#include <linux/mm.h> #include <linux/mmzone.h> #include <linux/bootmem.h> #include <linux/bit_spinlock.h> #include <linux/page_cgroup.h> #include <linux/hash.h> #include <linux/slab.h> #include <linux/memory.h> #include <linux/vmalloc.h> #include <linux/cgroup.h> static void __meminit __init_page_cgroup(struct page_cgroup *pc, unsigned long pfn) { pc->flags = 0; pc->mem_cgroup = NULL; pc->page = pfn_to_page(pfn); } static unsigned long total_usage; #if !defined(CONFIG_SPARSEMEM) void __init pgdat_page_cgroup_init(struct pglist_data *pgdat) { pgdat->node_page_cgroup = NULL; } struct page_cgroup *lookup_page_cgroup(struct page *page) { unsigned long pfn = page_to_pfn(page); unsigned long offset; struct page_cgroup *base; base = NODE_DATA(page_to_nid(page))->node_page_cgroup; if (unlikely(!base)) return NULL; offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn; return base + offset; } static int __init alloc_node_page_cgroup(int nid) { struct page_cgroup *base, *pc; unsigned long table_size; unsigned long start_pfn, nr_pages, index; start_pfn = NODE_DATA(nid)->node_start_pfn; nr_pages = NODE_DATA(nid)->node_spanned_pages; table_size = sizeof(struct page_cgroup) * nr_pages; base = __alloc_bootmem_node_nopanic(NODE_DATA(nid), table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); if (!base) return -ENOMEM; for (index = 0; index < nr_pages; index++) { pc = base + index; __init_page_cgroup(pc, start_pfn + index); } NODE_DATA(nid)->node_page_cgroup = base; total_usage += table_size; return 0; } void __init page_cgroup_init(void) { int nid, fail; if (mem_cgroup_subsys.disabled) return; for_each_online_node(nid) { fail = alloc_node_page_cgroup(nid); if (fail) goto fail; } printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage); printk(KERN_INFO "please try cgroup_disable=memory option if you" " don't want\n"); return; fail: printk(KERN_CRIT "allocation of page_cgroup was failed.\n"); printk(KERN_CRIT "please try cgroup_disable=memory boot option\n"); panic("Out of memory"); } #else /* CONFIG_FLAT_NODE_MEM_MAP */ struct page_cgroup *lookup_page_cgroup(struct page *page) { unsigned long pfn = page_to_pfn(page); struct mem_section *section = __pfn_to_section(pfn); return section->page_cgroup + pfn; } int __meminit init_section_page_cgroup(unsigned long pfn) { struct mem_section *section; struct page_cgroup *base, *pc; unsigned long table_size; int nid, index; section = __pfn_to_section(pfn); if (section->page_cgroup) return 0; nid = page_to_nid(pfn_to_page(pfn)); table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION; if (slab_is_available()) { base = kmalloc_node(table_size, GFP_KERNEL, nid); if (!base) base = vmalloc_node(table_size, nid); } else { base = __alloc_bootmem_node_nopanic(NODE_DATA(nid), table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); } if (!base) { printk(KERN_ERR "page cgroup allocation failure\n"); return -ENOMEM; } for (index = 0; index < PAGES_PER_SECTION; index++) { pc = base + index; __init_page_cgroup(pc, pfn + index); } section = __pfn_to_section(pfn); section->page_cgroup = base - pfn; total_usage += table_size; return 0; } #ifdef CONFIG_MEMORY_HOTPLUG void __free_page_cgroup(unsigned long pfn) { struct mem_section *ms; struct page_cgroup *base; ms = __pfn_to_section(pfn); if (!ms || !ms->page_cgroup) return; base = ms->page_cgroup + pfn; if (is_vmalloc_addr(base)) { vfree(base); ms->page_cgroup = NULL; } else { struct page *page = virt_to_page(base); if (!PageReserved(page)) { /* Is bootmem ? */ kfree(base); ms->page_cgroup = NULL; } } } int online_page_cgroup(unsigned long start_pfn, unsigned long nr_pages, int nid) { unsigned long start, end, pfn; int fail = 0; start = start_pfn & (PAGES_PER_SECTION - 1); end = ALIGN(start_pfn + nr_pages, PAGES_PER_SECTION); for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { if (!pfn_present(pfn)) continue; fail = init_section_page_cgroup(pfn); } if (!fail) return 0; /* rollback */ for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __free_page_cgroup(pfn); return -ENOMEM; } int offline_page_cgroup(unsigned long start_pfn, unsigned long nr_pages, int nid) { unsigned long start, end, pfn; start = start_pfn & (PAGES_PER_SECTION - 1); end = ALIGN(start_pfn + nr_pages, PAGES_PER_SECTION); for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) __free_page_cgroup(pfn); return 0; } static int page_cgroup_callback(struct notifier_block *self, unsigned long action, void *arg) { struct memory_notify *mn = arg; int ret = 0; switch (action) { case MEM_GOING_ONLINE: ret = online_page_cgroup(mn->start_pfn, mn->nr_pages, mn->status_change_nid); break; case MEM_CANCEL_ONLINE: case MEM_OFFLINE: offline_page_cgroup(mn->start_pfn, mn->nr_pages, mn->status_change_nid); break; case MEM_GOING_OFFLINE: break; case MEM_ONLINE: case MEM_CANCEL_OFFLINE: break; } ret = notifier_from_errno(ret); return ret; } #endif void __init page_cgroup_init(void) { unsigned long pfn; int fail = 0; if (mem_cgroup_subsys.disabled) return; for (pfn = 0; !fail && pfn < max_pfn; pfn += PAGES_PER_SECTION) { if (!pfn_present(pfn)) continue; fail = init_section_page_cgroup(pfn); } if (fail) { printk(KERN_CRIT "try cgroup_disable=memory boot option\n"); panic("Out of memory"); } else { hotplug_memory_notifier(page_cgroup_callback, 0); } printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage); printk(KERN_INFO "please try cgroup_disable=memory option if you don't" " want\n"); } void __init pgdat_page_cgroup_init(struct pglist_data *pgdat) { return; } #endif