/* * bootmem - A boot-time physical memory allocator and configurator * * Copyright (C) 1999 Ingo Molnar * 1999 Kanoj Sarcar, SGI * 2008 Johannes Weiner * * Access to this subsystem has to be serialized externally (which is true * for the boot process anyway). */ #include <linux/init.h> #include <linux/pfn.h> #include <linux/bootmem.h> #include <linux/module.h> #include <asm/bug.h> #include <asm/io.h> #include <asm/processor.h> #include "internal.h" unsigned long max_low_pfn; unsigned long min_low_pfn; unsigned long max_pfn; #ifdef CONFIG_CRASH_DUMP /* * If we have booted due to a crash, max_pfn will be a very low value. We need * to know the amount of memory that the previous kernel used. */ unsigned long saved_max_pfn; #endif bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata; static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list); static int bootmem_debug; static int __init bootmem_debug_setup(char *buf) { bootmem_debug = 1; return 0; } early_param("bootmem_debug", bootmem_debug_setup); #define bdebug(fmt, args...) ({ \ if (unlikely(bootmem_debug)) \ printk(KERN_INFO \ "bootmem::%s " fmt, \ __FUNCTION__, ## args); \ }) static unsigned long __init bootmap_bytes(unsigned long pages) { unsigned long bytes = (pages + 7) / 8; return ALIGN(bytes, sizeof(long)); } /** * bootmem_bootmap_pages - calculate bitmap size in pages * @pages: number of pages the bitmap has to represent */ unsigned long __init bootmem_bootmap_pages(unsigned long pages) { unsigned long bytes = bootmap_bytes(pages); return PAGE_ALIGN(bytes) >> PAGE_SHIFT; } /* * link bdata in order */ static void __init link_bootmem(bootmem_data_t *bdata) { struct list_head *iter; list_for_each(iter, &bdata_list) { bootmem_data_t *ent; ent = list_entry(iter, bootmem_data_t, list); if (bdata->node_boot_start < ent->node_boot_start) break; } list_add_tail(&bdata->list, iter); } /* * Called once to set up the allocator itself. */ static unsigned long __init init_bootmem_core(bootmem_data_t *bdata, unsigned long mapstart, unsigned long start, unsigned long end) { unsigned long mapsize; mminit_validate_memmodel_limits(&start, &end); bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart)); bdata->node_boot_start = PFN_PHYS(start); bdata->node_low_pfn = end; link_bootmem(bdata); /* * Initially all pages are reserved - setup_arch() has to * register free RAM areas explicitly. */ mapsize = bootmap_bytes(end - start); memset(bdata->node_bootmem_map, 0xff, mapsize); bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n", bdata - bootmem_node_data, start, mapstart, end, mapsize); return mapsize; } /** * init_bootmem_node - register a node as boot memory * @pgdat: node to register * @freepfn: pfn where the bitmap for this node is to be placed * @startpfn: first pfn on the node * @endpfn: first pfn after the node * * Returns the number of bytes needed to hold the bitmap for this node. */ unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn) { return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn); } /** * init_bootmem - register boot memory * @start: pfn where the bitmap is to be placed * @pages: number of available physical pages * * Returns the number of bytes needed to hold the bitmap. */ unsigned long __init init_bootmem(unsigned long start, unsigned long pages) { max_low_pfn = pages; min_low_pfn = start; return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages); } static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata) { int aligned; struct page *page; unsigned long start, end, pages, count = 0; if (!bdata->node_bootmem_map) return 0; start = PFN_DOWN(bdata->node_boot_start); end = bdata->node_low_pfn; /* * If the start is aligned to the machines wordsize, we might * be able to free pages in bulks of that order. */ aligned = !(start & (BITS_PER_LONG - 1)); bdebug("nid=%td start=%lx end=%lx aligned=%d\n", bdata - bootmem_node_data, start, end, aligned); while (start < end) { unsigned long *map, idx, vec; map = bdata->node_bootmem_map; idx = start - PFN_DOWN(bdata->node_boot_start); vec = ~map[idx / BITS_PER_LONG]; if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) { int order = ilog2(BITS_PER_LONG); __free_pages_bootmem(pfn_to_page(start), order); count += BITS_PER_LONG; } else { unsigned long off = 0; while (vec && off < BITS_PER_LONG) { if (vec & 1) { page = pfn_to_page(start + off); __free_pages_bootmem(page, 0); count++; } vec >>= 1; off++; } } start += BITS_PER_LONG; } page = virt_to_page(bdata->node_bootmem_map); pages = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); pages = bootmem_bootmap_pages(pages); count += pages; while (pages--) __free_pages_bootmem(page++, 0); bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count); return count; } /** * free_all_bootmem_node - release a node's free pages to the buddy allocator * @pgdat: node to be released * * Returns the number of pages actually released. */ unsigned long __init free_all_bootmem_node(pg_data_t *pgdat) { register_page_bootmem_info_node(pgdat); return free_all_bootmem_core(pgdat->bdata); } /** * free_all_bootmem - release free pages to the buddy allocator * * Returns the number of pages actually released. */ unsigned long __init free_all_bootmem(void) { return free_all_bootmem_core(NODE_DATA(0)->bdata); } static void __init __free(bootmem_data_t *bdata, unsigned long sidx, unsigned long eidx) { unsigned long idx; bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data, sidx + PFN_DOWN(bdata->node_boot_start), eidx + PFN_DOWN(bdata->node_boot_start)); for (idx = sidx; idx < eidx; idx++) if (!test_and_clear_bit(idx, bdata->node_bootmem_map)) BUG(); } static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx, unsigned long eidx, int flags) { unsigned long idx; int exclusive = flags & BOOTMEM_EXCLUSIVE; bdebug("nid=%td start=%lx end=%lx flags=%x\n", bdata - bootmem_node_data, sidx + PFN_DOWN(bdata->node_boot_start), eidx + PFN_DOWN(bdata->node_boot_start), flags); for (idx = sidx; idx < eidx; idx++) if (test_and_set_bit(idx, bdata->node_bootmem_map)) { if (exclusive) { __free(bdata, sidx, idx); return -EBUSY; } bdebug("silent double reserve of PFN %lx\n", idx + PFN_DOWN(bdata->node_boot_start)); } return 0; } static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) { unsigned long sidx, eidx; unsigned long i; BUG_ON(!size); /* out range */ if (addr + size < bdata->node_boot_start || PFN_DOWN(addr) > bdata->node_low_pfn) return; /* * round down end of usable mem, partially free pages are * considered reserved. */ if (addr >= bdata->node_boot_start && PFN_DOWN(addr - bdata->node_boot_start) < bdata->hint_idx) bdata->hint_idx = PFN_DOWN(addr - bdata->node_boot_start); /* * Round up to index to the range. */ if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start)) sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start); else sidx = 0; eidx = PFN_DOWN(addr + size - bdata->node_boot_start); if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); __free(bdata, sidx, eidx); } /** * free_bootmem_node - mark a page range as usable * @pgdat: node the range resides on * @physaddr: starting address of the range * @size: size of the range in bytes * * Partial pages will be considered reserved and left as they are. * * Only physical pages that actually reside on @pgdat are marked. */ void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, unsigned long size) { free_bootmem_core(pgdat->bdata, physaddr, size); } /** * free_bootmem - mark a page range as usable * @addr: starting address of the range * @size: size of the range in bytes * * Partial pages will be considered reserved and left as they are. * * All physical pages within the range are marked, no matter what * node they reside on. */ void __init free_bootmem(unsigned long addr, unsigned long size) { bootmem_data_t *bdata; list_for_each_entry(bdata, &bdata_list, list) free_bootmem_core(bdata, addr, size); } /* * Marks a particular physical memory range as unallocatable. Usable RAM * might be used for boot-time allocations - or it might get added * to the free page pool later on. */ static int __init can_reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size, int flags) { unsigned long sidx, eidx; unsigned long i; BUG_ON(!size); /* out of range, don't hold other */ if (addr + size < bdata->node_boot_start || PFN_DOWN(addr) > bdata->node_low_pfn) return 0; /* * Round up to index to the range. */ if (addr > bdata->node_boot_start) sidx= PFN_DOWN(addr - bdata->node_boot_start); else sidx = 0; eidx = PFN_UP(addr + size - bdata->node_boot_start); if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); for (i = sidx; i < eidx; i++) { if (test_bit(i, bdata->node_bootmem_map)) { if (flags & BOOTMEM_EXCLUSIVE) return -EBUSY; } } return 0; } static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size, int flags) { unsigned long sidx, eidx; unsigned long i; BUG_ON(!size); /* out of range */ if (addr + size < bdata->node_boot_start || PFN_DOWN(addr) > bdata->node_low_pfn) return; /* * Round up to index to the range. */ if (addr > bdata->node_boot_start) sidx= PFN_DOWN(addr - bdata->node_boot_start); else sidx = 0; eidx = PFN_UP(addr + size - bdata->node_boot_start); if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start)) eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start); return __reserve(bdata, sidx, eidx, flags); } /** * reserve_bootmem_node - mark a page range as reserved * @pgdat: node the range resides on * @physaddr: starting address of the range * @size: size of the range in bytes * @flags: reservation flags (see linux/bootmem.h) * * Partial pages will be reserved. * * Only physical pages that actually reside on @pgdat are marked. */ int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr, unsigned long size, int flags) { int ret; ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); if (ret < 0) return -ENOMEM; reserve_bootmem_core(pgdat->bdata, physaddr, size, flags); return 0; } #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE /** * reserve_bootmem - mark a page range as usable * @addr: starting address of the range * @size: size of the range in bytes * @flags: reservation flags (see linux/bootmem.h) * * Partial pages will be reserved. * * All physical pages within the range are marked, no matter what * node they reside on. */ int __init reserve_bootmem(unsigned long addr, unsigned long size, int flags) { bootmem_data_t *bdata; int ret; list_for_each_entry(bdata, &bdata_list, list) { ret = can_reserve_bootmem_core(bdata, addr, size, flags); if (ret < 0) return ret; } list_for_each_entry(bdata, &bdata_list, list) reserve_bootmem_core(bdata, addr, size, flags); return 0; } #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */ static void * __init alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size, unsigned long align, unsigned long goal, unsigned long limit) { unsigned long min, max, start, sidx, midx, step; BUG_ON(!size); BUG_ON(align & (align - 1)); BUG_ON(limit && goal + size > limit); if (!bdata->node_bootmem_map) return NULL; bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n", bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT, align, goal, limit); min = PFN_DOWN(bdata->node_boot_start); max = bdata->node_low_pfn; goal >>= PAGE_SHIFT; limit >>= PAGE_SHIFT; if (limit && max > limit) max = limit; if (max <= min) return NULL; step = max(align >> PAGE_SHIFT, 1UL); if (goal && min < goal && goal < max) start = ALIGN(goal, step); else start = ALIGN(min, step); sidx = start - PFN_DOWN(bdata->node_boot_start); midx = max - PFN_DOWN(bdata->node_boot_start); if (bdata->hint_idx > sidx) { /* Make sure we retry on failure */ goal = 1; sidx = ALIGN(bdata->hint_idx, step); } while (1) { int merge; void *region; unsigned long eidx, i, start_off, end_off; find_block: sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx); sidx = ALIGN(sidx, step); eidx = sidx + PFN_UP(size); if (sidx >= midx || eidx > midx) break; for (i = sidx; i < eidx; i++) if (test_bit(i, bdata->node_bootmem_map)) { sidx = ALIGN(i, step); if (sidx == i) sidx += step; goto find_block; } if (bdata->last_end_off && PFN_DOWN(bdata->last_end_off) + 1 == sidx) start_off = ALIGN(bdata->last_end_off, align); else start_off = PFN_PHYS(sidx); merge = PFN_DOWN(start_off) < sidx; end_off = start_off + size; bdata->last_end_off = end_off; bdata->hint_idx = PFN_UP(end_off); /* * Reserve the area now: */ if (__reserve(bdata, PFN_DOWN(start_off) + merge, PFN_UP(end_off), BOOTMEM_EXCLUSIVE)) BUG(); region = phys_to_virt(bdata->node_boot_start + start_off); memset(region, 0, size); return region; } if (goal) { goal = 0; sidx = 0; goto find_block; } return NULL; } /** * __alloc_bootmem_nopanic - allocate boot memory without panicking * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may happen on any node in the system. * * Returns NULL on failure. */ void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align, unsigned long goal) { bootmem_data_t *bdata; void *ptr; list_for_each_entry(bdata, &bdata_list, list) { ptr = alloc_bootmem_core(bdata, size, align, goal, 0); if (ptr) return ptr; } return NULL; } /** * __alloc_bootmem - allocate boot memory * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may happen on any node in the system. * * The function panics if the request can not be satisfied. */ void * __init __alloc_bootmem(unsigned long size, unsigned long align, unsigned long goal) { void *mem = __alloc_bootmem_nopanic(size,align,goal); if (mem) return mem; /* * Whoops, we cannot satisfy the allocation request. */ printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size); panic("Out of memory"); return NULL; } /** * __alloc_bootmem_node - allocate boot memory from a specific node * @pgdat: node to allocate from * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may fall back to any node in the system if the specified node * can not hold the requested memory. * * The function panics if the request can not be satisfied. */ void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal) { void *ptr; ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); if (ptr) return ptr; return __alloc_bootmem(size, align, goal); } #ifdef CONFIG_SPARSEMEM /** * alloc_bootmem_section - allocate boot memory from a specific section * @size: size of the request in bytes * @section_nr: sparse map section to allocate from * * Return NULL on failure. */ void * __init alloc_bootmem_section(unsigned long size, unsigned long section_nr) { void *ptr; unsigned long limit, goal, start_nr, end_nr, pfn; struct pglist_data *pgdat; pfn = section_nr_to_pfn(section_nr); goal = PFN_PHYS(pfn); limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1; pgdat = NODE_DATA(early_pfn_to_nid(pfn)); ptr = alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal, limit); if (!ptr) return NULL; start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr))); end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size)); if (start_nr != section_nr || end_nr != section_nr) { printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n", section_nr); free_bootmem_core(pgdat->bdata, __pa(ptr), size); ptr = NULL; } return ptr; } #endif void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal) { void *ptr; ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0); if (ptr) return ptr; return __alloc_bootmem_nopanic(size, align, goal); } #ifndef ARCH_LOW_ADDRESS_LIMIT #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL #endif /** * __alloc_bootmem_low - allocate low boot memory * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may happen on any node in the system. * * The function panics if the request can not be satisfied. */ void * __init __alloc_bootmem_low(unsigned long size, unsigned long align, unsigned long goal) { bootmem_data_t *bdata; void *ptr; list_for_each_entry(bdata, &bdata_list, list) { ptr = alloc_bootmem_core(bdata, size, align, goal, ARCH_LOW_ADDRESS_LIMIT); if (ptr) return ptr; } /* * Whoops, we cannot satisfy the allocation request. */ printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size); panic("Out of low memory"); return NULL; } /** * __alloc_bootmem_low_node - allocate low boot memory from a specific node * @pgdat: node to allocate from * @size: size of the request in bytes * @align: alignment of the region * @goal: preferred starting address of the region * * The goal is dropped if it can not be satisfied and the allocation will * fall back to memory below @goal. * * Allocation may fall back to any node in the system if the specified node * can not hold the requested memory. * * The function panics if the request can not be satisfied. */ void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size, unsigned long align, unsigned long goal) { return alloc_bootmem_core(pgdat->bdata, size, align, goal, ARCH_LOW_ADDRESS_LIMIT); }