoph Lameter <cl@linux.com> */ #include <linux/slab.h> #include <linux/mm.h> #include <linux/poison.h> #include <linux/interrupt.h> #include <linux/memory.h> #include <linux/cache.h> #include <linux/compiler.h> #include <linux/module.h> #include <linux/cpu.h> #include <linux/uaccess.h> #include <linux/seq_file.h> #include <linux/proc_fs.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/page.h> #include <linux/memcontrol.h> #define CREATE_TRACE_POINTS #include <trace/events/kmem.h> #include "slab.h" enum slab_state slab_state; LIST_HEAD(slab_caches); DEFINE_MUTEX(slab_mutex); struct kmem_cache *kmem_cache; #ifdef CONFIG_HARDENED_USERCOPY bool usercopy_fallback __ro_after_init = IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); module_param(usercopy_fallback, bool, 0400); MODULE_PARM_DESC(usercopy_fallback, "WARN instead of reject usercopy whitelist violations"); #endif static LIST_HEAD(slab_caches_to_rcu_destroy); static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); static DECLARE_WORK(slab_caches_to_rcu_destroy_work, slab_caches_to_rcu_destroy_workfn); /* * Set of flags that will prevent slab merging */ #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ SLAB_FAILSLAB | SLAB_KASAN) #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ SLAB_ACCOUNT) /* * Merge control. If this is set then no merging of slab caches will occur. */ static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); static int __init setup_slab_nomerge(char *str) { slab_nomerge = true; return 1; } #ifdef CONFIG_SLUB __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); #endif __setup("slab_nomerge", setup_slab_nomerge); /* * Determine the size of a slab object */ unsigned int kmem_cache_size(struct kmem_cache *s) { return s->object_size; } EXPORT_SYMBOL(kmem_cache_size); #ifdef CONFIG_DEBUG_VM static int kmem_cache_sanity_check(const char *name, unsigned int size) { if (!name || in_interrupt() || size < sizeof(void *) || size > KMALLOC_MAX_SIZE) { pr_err("kmem_cache_create(%s) integrity check failed\n", name); return -EINVAL; } WARN_ON(strchr(name, ' ')); /* It confuses parsers */ return 0; } #else static inline int kmem_cache_sanity_check(const char *name, unsigned int size) { return 0; } #endif void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) { size_t i; for (i = 0; i < nr; i++) { if (s) kmem_cache_free(s, p[i]); else kfree(p[i]); } } int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, void **p) { size_t i; for (i = 0; i < nr; i++) { void *x = p[i] = kmem_cache_alloc(s, flags); if (!x) { __kmem_cache_free_bulk(s, i, p); return 0; } } return i; } #ifdef CONFIG_MEMCG_KMEM LIST_HEAD(slab_root_caches); void slab_init_memcg_params(struct kmem_cache *s) { s->memcg_params.root_cache = NULL; RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); INIT_LIST_HEAD(&s->memcg_params.children); s->memcg_params.dying = false; } static int init_memcg_params(struct kmem_cache *s, struct mem_cgroup *memcg, struct kmem_cache *root_cache) { struct memcg_cache_array *arr; if (root_cache) { s->memcg_params.root_cache = root_cache; s->memcg_params.memcg = memcg; INIT_LIST_HEAD(&s->memcg_params.children_node); INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); return 0; } slab_init_memcg_params(s); if (!memcg_nr_cache_ids) return 0; arr = kvzalloc(sizeof(struct memcg_cache_array) + memcg_nr_cache_ids * sizeof(void *), GFP_KERNEL); if (!arr) return -ENOMEM; RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); return 0; } static void destroy_memcg_params(struct kmem_cache *s) { if (is_root_cache(s)) kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); } static void free_memcg_params(struct rcu_head *rcu) { struct memcg_cache_array *old; old = container_of(rcu, struct memcg_cache_array, rcu); kvfree(old); } static int update_memcg_params(struct kmem_cache *s, int new_array_size) { struct memcg_cache_array *old, *new; new = kvzalloc(sizeof(struct memcg_cache_array) + new_array_size * sizeof(void *), GFP_KERNEL); if (!new) return -ENOMEM; old = rcu_dereference_protected(s->memcg_params.memcg_caches, lockdep_is_held(&slab_mutex)); if (old) memcpy(new->entries, old->entries, memcg_nr_cache_ids * sizeof(void *)); rcu_assign_pointer(s->memcg_params.memcg_caches, new); if (old) call_rcu(&old->rcu, free_memcg_params); return 0; } int memcg_update_all_caches(int num_memcgs) { struct kmem_cache *s; int ret = 0; mutex_lock(&slab_mutex); list_for_each_entry(s, &slab_root_caches, root_caches_node) { ret = update_memcg_params(s, num_memcgs); /* * Instead of freeing the memory, we'll just leave the caches * up to this point in an updated state. */ if (ret) break; } mutex_unlock(&slab_mutex); return ret; } void memcg_link_cache(struct kmem_cache *s) { if (is_root_cache(s)) { list_add(&s->root_caches_node, &slab_root_caches); } else { list_add(&s->memcg_params.children_node, &s->memcg_params.root_cache->memcg_params.children); list_add(&s->memcg_params.kmem_caches_node, &s->memcg_params.memcg->kmem_caches); } } static void memcg_unlink_cache(struct kmem_cache *s) { if (is_root_cache(s)) { list_del(&s->root_caches_node); } else { list_del(&s->memcg_params.children_node); list_del(&s->memcg_params.kmem_caches_node); } } #else static inline int init_memcg_params(struct kmem_cache *s, struct mem_cgroup *memcg, struct kmem_cache *root_cache) { return 0; } static inline void destroy_memcg_params(struct kmem_cache *s) { } static inline void memcg_unlink_cache(struct kmem_cache *s) { } #endif /* CONFIG_MEMCG_KMEM */ /* * Figure out what the alignment of the objects will be given a set of * flags, a user specified alignment and the size of the objects. */ static unsigned int calculate_alignment(slab_flags_t flags, unsigned int align, unsigned int size) { /* * If the user wants hardware cache aligned objects then follow that * suggestion if the object is sufficiently large. * * The hardware cache alignment cannot override the specified * alignment though. If that is greater then use it. */ if (flags & SLAB_HWCACHE_ALIGN) { unsigned int ralign; ralign = cache_line_size(); while (size <= ralign / 2) ralign /= 2; align = max(align, ralign); } if (align < ARCH_SLAB_MINALIGN) align = ARCH_SLAB_MINALIGN; return ALIGN(align, sizeof(void *)); } /* * Find a mergeable slab cache */ int slab_unmergeable(struct kmem_cache *s) { if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) return 1; if (!is_root_cache(s)) return 1; if (s->ctor) return 1; if (s->usersize) return 1; /* * We may have set a slab to be unmergeable during bootstrap. */ if (s->refcount < 0) return 1; return 0; } struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, slab_flags_t flags, const char *name, void (*ctor)(void *)) { struct kmem_cache *s; if (slab_nomerge) return NULL; if (ctor) return NULL; size = ALIGN(size, sizeof(void *)); align = calculate_alignment(flags, align, size); size = ALIGN(size, align); flags = kmem_cache_flags(size, flags, name, NULL); if (flags & SLAB_NEVER_MERGE) return NULL; list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { if (slab_unmergeable(s)) continue; if (size > s->size) continue; if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) continue; /* * Check if alignment is compatible. * Courtesy of Adrian Drzewiecki */ if ((s->size & ~(align - 1)) != s->size) continue; if (s->size - size >= sizeof(void *)) continue; if (IS_ENABLED(CONFIG_SLAB) && align && (align > s->align || s->align % align)) continue; return s; } return NULL; } static struct kmem_cache *create_cache(const char *name, unsigned int object_size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *), struct mem_cgroup *memcg, struct kmem_cache *root_cache) { struct kmem_cache *s; int err; if (WARN_ON(useroffset + usersize > object_size)) useroffset = usersize = 0; err = -ENOMEM; s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); if (!s) goto out; s->name = name; s->size = s->object_size = object_size; s->align = align; s->ctor = ctor; s->useroffset = useroffset; s->usersize = usersize; err = init_memcg_params(s, memcg, root_cache); if (err) goto out_free_cache; err = __kmem_cache_create(s, flags); if (err) goto out_free_cache; s->refcount = 1; list_add(&s->list, &slab_caches); memcg_link_cache(s); out: if (err) return ERR_PTR(err); return s; out_free_cache: destroy_memcg_params(s); kmem_cache_free(kmem_cache, s); goto out; } /** * kmem_cache_create_usercopy - Create a cache with a region suitable * for copying to userspace * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @useroffset: Usercopy region offset * @usersize: Usercopy region size * @ctor: A constructor for the objects. * * Cannot be called within a interrupt, but can be interrupted. * The @ctor is run when new pages are allocated by the cache. * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * to catch references to uninitialised memory. * * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check * for buffer overruns. * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. * * Return: a pointer to the cache on success, NULL on failure. */ struct kmem_cache * kmem_cache_create_usercopy(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, unsigned int useroffset, unsigned int usersize, void (*ctor)(void *)) { struct kmem_cache *s = NULL; const char *cache_name; int err; get_online_cpus(); get_online_mems(); memcg_get_cache_ids(); mutex_lock(&slab_mutex); err = kmem_cache_sanity_check(name, size); if (err) { goto out_unlock; } /* Refuse requests with allocator specific flags */ if (flags & ~SLAB_FLAGS_PERMITTED) { err = -EINVAL; goto out_unlock; } /* * Some allocators will constraint the set of valid flags to a subset * of all flags. We expect them to define CACHE_CREATE_MASK in this * case, and we'll just provide them with a sanitized version of the * passed flags. */ flags &= CACHE_CREATE_MASK; /* Fail closed on bad usersize of useroffset values. */ if (WARN_ON(!usersize && useroffset) || WARN_ON(size < usersize || size - usersize < useroffset)) usersize = useroffset = 0; if (!usersize) s = __kmem_cache_alias(name, size, align, flags, ctor); if (s) goto out_unlock; cache_name = kstrdup_const(name, GFP_KERNEL); if (!cache_name) { err = -ENOMEM; goto out_unlock; } s = create_cache(cache_name, size, calculate_alignment(flags, align, size), flags, useroffset, usersize, ctor, NULL, NULL); if (IS_ERR(s)) { err = PTR_ERR(s); kfree_const(cache_name); } out_unlock: mutex_unlock(&slab_mutex); memcg_put_cache_ids(); put_online_mems(); put_online_cpus(); if (err) { if (flags & SLAB_PANIC) panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", name, err); else { pr_warn("kmem_cache_create(%s) failed with error %d\n", name, err); dump_stack(); } return NULL; } return s; } EXPORT_SYMBOL(kmem_cache_create_usercopy); /** * kmem_cache_create - Create a cache. * @name: A string which is used in /proc/slabinfo to identify this cache. * @size: The size of objects to be created in this cache. * @align: The required alignment for the objects. * @flags: SLAB flags * @ctor: A constructor for the objects. * * Cannot be called within a interrupt, but can be interrupted. * The @ctor is run when new pages are allocated by the cache. * * The flags are * * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) * to catch references to uninitialised memory. * * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check * for buffer overruns. * * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware * cacheline. This can be beneficial if you're counting cycles as closely * as davem. * * Return: a pointer to the cache on success, NULL on failure. */ struct kmem_cache * kmem_cache_create(const char *name, unsigned int size, unsigned int align, slab_flags_t flags, void (*ctor)(void *)) { return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, ctor); } EXPORT_SYMBOL(kmem_cache_create); static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) { LIST_HEAD(to_destroy); struct kmem_cache *s, *s2; /* * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the * @slab_caches_to_rcu_destroy list. The slab pages are freed * through RCU and and the associated kmem_cache are dereferenced * while freeing the pages, so the kmem_caches should be freed only * after the pending RCU operations are finished. As rcu_barrier() * is a pretty slow operation, we batch all pending destructions * asynchronously. */ mutex_lock(&slab_mutex); list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); mutex_unlock(&slab_mutex); if (list_empty(&to_destroy)) return; rcu_barrier(); list_for_each_entry_safe(s, s2, &to_destroy, list) { #ifdef SLAB_SUPPORTS_SYSFS sysfs_slab_release(s); #else slab_kmem_cache_release(s); #endif } } static int shutdown_cache(struct kmem_cache *s) { /* free asan quarantined objects */ kasan_cache_shutdown(s); if (__kmem_cache_shutdown(s) != 0) return -EBUSY; memcg_unlink_cache(s); list_del(&s->list); if (s->flags & SLAB_TYPESAFE_BY_RCU) { #ifdef SLAB_SUPPORTS_SYSFS sysfs_slab_unlink(s); #endif list_add_tail(&s->list, &slab_caches_to_rcu_destroy); schedule_work(&slab_caches_to_rcu_destroy_work); } else { #ifdef SLAB_SUPPORTS_SYSFS sysfs_slab_unlink(s); sysfs_slab_release(s); #else slab_kmem_cache_release(s); #endif } return 0; } #ifdef CONFIG_MEMCG_KMEM /* * memcg_create_kmem_cache - Create a cache for a memory cgroup. * @memcg: The memory cgroup the new cache is for. * @root_cache: The parent of the new cache. * * This function attempts to create a kmem cache that will serve allocation * requests going from @memcg to @root_cache. The new cache inherits properties * from its parent. */ void memcg_create_kmem_cache(struct mem_cgroup *memcg, struct kmem_cache *root_cache) { static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ struct cgroup_subsys_state *css = &memcg->css; struct memcg_cache_array *arr; struct kmem_cache *s = NULL; char *cache_name; int idx; get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); /* * The memory cgroup could have been offlined while the cache * creation work was pending. */ if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying) goto out_unlock; idx = memcg_cache_id(memcg); arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, lockdep_is_held(&slab_mutex)); /* * Since per-memcg caches are created asynchronously on first * allocation (see memcg_kmem_get_cache()), several threads can try to * create the same cache, but only one of them may succeed. */ if (arr->entries[idx]) goto out_unlock; cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, css->serial_nr, memcg_name_buf); if (!cache_name) goto out_unlock; s = create_cache(cache_name, root_cache->object_size, root_cache->align, root_cache->flags & CACHE_CREATE_MASK, root_cache->useroffset, root_cache->usersize, root_cache->ctor, memcg, root_cache); /* * If we could not create a memcg cache, do not complain, because * that's not critical at all as we can always proceed with the root * cache. */ if (IS_ERR(s)) { kfree(cache_name); goto out_unlock; } /* * Since readers won't lock (see cache_from_memcg_idx()), we need a * barrier here to ensure nobody will see the kmem_cache partially * initialized. */ smp_wmb(); arr->entries[idx] = s; out_unlock: mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); } static void kmemcg_deactivate_workfn(struct work_struct *work) { struct kmem_cache *s = container_of(work, struct kmem_cache, memcg_params.deact_work); get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); s->memcg_params.deact_fn(s); mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */ css_put(&s->memcg_params.memcg->css); } static void kmemcg_deactivate_rcufn(struct rcu_head *head) { struct kmem_cache *s = container_of(head, struct kmem_cache, memcg_params.deact_rcu_head); /* * We need to grab blocking locks. Bounce to ->deact_work. The * work item shares the space with the RCU head and can't be * initialized eariler. */ INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn); queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work); } /** * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a * sched RCU grace period * @s: target kmem_cache * @deact_fn: deactivation function to call * * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex * held after a sched RCU grace period. The slab is guaranteed to stay * alive until @deact_fn is finished. This is to be used from * __kmemcg_cache_deactivate(). */ void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, void (*deact_fn)(struct kmem_cache *)) { if (WARN_ON_ONCE(is_root_cache(s)) || WARN_ON_ONCE(s->memcg_params.deact_fn)) return; if (s->memcg_params.root_cache->memcg_params.dying) return; /* pin memcg so that @s doesn't get destroyed in the middle */ css_get(&s->memcg_params.memcg->css); s->memcg_params.deact_fn = deact_fn; call_rcu(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn); } void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) { int idx; struct memcg_cache_array *arr; struct kmem_cache *s, *c; idx = memcg_cache_id(memcg); get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); list_for_each_entry(s, &slab_root_caches, root_caches_node) { arr = rcu_dereference_protected(s->memcg_params.memcg_caches, lockdep_is_held(&slab_mutex)); c = arr->entries[idx]; if (!c) continue; __kmemcg_cache_deactivate(c); arr->entries[idx] = NULL; } mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); } void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) { struct kmem_cache *s, *s2; get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); list_for_each_entry_safe(s, s2, &memcg->kmem_caches, memcg_params.kmem_caches_node) { /* * The cgroup is about to be freed and therefore has no charges * left. Hence, all its caches must be empty by now. */ BUG_ON(shutdown_cache(s)); } mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); } static int shutdown_memcg_caches(struct kmem_cache *s) { struct memcg_cache_array *arr; struct kmem_cache *c, *c2; LIST_HEAD(busy); int i; BUG_ON(!is_root_cache(s)); /* * First, shutdown active caches, i.e. caches that belong to online * memory cgroups. */ arr = rcu_dereference_protected(s->memcg_params.memcg_caches, lockdep_is_held(&slab_mutex)); for_each_memcg_cache_index(i) { c = arr->entries[i]; if (!c) continue; if (shutdown_cache(c)) /* * The cache still has objects. Move it to a temporary * list so as not to try to destroy it for a second * time while iterating over inactive caches below. */ list_move(&c->memcg_params.children_node, &busy); else /* * The cache is empty and will be destroyed soon. Clear * the pointer to it in the memcg_caches array so that * it will never be accessed even if the root cache * stays alive. */ arr->entries[i] = NULL; } /* * Second, shutdown all caches left from memory cgroups that are now * offline. */ list_for_each_entry_safe(c, c2, &s->memcg_params.children, memcg_params.children_node) shutdown_cache(c); list_splice(&busy, &s->memcg_params.children); /* * A cache being destroyed must be empty. In particular, this means * that all per memcg caches attached to it must be empty too. */ if (!list_empty(&s->memcg_params.children)) return -EBUSY; return 0; } static void flush_memcg_workqueue(struct kmem_cache *s) { mutex_lock(&slab_mutex); s->memcg_params.dying = true; mutex_unlock(&slab_mutex); /* * SLUB deactivates the kmem_caches through call_rcu. Make * sure all registered rcu callbacks have been invoked. */ if (IS_ENABLED(CONFIG_SLUB)) rcu_barrier(); /* * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB * deactivates the memcg kmem_caches through workqueue. Make sure all * previous workitems on workqueue are processed. */ flush_workqueue(memcg_kmem_cache_wq); } #else static inline int shutdown_memcg_caches(struct kmem_cache *s) { return 0; } static inline void flush_memcg_workqueue(struct kmem_cache *s) { } #endif /* CONFIG_MEMCG_KMEM */ void slab_kmem_cache_release(struct kmem_cache *s) { __kmem_cache_release(s); destroy_memcg_params(s); kfree_const(s->name); kmem_cache_free(kmem_cache, s); } void kmem_cache_destroy(struct kmem_cache *s) { int err; if (unlikely(!s)) return; flush_memcg_workqueue(s); get_online_cpus(); get_online_mems(); mutex_lock(&slab_mutex); s->refcount--; if (s->refcount) goto out_unlock; err = shutdown_memcg_caches(s); if (!err) err = shutdown_cache(s); if (err) { pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", s->name); dump_stack(); } out_unlock: mutex_unlock(&slab_mutex); put_online_mems(); put_online_cpus(); } EXPORT_SYMBOL(kmem_cache_destroy); /** * kmem_cache_shrink - Shrink a cache. * @cachep: The cache to shrink. * * Releases as many slabs as possible for a cache. * To help debugging, a zero exit status indicates all slabs were released. */ int kmem_cache_shrink(struct kmem_cache *cachep) { int ret; get_online_cpus(); get_online_mems(); kasan_cache_shrink(cachep); ret = __kmem_cache_shrink(cachep); put_online_mems(); put_online_cpus(); return ret; } EXPORT_SYMBOL(kmem_cache_shrink); bool slab_is_available(void) { return slab_state >= UP; } #ifndef CONFIG_SLOB /* Create a cache during boot when no slab services are available yet */ void __init create_boot_cache(struct kmem_cache *s, const char *name, unsigned int size, slab_flags_t flags, unsigned int useroffset, unsigned int usersize) { int err; s->name = name; s->size = s->object_size = size; s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); s->useroffset = useroffset; s->usersize = usersize; slab_init_memcg_params(s); err = __kmem_cache_create(s, flags); if (err) panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", name, size, err); s->refcount = -1; /* Exempt from merging for now */ } struct kmem_cache *__init create_kmalloc_cache(const char *name, unsigned int size, slab_flags_t flags, unsigned int useroffset, unsigned int usersize) { struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); if (!s) panic("Out of memory when creating slab %s\n", name); create_boot_cache(s, name, size, flags, useroffset, usersize); list_add(&s->list, &slab_caches); memcg_link_cache(s); s->refcount = 1; return s; } struct kmem_cache * kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init; EXPORT_SYMBOL(kmalloc_caches); /* * Conversion table for small slabs sizes / 8 to the index in the * kmalloc array. This is necessary for slabs < 192 since we have non power * of two cache sizes there. The size of larger slabs can be determined using * fls. */ static u8 size_index[24] __ro_after_init = { 3, /* 8 */ 4, /* 16 */ 5, /* 24 */ 5, /* 32 */ 6, /* 40 */ 6, /* 48 */ 6, /* 56 */ 6, /* 64 */ 1, /* 72 */ 1, /* 80 */ 1, /* 88 */ 1, /* 96 */ 7, /* 104 */ 7, /* 112 */ 7, /* 120 */ 7, /* 128 */ 2, /* 136 */ 2, /* 144 */ 2, /* 152 */ 2, /* 160 */ 2, /* 168 */ 2, /* 176 */ 2, /* 184 */ 2 /* 192 */ }; static inline unsigned int size_index_elem(unsigned int bytes) { return (bytes - 1) / 8; } /* * Find the kmem_cache structure that serves a given size of * allocation */ struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) { unsigned int index; if (size <= 192) { if (!size) return ZERO_SIZE_PTR; index = size_index[size_index_elem(size)]; } else { if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) return NULL; index = fls(size - 1); } return kmalloc_caches[kmalloc_type(flags)][index]; } /* * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is * kmalloc-67108864. */ const struct kmalloc_info_struct kmalloc_info[] __initconst = { {NULL, 0}, {"kmalloc-96", 96}, {"kmalloc-192", 192}, {"kmalloc-8", 8}, {"kmalloc-16", 16}, {"kmalloc-32", 32}, {"kmalloc-64", 64}, {"kmalloc-128", 128}, {"kmalloc-256", 256}, {"kmalloc-512", 512}, {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048}, {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192}, {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768}, {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072}, {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288}, {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152}, {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608}, {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432}, {"kmalloc-64M", 67108864} }; /* * Patch up the size_index table if we have strange large alignment * requirements for the kmalloc array. This is only the case for * MIPS it seems. The standard arches will not generate any code here. * * Largest permitted alignment is 256 bytes due to the way we * handle the index determination for the smaller caches. * * Make sure that nothing crazy happens if someone starts tinkering * around with ARCH_KMALLOC_MINALIGN */ void __init setup_kmalloc_cache_index_table(void) { unsigned int i; BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { unsigned int elem = size_index_elem(i); if (elem >= ARRAY_SIZE(size_index)) break; size_index[elem] = KMALLOC_SHIFT_LOW; } if (KMALLOC_MIN_SIZE >= 64) { /* * The 96 byte size cache is not used if the alignment * is 64 byte. */ for (i = 64 + 8; i <= 96; i += 8) size_index[size_index_elem(i)] = 7; } if (KMALLOC_MIN_SIZE >= 128) { /* * The 192 byte sized cache is not used if the alignment * is 128 byte. Redirect kmalloc to use the 256 byte cache * instead. */ for (i = 128 + 8; i <= 192; i += 8) size_index[size_index_elem(i)] = 8; } } static const char * kmalloc_cache_name(const char *prefix, unsigned int size) { static const char units[3] = "\0kM"; int idx = 0; while (size >= 1024 && (size % 1024 == 0)) { size /= 1024; idx++; } return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]); } static void __init new_kmalloc_cache(int idx, int type, slab_flags_t flags) { const char *name; if (type == KMALLOC_RECLAIM) { flags |= SLAB_RECLAIM_ACCOUNT; name = kmalloc_cache_name("kmalloc-rcl", kmalloc_info[idx].size); BUG_ON(!name); } else { name = kmalloc_info[idx].name; } kmalloc_caches[type][idx] = create_kmalloc_cache(name, kmalloc_info[idx].size, flags, 0, kmalloc_info[idx].size); } /* * Create the kmalloc array. Some of the regular kmalloc arrays * may already have been created because they were needed to * enable allocations for slab creation. */ void __init create_kmalloc_caches(slab_flags_t flags) { int i, type; for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { if (!kmalloc_caches[type][i]) new_kmalloc_cache(i, type, flags); /* * Caches that are not of the two-to-the-power-of size. * These have to be created immediately after the * earlier power of two caches */ if (KMALLOC_MIN_SIZE <= 32 && i == 6 && !kmalloc_caches[type][1]) new_kmalloc_cache(1, type, flags); if (KMALLOC_MIN_SIZE <= 64 && i == 7 && !kmalloc_caches[type][2]) new_kmalloc_cache(2, type, flags); } } /* Kmalloc array is now usable */ slab_state = UP; #ifdef CONFIG_ZONE_DMA for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; if (s) { unsigned int size = kmalloc_size(i); const char *n = kmalloc_cache_name("dma-kmalloc", size); BUG_ON(!n); kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( n, size, SLAB_CACHE_DMA | flags, 0, 0); } } #endif } #endif /* !CONFIG_SLOB */ /* * To avoid unnecessary overhead, we pass through large allocation requests * directly to the page allocator. We use __GFP_COMP, because we will need to * know the allocation order to free the pages properly in kfree. */ void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) { void *ret; struct page *page; flags |= __GFP_COMP; page = alloc_pages(flags, order); ret = page ? page_address(page) : NULL; kmemleak_alloc(ret, size, 1, flags); ret = kasan_kmalloc_large(ret, size, flags); return ret; } EXPORT_SYMBOL(kmalloc_order); #ifdef CONFIG_TRACING void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) { void *ret = kmalloc_order(size, flags, order); trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); return ret; } EXPORT_SYMBOL(kmalloc_order_trace); #endif #ifdef CONFIG_SLAB_FREELIST_RANDOM /* Randomize a generic freelist */ static void freelist_randomize(struct rnd_state *state, unsigned int *list, unsigned int count) { unsigned int rand; unsigned int i; for (i = 0; i < count; i++) list[i] = i; /* Fisher-Yates shuffle */ for (i = count - 1; i > 0; i--) { rand = prandom_u32_state(state); rand %= (i + 1); swap(list[i], list[rand]); } } /* Create a random sequence per cache */ int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, gfp_t gfp) { struct rnd_state state; if (count < 2 || cachep->random_seq) return 0; cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); if (!cachep->random_seq) return -ENOMEM; /* Get best entropy at this stage of boot */ prandom_seed_state(&state, get_random_long()); freelist_randomize(&state, cachep->random_seq, count); return 0; } /* Destroy the per-cache random freelist sequence */ void cache_random_seq_destroy(struct kmem_cache *cachep) { kfree(cachep->random_seq); cachep->random_seq = NULL; } #endif /* CONFIG_SLAB_FREELIST_RANDOM */ #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) #ifdef CONFIG_SLAB #define SLABINFO_RIGHTS (0600) #else #define SLABINFO_RIGHTS (0400) #endif static void print_slabinfo_header(struct seq_file *m) { /* * Output format version, so at least we can change it * without _too_ many complaints. */ #ifdef CONFIG_DEBUG_SLAB seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); #else seq_puts(m, "slabinfo - version: 2.1\n"); #endif seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); #ifdef CONFIG_DEBUG_SLAB seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); #endif seq_putc(m, '\n'); } void *slab_start(struct seq_file *m, loff_t *pos) { mutex_lock(&slab_mutex); return seq_list_start(&slab_root_caches, *pos); } void *slab_next(struct seq_file *m, void *p, loff_t *pos) { return seq_list_next(p, &slab_root_caches, pos); } void slab_stop(struct seq_file *m, void *p) { mutex_unlock(&slab_mutex); } static void memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) { struct kmem_cache *c; struct slabinfo sinfo; if (!is_root_cache(s)) return; for_each_memcg_cache(c, s) { memset(&sinfo, 0, sizeof(sinfo)); get_slabinfo(c, &sinfo); info->active_slabs += sinfo.active_slabs; info->num_slabs += sinfo.num_slabs; info->shared_avail += sinfo.shared_avail; info->active_objs += sinfo.active_objs; info->num_objs += sinfo.num_objs; } } static void cache_show(struct kmem_cache *s, struct seq_file *m) { struct slabinfo sinfo; memset(&sinfo, 0, sizeof(sinfo)); get_slabinfo(s, &sinfo); memcg_accumulate_slabinfo(s, &sinfo); seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, sinfo.objects_per_slab, (1 << sinfo.cache_order)); seq_printf(m, " : tunables %4u %4u %4u", sinfo.limit, sinfo.batchcount, sinfo.shared); seq_printf(m, " : slabdata %6lu %6lu %6lu", sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); slabinfo_show_stats(m, s); seq_putc(m, '\n'); } static int slab_show(struct seq_file *m, void *p) { struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); if (p == slab_root_caches.next) print_slabinfo_header(m); cache_show(s, m); return 0; } void dump_unreclaimable_slab(void) { struct kmem_cache *s, *s2; struct slabinfo sinfo; /* * Here acquiring slab_mutex is risky since we don't prefer to get * sleep in oom path. But, without mutex hold, it may introduce a * risk of crash. * Use mutex_trylock to protect the list traverse, dump nothing * without acquiring the mutex. */ if (!mutex_trylock(&slab_mutex)) { pr_warn("excessive unreclaimable slab but cannot dump stats\n"); return; } pr_info("Unreclaimable slab info:\n"); pr_info("Name Used Total\n"); list_for_each_entry_safe(s, s2, &slab_caches, list) { if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) continue; get_slabinfo(s, &sinfo); if (sinfo.num_objs > 0) pr_info("%-17s %10luKB %10luKB\n", cache_name(s), (sinfo.active_objs * s->size) / 1024, (sinfo.num_objs * s->size) / 1024); } mutex_unlock(&slab_mutex); } #if defined(CONFIG_MEMCG) void *memcg_slab_start(struct seq_file *m, loff_t *pos) { struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); mutex_lock(&slab_mutex); return seq_list_start(&memcg->kmem_caches, *pos); } void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) { struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); return seq_list_next(p, &memcg->kmem_caches, pos); } void memcg_slab_stop(struct seq_file *m, void *p) { mutex_unlock(&slab_mutex); } int memcg_slab_show(struct seq_file *m, void *p) { struct kmem_cache *s = list_entry(p, struct kmem_cache, memcg_params.kmem_caches_node); struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); if (p == memcg->kmem_caches.next) print_slabinfo_header(m); cache_show(s, m); return 0; } #endif /* * slabinfo_op - iterator that generates /proc/slabinfo * * Output layout: * cache-name * num-active-objs * total-objs * object size * num-active-slabs * total-slabs * num-pages-per-slab * + further values on SMP and with statistics enabled */ static const struct seq_operations slabinfo_op = { .start = slab_start, .next = slab_next, .stop = slab_stop, .show = slab_show, }; static int slabinfo_open(struct inode *inode, struct file *file) { return seq_open(file, &slabinfo_op); } static const struct file_operations proc_slabinfo_operations = { .open = slabinfo_open, .read = seq_read, .write = slabinfo_write, .llseek = seq_lseek, .release = seq_release, }; static int __init slab_proc_init(void) { proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &proc_slabinfo_operations); return 0; } module_init(slab_proc_init); #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ static __always_inline void *__do_krealloc(const void *p, size_t new_size, gfp_t flags) { void *ret; size_t ks = 0; if (p) ks = ksize(p); if (ks >= new_size) { p = kasan_krealloc((void *)p, new_size, flags); return (void *)p; } ret = kmalloc_track_caller(new_size, flags); if (ret && p) memcpy(ret, p, ks); return ret; } /** * __krealloc - like krealloc() but don't free @p. * @p: object to reallocate memory for. * @new_size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * This function is like krealloc() except it never frees the originally * allocated buffer. Use this if you don't want to free the buffer immediately * like, for example, with RCU. */ void *__krealloc(const void *p, size_t new_size, gfp_t flags) { if (unlikely(!new_size)) return ZERO_SIZE_PTR; return __do_krealloc(p, new_size, flags); } EXPORT_SYMBOL(__krealloc); /** * krealloc - reallocate memory. The contents will remain unchanged. * @p: object to reallocate memory for. * @new_size: how many bytes of memory are required. * @flags: the type of memory to allocate. * * The contents of the object pointed to are preserved up to the * lesser of the new and old sizes. If @p is %NULL, krealloc() * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a * %NULL pointer, the object pointed to is freed. */ void *krealloc(const void *p, size_t new_size, gfp_t flags) { void *ret; if (unlikely(!new_size)) { kfree(p); return ZERO_SIZE_PTR; } ret = __do_krealloc(p, new_size, flags); if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) kfree(p); return ret; } EXPORT_SYMBOL(krealloc); /** * kzfree - like kfree but zero memory * @p: object to free memory of * * The memory of the object @p points to is zeroed before freed. * If @p is %NULL, kzfree() does nothing. * * Note: this function zeroes the whole allocated buffer which can be a good * deal bigger than the requested buffer size passed to kmalloc(). So be * careful when using this function in performance sensitive code. */ void kzfree(const void *p) { size_t ks; void *mem = (void *)p; if (unlikely(ZERO_OR_NULL_PTR(mem))) return; ks = ksize(mem); memset(mem, 0, ks); kfree(mem); } EXPORT_SYMBOL(kzfree); /* Tracepoints definitions. */ EXPORT_TRACEPOINT_SYMBOL(kmalloc); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); EXPORT_TRACEPOINT_SYMBOL(kfree); EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); int should_failslab(struct kmem_cache *s, gfp_t gfpflags) { if (__should_failslab(s, gfpflags)) return -ENOMEM; return 0; } ALLOW_ERROR_INJECTION(should_failslab, ERRNO);