/* * mm/rmap.c - physical to virtual reverse mappings * * Copyright 2001, Rik van Riel * Released under the General Public License (GPL). * * Simple, low overhead reverse mapping scheme. * Please try to keep this thing as modular as possible. * * Provides methods for unmapping each kind of mapped page: * the anon methods track anonymous pages, and * the file methods track pages belonging to an inode. * * Original design by Rik van Riel 2001 * File methods by Dave McCracken 2003, 2004 * Anonymous methods by Andrea Arcangeli 2004 * Contributions by Hugh Dickins 2003, 2004 */ /* * Lock ordering in mm: * * inode->i_mutex (while writing or truncating, not reading or faulting) * mm->mmap_lock * page->flags PG_locked (lock_page) * (see huegtlbfs below) * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) * mapping->i_mmap_rwsem * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) * anon_vma->rwsem * mm->page_table_lock or pte_lock * swap_lock (in swap_duplicate, swap_info_get) * mmlist_lock (in mmput, drain_mmlist and others) * mapping->private_lock (in __set_page_dirty_buffers) * lock_page_memcg move_lock (in __set_page_dirty_buffers) * i_pages lock (widely used) * lruvec->lru_lock (in lock_page_lruvec_irq) * inode->i_lock (in set_page_dirty's __mark_inode_dirty) * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) * sb_lock (within inode_lock in fs/fs-writeback.c) * i_pages lock (widely used, in set_page_dirty, * in arch-dependent flush_dcache_mmap_lock, * within bdi.wb->list_lock in __sync_single_inode) * * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) * ->tasklist_lock * pte map lock * * * hugetlbfs PageHuge() pages take locks in this order: * mapping->i_mmap_rwsem * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) * page->flags PG_locked (lock_page) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" static struct kmem_cache *anon_vma_cachep; static struct kmem_cache *anon_vma_chain_cachep; static inline struct anon_vma *anon_vma_alloc(void) { struct anon_vma *anon_vma; anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); if (anon_vma) { atomic_set(&anon_vma->refcount, 1); anon_vma->degree = 1; /* Reference for first vma */ anon_vma->parent = anon_vma; /* * Initialise the anon_vma root to point to itself. If called * from fork, the root will be reset to the parents anon_vma. */ anon_vma->root = anon_vma; } return anon_vma; } static inline void anon_vma_free(struct anon_vma *anon_vma) { VM_BUG_ON(atomic_read(&anon_vma->refcount)); /* * Synchronize against page_lock_anon_vma_read() such that * we can safely hold the lock without the anon_vma getting * freed. * * Relies on the full mb implied by the atomic_dec_and_test() from * put_anon_vma() against the acquire barrier implied by * down_read_trylock() from page_lock_anon_vma_read(). This orders: * * page_lock_anon_vma_read() VS put_anon_vma() * down_read_trylock() atomic_dec_and_test() * LOCK MB * atomic_read() rwsem_is_locked() * * LOCK should suffice since the actual taking of the lock must * happen _before_ what follows. */ might_sleep(); if (rwsem_is_locked(&anon_vma->root->rwsem)) { anon_vma_lock_write(anon_vma); anon_vma_unlock_write(anon_vma); } kmem_cache_free(anon_vma_cachep, anon_vma); } static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) { return kmem_cache_alloc(anon_vma_chain_cachep, gfp); } static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) { kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); } static void anon_vma_chain_link(struct vm_area_struct *vma, struct anon_vma_chain *avc, struct anon_vma *anon_vma) { avc->vma = vma; avc->anon_vma = anon_vma; list_add(&avc->same_vma, &vma->anon_vma_chain); anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); } /** * __anon_vma_prepare - attach an anon_vma to a memory region * @vma: the memory region in question * * This makes sure the memory mapping described by 'vma' has * an 'anon_vma' attached to it, so that we can associate the * anonymous pages mapped into it with that anon_vma. * * The common case will be that we already have one, which * is handled inline by anon_vma_prepare(). But if * not we either need to find an adjacent mapping that we * can re-use the anon_vma from (very common when the only * reason for splitting a vma has been mprotect()), or we * allocate a new one. * * Anon-vma allocations are very subtle, because we may have * optimistically looked up an anon_vma in page_lock_anon_vma_read() * and that may actually touch the rwsem even in the newly * allocated vma (it depends on RCU to make sure that the * anon_vma isn't actually destroyed). * * As a result, we need to do proper anon_vma locking even * for the new allocation. At the same time, we do not want * to do any locking for the common case of already having * an anon_vma. * * This must be called with the mmap_lock held for reading. */ int __anon_vma_prepare(struct vm_area_struct *vma) { struct mm_struct *mm = vma->vm_mm; struct anon_vma *anon_vma, *allocated; struct anon_vma_chain *avc; might_sleep(); avc = anon_vma_chain_alloc(GFP_KERNEL); if (!avc) goto out_enomem; anon_vma = find_mergeable_anon_vma(vma); allocated = NULL; if (!anon_vma) { anon_vma = anon_vma_alloc(); if (unlikely(!anon_vma)) goto out_enomem_free_avc; allocated = anon_vma; } anon_vma_lock_write(anon_vma); /* page_table_lock to protect against threads */ spin_lock(&mm->page_table_lock); if (likely(!vma->anon_vma)) { vma->anon_vma = anon_vma; anon_vma_chain_link(vma, avc, anon_vma); /* vma reference or self-parent link for new root */ anon_vma->degree++; allocated = NULL; avc = NULL; } spin_unlock(&mm->page_table_lock); anon_vma_unlock_write(anon_vma); if (unlikely(allocated)) put_anon_vma(allocated); if (unlikely(avc)) anon_vma_chain_free(avc); return 0; out_enomem_free_avc: anon_vma_chain_free(avc); out_enomem: return -ENOMEM; } /* * This is a useful helper function for locking the anon_vma root as * we traverse the vma->anon_vma_chain, looping over anon_vma's that * have the same vma. * * Such anon_vma's should have the same root, so you'd expect to see * just a single mutex_lock for the whole traversal. */ static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) { struct anon_vma *new_root = anon_vma->root; if (new_root != root) { if (WARN_ON_ONCE(root)) up_write(&root->rwsem); root = new_root; down_write(&root->rwsem); } return root; } static inline void unlock_anon_vma_root(struct anon_vma *root) { if (root) up_write(&root->rwsem); } /* * Attach the anon_vmas from src to dst. * Returns 0 on success, -ENOMEM on failure. * * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and * anon_vma_fork(). The first three want an exact copy of src, while the last * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, * we can identify this case by checking (!dst->anon_vma && src->anon_vma). * * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find * and reuse existing anon_vma which has no vmas and only one child anon_vma. * This prevents degradation of anon_vma hierarchy to endless linear chain in * case of constantly forking task. On the other hand, an anon_vma with more * than one child isn't reused even if there was no alive vma, thus rmap * walker has a good chance of avoiding scanning the whole hierarchy when it * searches where page is mapped. */ int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) { struct anon_vma_chain *avc, *pavc; struct anon_vma *root = NULL; list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { struct anon_vma *anon_vma; avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); if (unlikely(!avc)) { unlock_anon_vma_root(root); root = NULL; avc = anon_vma_chain_alloc(GFP_KERNEL); if (!avc) goto enomem_failure; } anon_vma = pavc->anon_vma; root = lock_anon_vma_root(root, anon_vma); anon_vma_chain_link(dst, avc, anon_vma); /* * Reuse existing anon_vma if its degree lower than two, * that means it has no vma and only one anon_vma child. * * Do not chose parent anon_vma, otherwise first child * will always reuse it. Root anon_vma is never reused: * it has self-parent reference and at least one child. */ if (!dst->anon_vma && src->anon_vma && anon_vma != src->anon_vma && anon_vma->degree < 2) dst->anon_vma = anon_vma; } if (dst->anon_vma) dst->anon_vma->degree++; unlock_anon_vma_root(root); return 0; enomem_failure: /* * dst->anon_vma is dropped here otherwise its degree can be incorrectly * decremented in unlink_anon_vmas(). * We can safely do this because callers of anon_vma_clone() don't care * about dst->anon_vma if anon_vma_clone() failed. */ dst->anon_vma = NULL; unlink_anon_vmas(dst); return -ENOMEM; } /* * Attach vma to its own anon_vma, as well as to the anon_vmas that * the corresponding VMA in the parent process is attached to. * Returns 0 on success, non-zero on failure. */ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) { struct anon_vma_chain *avc; struct anon_vma *anon_vma; int error; /* Don't bother if the parent process has no anon_vma here. */ if (!pvma->anon_vma) return 0; /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ vma->anon_vma = NULL; /* * First, attach the new VMA to the parent VMA's anon_vmas, * so rmap can find non-COWed pages in child processes. */ error = anon_vma_clone(vma, pvma); if (error) return error; /* An existing anon_vma has been reused, all done then. */ if (vma->anon_vma) return 0; /* Then add our own anon_vma. */ anon_vma = anon_vma_alloc(); if (!anon_vma) goto out_error; avc = anon_vma_chain_alloc(GFP_KERNEL); if (!avc) goto out_error_free_anon_vma; /* * The root anon_vma's rwsem is the lock actually used when we * lock any of the anon_vmas in this anon_vma tree. */ anon_vma->root = pvma->anon_vma->root; anon_vma->parent = pvma->anon_vma; /* * With refcounts, an anon_vma can stay around longer than the * process it belongs to. The root anon_vma needs to be pinned until * this anon_vma is freed, because the lock lives in the root. */ get_anon_vma(anon_vma->root); /* Mark this anon_vma as the one where our new (COWed) pages go. */ vma->anon_vma = anon_vma; anon_vma_lock_write(anon_vma); anon_vma_chain_link(vma, avc, anon_vma); anon_vma->parent->degree++; anon_vma_unlock_write(anon_vma); return 0; out_error_free_anon_vma: put_anon_vma(anon_vma); out_error: unlink_anon_vmas(vma); return -ENOMEM; } void unlink_anon_vmas(struct vm_area_struct *vma) { struct anon_vma_chain *avc, *next; struct anon_vma *root = NULL; /* * Unlink each anon_vma chained to the VMA. This list is ordered * from newest to oldest, ensuring the root anon_vma gets freed last. */ list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { struct anon_vma *anon_vma = avc->anon_vma; root = lock_anon_vma_root(root, anon_vma); anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); /* * Leave empty anon_vmas on the list - we'll need * to free them outside the lock. */ if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { anon_vma->parent->degree--; continue; } list_del(&avc->same_vma); anon_vma_chain_free(avc); } if (vma->anon_vma) { vma->anon_vma->degree--; /* * vma would still be needed after unlink, and anon_vma will be prepared * when handle fault. */ vma->anon_vma = NULL; } unlock_anon_vma_root(root); /* * Iterate the list once more, it now only contains empty and unlinked * anon_vmas, destroy them. Could not do before due to __put_anon_vma() * needing to write-acquire the anon_vma->root->rwsem. */ list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { struct anon_vma *anon_vma = avc->anon_vma; VM_WARN_ON(anon_vma->degree); put_anon_vma(anon_vma); list_del(&avc->same_vma); anon_vma_chain_free(avc); } } static void anon_vma_ctor(void *data) { struct anon_vma *anon_vma = data; init_rwsem(&anon_vma->rwsem); atomic_set(&anon_vma->refcount, 0); anon_vma->rb_root = RB_ROOT_CACHED; } void __init anon_vma_init(void) { anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, anon_vma_ctor); anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC|SLAB_ACCOUNT); } /* * Getting a lock on a stable anon_vma from a page off the LRU is tricky! * * Since there is no serialization what so ever against page_remove_rmap() * the best this function can do is return a refcount increased anon_vma * that might have been relevant to this page. * * The page might have been remapped to a different anon_vma or the anon_vma * returned may already be freed (and even reused). * * In case it was remapped to a different anon_vma, the new anon_vma will be a * child of the old anon_vma, and the anon_vma lifetime rules will therefore * ensure that any anon_vma obtained from the page will still be valid for as * long as we observe page_mapped() [ hence all those page_mapped() tests ]. * * All users of this function must be very careful when walking the anon_vma * chain and verify that the page in question is indeed mapped in it * [ something equivalent to page_mapped_in_vma() ]. * * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from * page_remove_rmap() that the anon_vma pointer from page->mapping is valid * if there is a mapcount, we can dereference the anon_vma after observing * those. */ struct anon_vma *page_get_anon_vma(struct page *page) { struct anon_vma *anon_vma = NULL; unsigned long anon_mapping; rcu_read_lock(); anon_mapping = (unsigned long)READ_ONCE(page->mapping); if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) goto out; if (!page_mapped(page)) goto out; anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); if (!atomic_inc_not_zero(&anon_vma->refcount)) { anon_vma = NULL; goto out; } /* * If this page is still mapped, then its anon_vma cannot have been * freed. But if it has been unmapped, we have no security against the * anon_vma structure being freed and reused (for another anon_vma: * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() * above cannot corrupt). */ if (!page_mapped(page)) { rcu_read_unlock(); put_anon_vma(anon_vma); return NULL; } out: rcu_read_unlock(); return anon_vma; } /* * Similar to page_get_anon_vma() except it locks the anon_vma. * * Its a little more complex as it tries to keep the fast path to a single * atomic op -- the trylock. If we fail the trylock, we fall back to getting a * reference like with page_get_anon_vma() and then block on the mutex. */ struct anon_vma *page_lock_anon_vma_read(struct page *page) { struct anon_vma *anon_vma = NULL; struct anon_vma *root_anon_vma; unsigned long anon_mapping; rcu_read_lock(); anon_mapping = (unsigned long)READ_ONCE(page->mapping); if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) goto out; if (!page_mapped(page)) goto out; anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); root_anon_vma = READ_ONCE(anon_vma->root); if (down_read_trylock(&root_anon_vma->rwsem)) { /* * If the page is still mapped, then this anon_vma is still * its anon_vma, and holding the mutex ensures that it will * not go away, see anon_vma_free(). */ if (!page_mapped(page)) { up_read(&root_anon_vma->rwsem); anon_vma = NULL; } goto out; } /* trylock failed, we got to sleep */ if (!atomic_inc_not_zero(&anon_vma->refcount)) { anon_vma = NULL; goto out; } if (!page_mapped(page)) { rcu_read_unlock(); put_anon_vma(anon_vma); return NULL; } /* we pinned the anon_vma, its safe to sleep */ rcu_read_unlock(); anon_vma_lock_read(anon_vma); if (atomic_dec_and_test(&anon_vma->refcount)) { /* * Oops, we held the last refcount, release the lock * and bail -- can't simply use put_anon_vma() because * we'll deadlock on the anon_vma_lock_write() recursion. */ anon_vma_unlock_read(anon_vma); __put_anon_vma(anon_vma); anon_vma = NULL; } return anon_vma; out: rcu_read_unlock(); return anon_vma; } void page_unlock_anon_vma_read(struct anon_vma *anon_vma) { anon_vma_unlock_read(anon_vma); } #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH /* * Flush TLB entries for recently unmapped pages from remote CPUs. It is * important if a PTE was dirty when it was unmapped that it's flushed * before any IO is initiated on the page to prevent lost writes. Similarly, * it must be flushed before freeing to prevent data leakage. */ void try_to_unmap_flush(void) { struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; if (!tlb_ubc->flush_required) return; arch_tlbbatch_flush(&tlb_ubc->arch); tlb_ubc->flush_required = false; tlb_ubc->writable = false; } /* Flush iff there are potentially writable TLB entries that can race with IO */ void try_to_unmap_flush_dirty(void) { struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; if (tlb_ubc->writable) try_to_unmap_flush(); } static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) { struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); tlb_ubc->flush_required = true; /* * Ensure compiler does not re-order the setting of tlb_flush_batched * before the PTE is cleared. */ barrier(); mm->tlb_flush_batched = true; /* * If the PTE was dirty then it's best to assume it's writable. The * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() * before the page is queued for IO. */ if (writable) tlb_ubc->writable = true; } /* * Returns true if the TLB flush should be deferred to the end of a batch of * unmap operations to reduce IPIs. */ static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) { bool should_defer = false; if (!(flags & TTU_BATCH_FLUSH)) return false; /* If remote CPUs need to be flushed then defer batch the flush */ if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) should_defer = true; put_cpu(); return should_defer; } /* * Reclaim unmaps pages under the PTL but do not flush the TLB prior to * releasing the PTL if TLB flushes are batched. It's possible for a parallel * operation such as mprotect or munmap to race between reclaim unmapping * the page and flushing the page. If this race occurs, it potentially allows * access to data via a stale TLB entry. Tracking all mm's that have TLB * batching in flight would be expensive during reclaim so instead track * whether TLB batching occurred in the past and if so then do a flush here * if required. This will cost one additional flush per reclaim cycle paid * by the first operation at risk such as mprotect and mumap. * * This must be called under the PTL so that an access to tlb_flush_batched * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise * via the PTL. */ void flush_tlb_batched_pending(struct mm_struct *mm) { if (data_race(mm->tlb_flush_batched)) { flush_tlb_mm(mm); /* * Do not allow the compiler to re-order the clearing of * tlb_flush_batched before the tlb is flushed. */ barrier(); mm->tlb_flush_batched = false; } } #else static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) { } static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) { return false; } #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ /* * At what user virtual address is page expected in vma? * Caller should check the page is actually part of the vma. */ unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) { if (PageAnon(page)) { struct anon_vma *page__anon_vma = page_anon_vma(page); /* * Note: swapoff's unuse_vma() is more efficient with this * check, and needs it to match anon_vma when KSM is active. */ if (!vma->anon_vma || !page__anon_vma || vma->anon_vma->root != page__anon_vma->root) return -EFAULT; } else if (!vma->vm_file) { return -EFAULT; } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) { return -EFAULT; } return vma_address(page, vma); } pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) { pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd = NULL; pmd_t pmde; pgd = pgd_offset(mm, address); if (!pgd_present(*pgd)) goto out; p4d = p4d_offset(pgd, address); if (!p4d_present(*p4d)) goto out; pud = pud_offset(p4d, address); if (!pud_present(*pud)) goto out; pmd = pmd_offset(pud, address); /* * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() * without holding anon_vma lock for write. So when looking for a * genuine pmde (in which to find pte), test present and !THP together. */ pmde = *pmd; barrier(); if (!pmd_present(pmde) || pmd_trans_huge(pmde)) pmd = NULL; out: return pmd; } struct page_referenced_arg { int mapcount; int referenced; unsigned long vm_flags; struct mem_cgroup *memcg; }; /* * arg: page_referenced_arg will be passed */ static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, unsigned long address, void *arg) { struct page_referenced_arg *pra = arg; struct page_vma_mapped_walk pvmw = { .page = page, .vma = vma, .address = address, }; int referenced = 0; while (page_vma_mapped_walk(&pvmw)) { address = pvmw.address; if (vma->vm_flags & VM_LOCKED) { page_vma_mapped_walk_done(&pvmw); pra->vm_flags |= VM_LOCKED; return false; /* To break the loop */ } if (pvmw.pte) { if (ptep_clear_flush_young_notify(vma, address, pvmw.pte)) { /* * Don't treat a reference through * a sequentially read mapping as such. * If the page has been used in another mapping, * we will catch it; if this other mapping is * already gone, the unmap path will have set * PG_referenced or activated the page. */ if (likely(!(vma->vm_flags & VM_SEQ_READ))) referenced++; } } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { if (pmdp_clear_flush_young_notify(vma, address, pvmw.pmd)) referenced++; } else { /* unexpected pmd-mapped page? */ WARN_ON_ONCE(1); } pra->mapcount--; } if (referenced) clear_page_idle(page); if (test_and_clear_page_young(page)) referenced++; if (referenced) { pra->referenced++; pra->vm_flags |= vma->vm_flags; } if (!pra->mapcount) return false; /* To break the loop */ return true; } static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) { struct page_referenced_arg *pra = arg; struct mem_cgroup *memcg = pra->memcg; if (!mm_match_cgroup(vma->vm_mm, memcg)) return true; return false; } /** * page_referenced - test if the page was referenced * @page: the page to test * @is_locked: caller holds lock on the page * @memcg: target memory cgroup * @vm_flags: collect encountered vma->vm_flags who actually referenced the page * * Quick test_and_clear_referenced for all mappings to a page, * returns the number of ptes which referenced the page. */ int page_referenced(struct page *page, int is_locked, struct mem_cgroup *memcg, unsigned long *vm_flags) { int we_locked = 0; struct page_referenced_arg pra = { .mapcount = total_mapcount(page), .memcg = memcg, }; struct rmap_walk_control rwc = { .rmap_one = page_referenced_one, .arg = (void *)&pra, .anon_lock = page_lock_anon_vma_read, }; *vm_flags = 0; if (!pra.mapcount) return 0; if (!page_rmapping(page)) return 0; if (!is_locked && (!PageAnon(page) || PageKsm(page))) { we_locked = trylock_page(page); if (!we_locked) return 1; } /* * If we are reclaiming on behalf of a cgroup, skip * counting on behalf of references from different * cgroups */ if (memcg) { rwc.invalid_vma = invalid_page_referenced_vma; } rmap_walk(page, &rwc); *vm_flags = pra.vm_flags; if (we_locked) unlock_page(page); return pra.referenced; } static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, unsigned long address, void *arg) { struct page_vma_mapped_walk pvmw = { .page = page, .vma = vma, .address = address, .flags = PVMW_SYNC, }; struct mmu_notifier_range range; int *cleaned = arg; /* * We have to assume the worse case ie pmd for invalidation. Note that * the page can not be free from this function. */ mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 0, vma, vma->vm_mm, address, vma_address_end(page, vma)); mmu_notifier_invalidate_range_start(&range); while (page_vma_mapped_walk(&pvmw)) { int ret = 0; address = pvmw.address; if (pvmw.pte) { pte_t entry; pte_t *pte = pvmw.pte; if (!pte_dirty(*pte) && !pte_write(*pte)) continue; flush_cache_page(vma, address, pte_pfn(*pte)); entry = ptep_clear_flush(vma, address, pte); entry = pte_wrprotect(entry); entry = pte_mkclean(entry); set_pte_at(vma->vm_mm, address, pte, entry); ret = 1; } else { #ifdef CONFIG_TRANSPARENT_HUGEPAGE pmd_t *pmd = pvmw.pmd; pmd_t entry; if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) continue; flush_cache_page(vma, address, page_to_pfn(page)); entry = pmdp_invalidate(vma, address, pmd); entry = pmd_wrprotect(entry); entry = pmd_mkclean(entry); set_pmd_at(vma->vm_mm, address, pmd, entry); ret = 1; #else /* unexpected pmd-mapped page? */ WARN_ON_ONCE(1); #endif } /* * No need to call mmu_notifier_invalidate_range() as we are * downgrading page table protection not changing it to point * to a new page. * * See Documentation/vm/mmu_notifier.rst */ if (ret) (*cleaned)++; } mmu_notifier_invalidate_range_end(&range); return true; } static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) { if (vma->vm_flags & VM_SHARED) return false; return true; } int page_mkclean(struct page *page) { int cleaned = 0; struct address_space *mapping; struct rmap_walk_control rwc = { .arg = (void *)&cleaned, .rmap_one = page_mkclean_one, .invalid_vma = invalid_mkclean_vma, }; BUG_ON(!PageLocked(page)); if (!page_mapped(page)) return 0; mapping = page_mapping(page); if (!mapping) return 0; rmap_walk(page, &rwc); return cleaned; } EXPORT_SYMBOL_GPL(page_mkclean); /** * page_move_anon_rmap - move a page to our anon_vma * @page: the page to move to our anon_vma * @vma: the vma the page belongs to * * When a page belongs exclusively to one process after a COW event, * that page can be moved into the anon_vma that belongs to just that * process, so the rmap code will not search the parent or sibling * processes. */ void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) { struct anon_vma *anon_vma = vma->anon_vma; page = compound_head(page); VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_VMA(!anon_vma, vma); anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; /* * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written * simultaneously, so a concurrent reader (eg page_referenced()'s * PageAnon()) will not see one without the other. */ WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); } /** * __page_set_anon_rmap - set up new anonymous rmap * @page: Page or Hugepage to add to rmap * @vma: VM area to add page to. * @address: User virtual address of the mapping * @exclusive: the page is exclusively owned by the current process */ static void __page_set_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address, int exclusive) { struct anon_vma *anon_vma = vma->anon_vma; BUG_ON(!anon_vma); if (PageAnon(page)) return; /* * If the page isn't exclusively mapped into this vma, * we must use the _oldest_ possible anon_vma for the * page mapping! */ if (!exclusive) anon_vma = anon_vma->root; /* * page_idle does a lockless/optimistic rmap scan on page->mapping. * Make sure the compiler doesn't split the stores of anon_vma and * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code * could mistake the mapping for a struct address_space and crash. */ anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); page->index = linear_page_index(vma, address); } /** * __page_check_anon_rmap - sanity check anonymous rmap addition * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped */ static void __page_check_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { /* * The page's anon-rmap details (mapping and index) are guaranteed to * be set up correctly at this point. * * We have exclusion against page_add_anon_rmap because the caller * always holds the page locked. * * We have exclusion against page_add_new_anon_rmap because those pages * are initially only visible via the pagetables, and the pte is locked * over the call to page_add_new_anon_rmap. */ VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page); VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), page); } /** * page_add_anon_rmap - add pte mapping to an anonymous page * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped * @compound: charge the page as compound or small page * * The caller needs to hold the pte lock, and the page must be locked in * the anon_vma case: to serialize mapping,index checking after setting, * and to ensure that PageAnon is not being upgraded racily to PageKsm * (but PageKsm is never downgraded to PageAnon). */ void page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address, bool compound) { do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); } /* * Special version of the above for do_swap_page, which often runs * into pages that are exclusively owned by the current process. * Everybody else should continue to use page_add_anon_rmap above. */ void do_page_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address, int flags) { bool compound = flags & RMAP_COMPOUND; bool first; if (unlikely(PageKsm(page))) lock_page_memcg(page); else VM_BUG_ON_PAGE(!PageLocked(page), page); if (compound) { atomic_t *mapcount; VM_BUG_ON_PAGE(!PageLocked(page), page); VM_BUG_ON_PAGE(!PageTransHuge(page), page); mapcount = compound_mapcount_ptr(page); first = atomic_inc_and_test(mapcount); } else { first = atomic_inc_and_test(&page->_mapcount); } if (first) { int nr = compound ? thp_nr_pages(page) : 1; /* * We use the irq-unsafe __{inc|mod}_zone_page_stat because * these counters are not modified in interrupt context, and * pte lock(a spinlock) is held, which implies preemption * disabled. */ if (compound) __mod_lruvec_page_state(page, NR_ANON_THPS, nr); __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); } if (unlikely(PageKsm(page))) { unlock_page_memcg(page); return; } /* address might be in next vma when migration races vma_adjust */ if (first) __page_set_anon_rmap(page, vma, address, flags & RMAP_EXCLUSIVE); else __page_check_anon_rmap(page, vma, address); } /** * page_add_new_anon_rmap - add pte mapping to a new anonymous page * @page: the page to add the mapping to * @vma: the vm area in which the mapping is added * @address: the user virtual address mapped * @compound: charge the page as compound or small page * * Same as page_add_anon_rmap but must only be called on *new* pages. * This means the inc-and-test can be bypassed. * Page does not have to be locked. */ void page_add_new_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address, bool compound) { int nr = compound ? thp_nr_pages(page) : 1; VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); __SetPageSwapBacked(page); if (compound) { VM_BUG_ON_PAGE(!PageTransHuge(page), page); /* increment count (starts at -1) */ atomic_set(compound_mapcount_ptr(page), 0); if (hpage_pincount_available(page)) atomic_set(compound_pincount_ptr(page), 0); __mod_lruvec_page_state(page, NR_ANON_THPS, nr); } else { /* Anon THP always mapped first with PMD */ VM_BUG_ON_PAGE(PageTransCompound(page), page); /* increment count (starts at -1) */ atomic_set(&page->_mapcount, 0); } __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); __page_set_anon_rmap(page, vma, address, 1); } /** * page_add_file_rmap - add pte mapping to a file page * @page: the page to add the mapping to * @compound: charge the page as compound or small page * * The caller needs to hold the pte lock. */ void page_add_file_rmap(struct page *page, bool compound) { int i, nr = 1; VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); lock_page_memcg(page); if (compound && PageTransHuge(page)) { int nr_pages = thp_nr_pages(page); for (i = 0, nr = 0; i < nr_pages; i++) { if (atomic_inc_and_test(&page[i]._mapcount)) nr++; } if (!atomic_inc_and_test(compound_mapcount_ptr(page))) goto out; if (PageSwapBacked(page)) __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, nr_pages); else __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, nr_pages); } else { if (PageTransCompound(page) && page_mapping(page)) { VM_WARN_ON_ONCE(!PageLocked(page)); SetPageDoubleMap(compound_head(page)); if (PageMlocked(page)) clear_page_mlock(compound_head(page)); } if (!atomic_inc_and_test(&page->_mapcount)) goto out; } __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); out: unlock_page_memcg(page); } static void page_remove_file_rmap(struct page *page, bool compound) { int i, nr = 1; VM_BUG_ON_PAGE(compound && !PageHead(page), page); /* Hugepages are not counted in NR_FILE_MAPPED for now. */ if (unlikely(PageHuge(page))) { /* hugetlb pages are always mapped with pmds */ atomic_dec(compound_mapcount_ptr(page)); return; } /* page still mapped by someone else? */ if (compound && PageTransHuge(page)) { int nr_pages = thp_nr_pages(page); for (i = 0, nr = 0; i < nr_pages; i++) { if (atomic_add_negative(-1, &page[i]._mapcount)) nr++; } if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) return; if (PageSwapBacked(page)) __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, -nr_pages); else __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, -nr_pages); } else { if (!atomic_add_negative(-1, &page->_mapcount)) return; } /* * We use the irq-unsafe __{inc|mod}_lruvec_page_state because * these counters are not modified in interrupt context, and * pte lock(a spinlock) is held, which implies preemption disabled. */ __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); if (unlikely(PageMlocked(page))) clear_page_mlock(page); } static void page_remove_anon_compound_rmap(struct page *page) { int i, nr; if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) return; /* Hugepages are not counted in NR_ANON_PAGES for now. */ if (unlikely(PageHuge(page))) return; if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) return; __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); if (TestClearPageDoubleMap(page)) { /* * Subpages can be mapped with PTEs too. Check how many of * them are still mapped. */ for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { if (atomic_add_negative(-1, &page[i]._mapcount)) nr++; } /* * Queue the page for deferred split if at least one small * page of the compound page is unmapped, but at least one * small page is still mapped. */ if (nr && nr < thp_nr_pages(page)) deferred_split_huge_page(page); } else { nr = thp_nr_pages(page); } if (unlikely(PageMlocked(page))) clear_page_mlock(page); if (nr) __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); } /** * page_remove_rmap - take down pte mapping from a page * @page: page to remove mapping from * @compound: uncharge the page as compound or small page * * The caller needs to hold the pte lock. */ void page_remove_rmap(struct page *page, bool compound) { lock_page_memcg(page); if (!PageAnon(page)) { page_remove_file_rmap(page, compound); goto out; } if (compound) { page_remove_anon_compound_rmap(page); goto out; } /* page still mapped by someone else? */ if (!atomic_add_negative(-1, &page->_mapcount)) goto out; /* * We use the irq-unsafe __{inc|mod}_zone_page_stat because * these counters are not modified in interrupt context, and * pte lock(a spinlock) is held, which implies preemption disabled. */ __dec_lruvec_page_state(page, NR_ANON_MAPPED); if (unlikely(PageMlocked(page))) clear_page_mlock(page); if (PageTransCompound(page)) deferred_split_huge_page(compound_head(page)); /* * It would be tidy to reset the PageAnon mapping here, * but that might overwrite a racing page_add_anon_rmap * which increments mapcount after us but sets mapping * before us: so leave the reset to free_unref_page, * and remember that it's only reliable while mapped. * Leaving it set also helps swapoff to reinstate ptes * faster for those pages still in swapcache. */ out: unlock_page_memcg(page); } /* * @arg: enum ttu_flags will be passed to this argument */ static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, unsigned long address, void *arg) { struct mm_struct *mm = vma->vm_mm; struct page_vma_mapped_walk pvmw = { .page = page, .vma = vma, .address = address, }; pte_t pteval; struct page *subpage; bool ret = true; struct mmu_notifier_range range; enum ttu_flags flags = (enum ttu_flags)(long)arg; /* * When racing against e.g. zap_pte_range() on another cpu, * in between its ptep_get_and_clear_full() and page_remove_rmap(), * try_to_unmap() may return before page_mapped() has become false, * if page table locking is skipped: use TTU_SYNC to wait for that. */ if (flags & TTU_SYNC) pvmw.flags = PVMW_SYNC; if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && is_zone_device_page(page) && !is_device_private_page(page)) return true; if (flags & TTU_SPLIT_HUGE_PMD) { split_huge_pmd_address(vma, address, flags & TTU_SPLIT_FREEZE, page); } /* * For THP, we have to assume the worse case ie pmd for invalidation. * For hugetlb, it could be much worse if we need to do pud * invalidation in the case of pmd sharing. * * Note that the page can not be free in this function as call of * try_to_unmap() must hold a reference on the page. */ range.end = PageKsm(page) ? address + PAGE_SIZE : vma_address_end(page, vma); mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, address, range.end); if (PageHuge(page)) { /* * If sharing is possible, start and end will be adjusted * accordingly. */ adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); } mmu_notifier_invalidate_range_start(&range); while (page_vma_mapped_walk(&pvmw)) { #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION /* PMD-mapped THP migration entry */ if (!pvmw.pte && (flags & TTU_MIGRATION)) { VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); set_pmd_migration_entry(&pvmw, page); continue; } #endif /* * If the page is mlock()d, we cannot swap it out. * If it's recently referenced (perhaps page_referenced * skipped over this mm) then we should reactivate it. */ if (!(flags & TTU_IGNORE_MLOCK)) { if (vma->vm_flags & VM_LOCKED) { /* PTE-mapped THP are never mlocked */ if (!PageTransCompound(page)) { /* * Holding pte lock, we do *not* need * mmap_lock here */ mlock_vma_page(page); } ret = false; page_vma_mapped_walk_done(&pvmw); break; } } /* Unexpected PMD-mapped THP? */ VM_BUG_ON_PAGE(!pvmw.pte, page); subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); address = pvmw.address; if (PageHuge(page) && !PageAnon(page)) { /* * To call huge_pmd_unshare, i_mmap_rwsem must be * held in write mode. Caller needs to explicitly * do this outside rmap routines. */ VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { /* * huge_pmd_unshare unmapped an entire PMD * page. There is no way of knowing exactly * which PMDs may be cached for this mm, so * we must flush them all. start/end were * already adjusted above to cover this range. */ flush_cache_range(vma, range.start, range.end); flush_tlb_range(vma, range.start, range.end); mmu_notifier_invalidate_range(mm, range.start, range.end); /* * The ref count of the PMD page was dropped * which is part of the way map counting * is done for shared PMDs. Return 'true' * here. When there is no other sharing, * huge_pmd_unshare returns false and we will * unmap the actual page and drop map count * to zero. */ page_vma_mapped_walk_done(&pvmw); break; } } if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && is_zone_device_page(page)) { swp_entry_t entry; pte_t swp_pte; pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); /* * Store the pfn of the page in a special migration * pte. do_swap_page() will wait until the migration * pte is removed and then restart fault handling. */ entry = make_readable_migration_entry(page_to_pfn(page)); swp_pte = swp_entry_to_pte(entry); /* * pteval maps a zone device page and is therefore * a swap pte. */ if (pte_swp_soft_dirty(pteval)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_swp_uffd_wp(pteval)) swp_pte = pte_swp_mkuffd_wp(swp_pte); set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); /* * No need to invalidate here it will synchronize on * against the special swap migration pte. * * The assignment to subpage above was computed from a * swap PTE which results in an invalid pointer. * Since only PAGE_SIZE pages can currently be * migrated, just set it to page. This will need to be * changed when hugepage migrations to device private * memory are supported. */ subpage = page; goto discard; } /* Nuke the page table entry. */ flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); if (should_defer_flush(mm, flags)) { /* * We clear the PTE but do not flush so potentially * a remote CPU could still be writing to the page. * If the entry was previously clean then the * architecture must guarantee that a clear->dirty * transition on a cached TLB entry is written through * and traps if the PTE is unmapped. */ pteval = ptep_get_and_clear(mm, address, pvmw.pte); set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); } else { pteval = ptep_clear_flush(vma, address, pvmw.pte); } /* Move the dirty bit to the page. Now the pte is gone. */ if (pte_dirty(pteval)) set_page_dirty(page); /* Update high watermark before we lower rss */ update_hiwater_rss(mm); if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); if (PageHuge(page)) { hugetlb_count_sub(compound_nr(page), mm); set_huge_swap_pte_at(mm, address, pvmw.pte, pteval, vma_mmu_pagesize(vma)); } else { dec_mm_counter(mm, mm_counter(page)); set_pte_at(mm, address, pvmw.pte, pteval); } } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { /* * The guest indicated that the page content is of no * interest anymore. Simply discard the pte, vmscan * will take care of the rest. * A future reference will then fault in a new zero * page. When userfaultfd is active, we must not drop * this page though, as its main user (postcopy * migration) will not expect userfaults on already * copied pages. */ dec_mm_counter(mm, mm_counter(page)); /* We have to invalidate as we cleared the pte */ mmu_notifier_invalidate_range(mm, address, address + PAGE_SIZE); } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { swp_entry_t entry; pte_t swp_pte; if (arch_unmap_one(mm, vma, address, pteval) < 0) { set_pte_at(mm, address, pvmw.pte, pteval); ret = false; page_vma_mapped_walk_done(&pvmw); break; } /* * Store the pfn of the page in a special migration * pte. do_swap_page() will wait until the migration * pte is removed and then restart fault handling. */ if (pte_write(pteval)) entry = make_writable_migration_entry( page_to_pfn(subpage)); else entry = make_readable_migration_entry( page_to_pfn(subpage)); swp_pte = swp_entry_to_pte(entry); if (pte_soft_dirty(pteval)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_uffd_wp(pteval)) swp_pte = pte_swp_mkuffd_wp(swp_pte); set_pte_at(mm, address, pvmw.pte, swp_pte); /* * No need to invalidate here it will synchronize on * against the special swap migration pte. */ } else if (PageAnon(page)) { swp_entry_t entry = { .val = page_private(subpage) }; pte_t swp_pte; /* * Store the swap location in the pte. * See handle_pte_fault() ... */ if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { WARN_ON_ONCE(1); ret = false; /* We have to invalidate as we cleared the pte */ mmu_notifier_invalidate_range(mm, address, address + PAGE_SIZE); page_vma_mapped_walk_done(&pvmw); break; } /* MADV_FREE page check */ if (!PageSwapBacked(page)) { if (!PageDirty(page)) { /* Invalidate as we cleared the pte */ mmu_notifier_invalidate_range(mm, address, address + PAGE_SIZE); dec_mm_counter(mm, MM_ANONPAGES); goto discard; } /* * If the page was redirtied, it cannot be * discarded. Remap the page to page table. */ set_pte_at(mm, address, pvmw.pte, pteval); SetPageSwapBacked(page); ret = false; page_vma_mapped_walk_done(&pvmw); break; } if (swap_duplicate(entry) < 0) { set_pte_at(mm, address, pvmw.pte, pteval); ret = false; page_vma_mapped_walk_done(&pvmw); break; } if (arch_unmap_one(mm, vma, address, pteval) < 0) { set_pte_at(mm, address, pvmw.pte, pteval); ret = false; page_vma_mapped_walk_done(&pvmw); break; } if (list_empty(&mm->mmlist)) { spin_lock(&mmlist_lock); if (list_empty(&mm->mmlist)) list_add(&mm->mmlist, &init_mm.mmlist); spin_unlock(&mmlist_lock); } dec_mm_counter(mm, MM_ANONPAGES); inc_mm_counter(mm, MM_SWAPENTS); swp_pte = swp_entry_to_pte(entry); if (pte_soft_dirty(pteval)) swp_pte = pte_swp_mksoft_dirty(swp_pte); if (pte_uffd_wp(pteval)) swp_pte = pte_swp_mkuffd_wp(swp_pte); set_pte_at(mm, address, pvmw.pte, swp_pte); /* Invalidate as we cleared the pte */ mmu_notifier_invalidate_range(mm, address, address + PAGE_SIZE); } else { /* * This is a locked file-backed page, thus it cannot * be removed from the page cache and replaced by a new * page before mmu_notifier_invalidate_range_end, so no * concurrent thread might update its page table to * point at new page while a device still is using this * page. * * See Documentation/vm/mmu_notifier.rst */ dec_mm_counter(mm, mm_counter_file(page)); } discard: /* * No need to call mmu_notifier_invalidate_range() it has be * done above for all cases requiring it to happen under page * table lock before mmu_notifier_invalidate_range_end() * * See Documentation/vm/mmu_notifier.rst */ page_remove_rmap(subpage, PageHuge(page)); put_page(page); } mmu_notifier_invalidate_range_end(&range); return ret; } static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) { return vma_is_temporary_stack(vma); } static int page_not_mapped(struct page *page) { return !page_mapped(page); } /** * try_to_unmap - try to remove all page table mappings to a page * @page: the page to get unmapped * @flags: action and flags * * Tries to remove all the page table entries which are mapping this * page, used in the pageout path. Caller must hold the page lock. * * It is the caller's responsibility to check if the page is still * mapped when needed (use TTU_SYNC to prevent accounting races). */ void try_to_unmap(struct page *page, enum ttu_flags flags) { struct rmap_walk_control rwc = { .rmap_one = try_to_unmap_one, .arg = (void *)flags, .done = page_not_mapped, .anon_lock = page_lock_anon_vma_read, }; /* * During exec, a temporary VMA is setup and later moved. * The VMA is moved under the anon_vma lock but not the * page tables leading to a race where migration cannot * find the migration ptes. Rather than increasing the * locking requirements of exec(), migration skips * temporary VMAs until after exec() completes. */ if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) && !PageKsm(page) && PageAnon(page)) rwc.invalid_vma = invalid_migration_vma; if (flags & TTU_RMAP_LOCKED) rmap_walk_locked(page, &rwc); else rmap_walk(page, &rwc); } /* * Walks the vma's mapping a page and mlocks the page if any locked vma's are * found. Once one is found the page is locked and the scan can be terminated. */ static bool page_mlock_one(struct page *page, struct vm_area_struct *vma, unsigned long address, void *unused) { struct page_vma_mapped_walk pvmw = { .page = page, .vma = vma, .address = address, }; /* An un-locked vma doesn't have any pages to lock, continue the scan */ if (!(vma->vm_flags & VM_LOCKED)) return true; while (page_vma_mapped_walk(&pvmw)) { /* * Need to recheck under the ptl to serialise with * __munlock_pagevec_fill() after VM_LOCKED is cleared in * munlock_vma_pages_range(). */ if (vma->vm_flags & VM_LOCKED) { /* PTE-mapped THP are never mlocked */ if (!PageTransCompound(page)) mlock_vma_page(page); page_vma_mapped_walk_done(&pvmw); } /* * no need to continue scanning other vma's if the page has * been locked. */ return false; } return true; } /** * page_mlock - try to mlock a page * @page: the page to be mlocked * * Called from munlock code. Checks all of the VMAs mapping the page and mlocks * the page if any are found. The page will be returned with PG_mlocked cleared * if it is not mapped by any locked vmas. */ void page_mlock(struct page *page) { struct rmap_walk_control rwc = { .rmap_one = page_mlock_one, .done = page_not_mapped, .anon_lock = page_lock_anon_vma_read, }; VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); rmap_walk(page, &rwc); } void __put_anon_vma(struct anon_vma *anon_vma) { struct anon_vma *root = anon_vma->root; anon_vma_free(anon_vma); if (root != anon_vma && atomic_dec_and_test(&root->refcount)) anon_vma_free(root); } static struct anon_vma *rmap_walk_anon_lock(struct page *page, struct rmap_walk_control *rwc) { struct anon_vma *anon_vma; if (rwc->anon_lock) return rwc->anon_lock(page); /* * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() * because that depends on page_mapped(); but not all its usages * are holding mmap_lock. Users without mmap_lock are required to * take a reference count to prevent the anon_vma disappearing */ anon_vma = page_anon_vma(page); if (!anon_vma) return NULL; anon_vma_lock_read(anon_vma); return anon_vma; } /* * rmap_walk_anon - do something to anonymous page using the object-based * rmap method * @page: the page to be handled * @rwc: control variable according to each walk type * * Find all the mappings of a page using the mapping pointer and the vma chains * contained in the anon_vma struct it points to. * * When called from page_mlock(), the mmap_lock of the mm containing the vma * where the page was found will be held for write. So, we won't recheck * vm_flags for that VMA. That should be OK, because that vma shouldn't be * LOCKED. */ static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, bool locked) { struct anon_vma *anon_vma; pgoff_t pgoff_start, pgoff_end; struct anon_vma_chain *avc; if (locked) { anon_vma = page_anon_vma(page); /* anon_vma disappear under us? */ VM_BUG_ON_PAGE(!anon_vma, page); } else { anon_vma = rmap_walk_anon_lock(page, rwc); } if (!anon_vma) return; pgoff_start = page_to_pgoff(page); pgoff_end = pgoff_start + thp_nr_pages(page) - 1; anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff_start, pgoff_end) { struct vm_area_struct *vma = avc->vma; unsigned long address = vma_address(page, vma); VM_BUG_ON_VMA(address == -EFAULT, vma); cond_resched(); if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) continue; if (!rwc->rmap_one(page, vma, address, rwc->arg)) break; if (rwc->done && rwc->done(page)) break; } if (!locked) anon_vma_unlock_read(anon_vma); } /* * rmap_walk_file - do something to file page using the object-based rmap method * @page: the page to be handled * @rwc: control variable according to each walk type * * Find all the mappings of a page using the mapping pointer and the vma chains * contained in the address_space struct it points to. * * When called from page_mlock(), the mmap_lock of the mm containing the vma * where the page was found will be held for write. So, we won't recheck * vm_flags for that VMA. That should be OK, because that vma shouldn't be * LOCKED. */ static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, bool locked) { struct address_space *mapping = page_mapping(page); pgoff_t pgoff_start, pgoff_end; struct vm_area_struct *vma; /* * The page lock not only makes sure that page->mapping cannot * suddenly be NULLified by truncation, it makes sure that the * structure at mapping cannot be freed and reused yet, * so we can safely take mapping->i_mmap_rwsem. */ VM_BUG_ON_PAGE(!PageLocked(page), page); if (!mapping) return; pgoff_start = page_to_pgoff(page); pgoff_end = pgoff_start + thp_nr_pages(page) - 1; if (!locked) i_mmap_lock_read(mapping); vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff_start, pgoff_end) { unsigned long address = vma_address(page, vma); VM_BUG_ON_VMA(address == -EFAULT, vma); cond_resched(); if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) continue; if (!rwc->rmap_one(page, vma, address, rwc->arg)) goto done; if (rwc->done && rwc->done(page)) goto done; } done: if (!locked) i_mmap_unlock_read(mapping); } void rmap_walk(struct page *page, struct rmap_walk_control *rwc) { if (unlikely(PageKsm(page))) rmap_walk_ksm(page, rwc); else if (PageAnon(page)) rmap_walk_anon(page, rwc, false); else rmap_walk_file(page, rwc, false); } /* Like rmap_walk, but caller holds relevant rmap lock */ void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) { /* no ksm support for now */ VM_BUG_ON_PAGE(PageKsm(page), page); if (PageAnon(page)) rmap_walk_anon(page, rwc, true); else rmap_walk_file(page, rwc, true); } #ifdef CONFIG_HUGETLB_PAGE /* * The following two functions are for anonymous (private mapped) hugepages. * Unlike common anonymous pages, anonymous hugepages have no accounting code * and no lru code, because we handle hugepages differently from common pages. */ void hugepage_add_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { struct anon_vma *anon_vma = vma->anon_vma; int first; BUG_ON(!PageLocked(page)); BUG_ON(!anon_vma); /* address might be in next vma when migration races vma_adjust */ first = atomic_inc_and_test(compound_mapcount_ptr(page)); if (first) __page_set_anon_rmap(page, vma, address, 0); } void hugepage_add_new_anon_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) { BUG_ON(address < vma->vm_start || address >= vma->vm_end); atomic_set(compound_mapcount_ptr(page), 0); if (hpage_pincount_available(page)) atomic_set(compound_pincount_ptr(page), 0); __page_set_anon_rmap(page, vma, address, 1); } #endif /* CONFIG_HUGETLB_PAGE */