/* * Memory Migration functionality - linux/mm/migration.c * * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter * * Page migration was first developed in the context of the memory hotplug * project. The main authors of the migration code are: * * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> * Hirokazu Takahashi <taka@valinux.co.jp> * Dave Hansen <haveblue@us.ibm.com> * Christoph Lameter <clameter@sgi.com> */ #include <linux/migrate.h> #include <linux/module.h> #include <linux/swap.h> #include <linux/pagemap.h> #include <linux/buffer_head.h> #include <linux/mm_inline.h> #include <linux/pagevec.h> #include <linux/rmap.h> #include <linux/topology.h> #include <linux/cpu.h> #include <linux/cpuset.h> #include <linux/swapops.h> #include "internal.h" /* The maximum number of pages to take off the LRU for migration */ #define MIGRATE_CHUNK_SIZE 256 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) /* * Isolate one page from the LRU lists. If successful put it onto * the indicated list with elevated page count. * * Result: * -EBUSY: page not on LRU list * 0: page removed from LRU list and added to the specified list. */ int isolate_lru_page(struct page *page, struct list_head *pagelist) { int ret = -EBUSY; if (PageLRU(page)) { struct zone *zone = page_zone(page); spin_lock_irq(&zone->lru_lock); if (PageLRU(page)) { ret = 0; get_page(page); ClearPageLRU(page); if (PageActive(page)) del_page_from_active_list(zone, page); else del_page_from_inactive_list(zone, page); list_add_tail(&page->lru, pagelist); } spin_unlock_irq(&zone->lru_lock); } return ret; } /* * migrate_prep() needs to be called after we have compiled the list of pages * to be migrated using isolate_lru_page() but before we begin a series of calls * to migrate_pages(). */ int migrate_prep(void) { /* Must have swap device for migration */ if (nr_swap_pages <= 0) return -ENODEV; /* * Clear the LRU lists so pages can be isolated. * Note that pages may be moved off the LRU after we have * drained them. Those pages will fail to migrate like other * pages that may be busy. */ lru_add_drain_all(); return 0; } static inline void move_to_lru(struct page *page) { list_del(&page->lru); if (PageActive(page)) { /* * lru_cache_add_active checks that * the PG_active bit is off. */ ClearPageActive(page); lru_cache_add_active(page); } else { lru_cache_add(page); } put_page(page); } /* * Add isolated pages on the list back to the LRU. * * returns the number of pages put back. */ int putback_lru_pages(struct list_head *l) { struct page *page; struct page *page2; int count = 0; list_for_each_entry_safe(page, page2, l, lru) { move_to_lru(page); count++; } return count; } /* * Non migratable page */ int fail_migrate_page(struct page *newpage, struct page *page) { return -EIO; } EXPORT_SYMBOL(fail_migrate_page); /* * swapout a single page * page is locked upon entry, unlocked on exit */ static int swap_page(struct page *page) { struct address_space *mapping = page_mapping(page); if (page_mapped(page) && mapping) if (try_to_unmap(page, 1) != SWAP_SUCCESS) goto unlock_retry; if (PageDirty(page)) { /* Page is dirty, try to write it out here */ switch(pageout(page, mapping)) { case PAGE_KEEP: case PAGE_ACTIVATE: goto unlock_retry; case PAGE_SUCCESS: goto retry; case PAGE_CLEAN: ; /* try to free the page below */ } } if (PagePrivate(page)) { if (!try_to_release_page(page, GFP_KERNEL) || (!mapping && page_count(page) == 1)) goto unlock_retry; } if (remove_mapping(mapping, page)) { /* Success */ unlock_page(page); return 0; } unlock_retry: unlock_page(page); retry: return -EAGAIN; } /* * Remove references for a page and establish the new page with the correct * basic settings to be able to stop accesses to the page. */ int migrate_page_remove_references(struct page *newpage, struct page *page, int nr_refs) { struct address_space *mapping = page_mapping(page); struct page **radix_pointer; /* * Avoid doing any of the following work if the page count * indicates that the page is in use or truncate has removed * the page. */ if (!mapping || page_mapcount(page) + nr_refs != page_count(page)) return -EAGAIN; /* * Establish swap ptes for anonymous pages or destroy pte * maps for files. * * In order to reestablish file backed mappings the fault handlers * will take the radix tree_lock which may then be used to stop * processses from accessing this page until the new page is ready. * * A process accessing via a swap pte (an anonymous page) will take a * page_lock on the old page which will block the process until the * migration attempt is complete. At that time the PageSwapCache bit * will be examined. If the page was migrated then the PageSwapCache * bit will be clear and the operation to retrieve the page will be * retried which will find the new page in the radix tree. Then a new * direct mapping may be generated based on the radix tree contents. * * If the page was not migrated then the PageSwapCache bit * is still set and the operation may continue. */ if (try_to_unmap(page, 1) == SWAP_FAIL) /* A vma has VM_LOCKED set -> permanent failure */ return -EPERM; /* * Give up if we were unable to remove all mappings. */ if (page_mapcount(page)) return -EAGAIN; write_lock_irq(&mapping->tree_lock); radix_pointer = (struct page **)radix_tree_lookup_slot( &mapping->page_tree, page_index(page)); if (!page_mapping(page) || page_count(page) != nr_refs || *radix_pointer != page) { write_unlock_irq(&mapping->tree_lock); return -EAGAIN; } /* * Now we know that no one else is looking at the page. * * Certain minimal information about a page must be available * in order for other subsystems to properly handle the page if they * find it through the radix tree update before we are finished * copying the page. */ get_page(newpage); newpage->index = page->index; newpage->mapping = page->mapping; if (PageSwapCache(page)) { SetPageSwapCache(newpage); set_page_private(newpage, page_private(page)); } *radix_pointer = newpage; __put_page(page); write_unlock_irq(&mapping->tree_lock); return 0; } EXPORT_SYMBOL(migrate_page_remove_references); /* * Copy the page to its new location */ void migrate_page_copy(struct page *newpage, struct page *page) { copy_highpage(newpage, page); if (PageError(page)) SetPageError(newpage); if (PageReferenced(page)) SetPageReferenced(newpage); if (PageUptodate(page)) SetPageUptodate(newpage); if (PageActive(page)) SetPageActive(newpage); if (PageChecked(page)) SetPageChecked(newpage); if (PageMappedToDisk(page)) SetPageMappedToDisk(newpage); if (PageDirty(page)) { clear_page_dirty_for_io(page); set_page_dirty(newpage); } ClearPageSwapCache(page); ClearPageActive(page); ClearPagePrivate(page); set_page_private(page, 0); page->mapping = NULL; /* * If any waiters have accumulated on the new page then * wake them up. */ if (PageWriteback(newpage)) end_page_writeback(newpage); } EXPORT_SYMBOL(migrate_page_copy); /* * Common logic to directly migrate a single page suitable for * pages that do not use PagePrivate. * * Pages are locked upon entry and exit. */ int migrate_page(struct page *newpage, struct page *page) { int rc; BUG_ON(PageWriteback(page)); /* Writeback must be complete */ rc = migrate_page_remove_references(newpage, page, 2); if (rc) return rc; migrate_page_copy(newpage, page); /* * Remove auxiliary swap entries and replace * them with real ptes. * * Note that a real pte entry will allow processes that are not * waiting on the page lock to use the new page via the page tables * before the new page is unlocked. */ remove_from_swap(newpage); return 0; } EXPORT_SYMBOL(migrate_page); /* * migrate_pages * * Two lists are passed to this function. The first list * contains the pages isolated from the LRU to be migrated. * The second list contains new pages that the pages isolated * can be moved to. If the second list is NULL then all * pages are swapped out. * * The function returns after 10 attempts or if no pages * are movable anymore because to has become empty * or no retryable pages exist anymore. * * Return: Number of pages not migrated when "to" ran empty. */ int migrate_pages(struct list_head *from, struct list_head *to, struct list_head *moved, struct list_head *failed) { int retry; int nr_failed = 0; int pass = 0; struct page *page; struct page *page2; int swapwrite = current->flags & PF_SWAPWRITE; int rc; if (!swapwrite) current->flags |= PF_SWAPWRITE; redo: retry = 0; list_for_each_entry_safe(page, page2, from, lru) { struct page *newpage = NULL; struct address_space *mapping; cond_resched(); rc = 0; if (page_count(page) == 1) /* page was freed from under us. So we are done. */ goto next; if (to && list_empty(to)) break; /* * Skip locked pages during the first two passes to give the * functions holding the lock time to release the page. Later we * use lock_page() to have a higher chance of acquiring the * lock. */ rc = -EAGAIN; if (pass > 2) lock_page(page); else if (TestSetPageLocked(page)) goto next; /* * Only wait on writeback if we have already done a pass where * we we may have triggered writeouts for lots of pages. */ if (pass > 0) { wait_on_page_writeback(page); } else { if (PageWriteback(page)) goto unlock_page; } /* * Anonymous pages must have swap cache references otherwise * the information contained in the page maps cannot be * preserved. */ if (PageAnon(page) && !PageSwapCache(page)) { if (!add_to_swap(page, GFP_KERNEL)) { rc = -ENOMEM; goto unlock_page; } } if (!to) { rc = swap_page(page); goto next; } newpage = lru_to_page(to); lock_page(newpage); /* * Pages are properly locked and writeback is complete. * Try to migrate the page. */ mapping = page_mapping(page); if (!mapping) goto unlock_both; if (mapping->a_ops->migratepage) { /* * Most pages have a mapping and most filesystems * should provide a migration function. Anonymous * pages are part of swap space which also has its * own migration function. This is the most common * path for page migration. */ rc = mapping->a_ops->migratepage(newpage, page); goto unlock_both; } /* Make sure the dirty bit is up to date */ if (try_to_unmap(page, 1) == SWAP_FAIL) { rc = -EPERM; goto unlock_both; } if (page_mapcount(page)) { rc = -EAGAIN; goto unlock_both; } /* * Default handling if a filesystem does not provide * a migration function. We can only migrate clean * pages so try to write out any dirty pages first. */ if (PageDirty(page)) { switch (pageout(page, mapping)) { case PAGE_KEEP: case PAGE_ACTIVATE: goto unlock_both; case PAGE_SUCCESS: unlock_page(newpage); goto next; case PAGE_CLEAN: ; /* try to migrate the page below */ } } /* * Buffers are managed in a filesystem specific way. * We must have no buffers or drop them. */ if (!page_has_buffers(page) || try_to_release_page(page, GFP_KERNEL)) { rc = migrate_page(newpage, page); goto unlock_both; } /* * On early passes with mapped pages simply * retry. There may be a lock held for some * buffers that may go away. Later * swap them out. */ if (pass > 4) { /* * Persistently unable to drop buffers..... As a * measure of last resort we fall back to * swap_page(). */ unlock_page(newpage); newpage = NULL; rc = swap_page(page); goto next; } unlock_both: unlock_page(newpage); unlock_page: unlock_page(page); next: if (rc == -EAGAIN) { retry++; } else if (rc) { /* Permanent failure */ list_move(&page->lru, failed); nr_failed++; } else { if (newpage) { /* Successful migration. Return page to LRU */ move_to_lru(newpage); } list_move(&page->lru, moved); } } if (retry && pass++ < 10) goto redo; if (!swapwrite) current->flags &= ~PF_SWAPWRITE; return nr_failed + retry; } /* * Migration function for pages with buffers. This function can only be used * if the underlying filesystem guarantees that no other references to "page" * exist. */ int buffer_migrate_page(struct page *newpage, struct page *page) { struct address_space *mapping = page->mapping; struct buffer_head *bh, *head; int rc; if (!mapping) return -EAGAIN; if (!page_has_buffers(page)) return migrate_page(newpage, page); head = page_buffers(page); rc = migrate_page_remove_references(newpage, page, 3); if (rc) return rc; bh = head; do { get_bh(bh); lock_buffer(bh); bh = bh->b_this_page; } while (bh != head); ClearPagePrivate(page); set_page_private(newpage, page_private(page)); set_page_private(page, 0); put_page(page); get_page(newpage); bh = head; do { set_bh_page(bh, newpage, bh_offset(bh)); bh = bh->b_this_page; } while (bh != head); SetPagePrivate(newpage); migrate_page_copy(newpage, page); bh = head; do { unlock_buffer(bh); put_bh(bh); bh = bh->b_this_page; } while (bh != head); return 0; } EXPORT_SYMBOL(buffer_migrate_page); /* * Migrate the list 'pagelist' of pages to a certain destination. * * Specify destination with either non-NULL vma or dest_node >= 0 * Return the number of pages not migrated or error code */ int migrate_pages_to(struct list_head *pagelist, struct vm_area_struct *vma, int dest) { LIST_HEAD(newlist); LIST_HEAD(moved); LIST_HEAD(failed); int err = 0; unsigned long offset = 0; int nr_pages; struct page *page; struct list_head *p; redo: nr_pages = 0; list_for_each(p, pagelist) { if (vma) { /* * The address passed to alloc_page_vma is used to * generate the proper interleave behavior. We fake * the address here by an increasing offset in order * to get the proper distribution of pages. * * No decision has been made as to which page * a certain old page is moved to so we cannot * specify the correct address. */ page = alloc_page_vma(GFP_HIGHUSER, vma, offset + vma->vm_start); offset += PAGE_SIZE; } else page = alloc_pages_node(dest, GFP_HIGHUSER, 0); if (!page) { err = -ENOMEM; goto out; } list_add_tail(&page->lru, &newlist); nr_pages++; if (nr_pages > MIGRATE_CHUNK_SIZE) break; } err = migrate_pages(pagelist, &newlist, &moved, &failed); putback_lru_pages(&moved); /* Call release pages instead ?? */ if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) goto redo; out: /* Return leftover allocated pages */ while (!list_empty(&newlist)) { page = list_entry(newlist.next, struct page, lru); list_del(&page->lru); __free_page(page); } list_splice(&failed, pagelist); if (err < 0) return err; /* Calculate number of leftover pages */ nr_pages = 0; list_for_each(p, pagelist) nr_pages++; return nr_pages; }