// SPDX-License-Identifier: GPL-2.0-or-later /* * Fast Userspace Mutexes (which I call "Futexes!"). * (C) Rusty Russell, IBM 2002 * * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar * (C) Copyright 2003 Red Hat Inc, All Rights Reserved * * Removed page pinning, fix privately mapped COW pages and other cleanups * (C) Copyright 2003, 2004 Jamie Lokier * * Robust futex support started by Ingo Molnar * (C) Copyright 2006 Red Hat Inc, All Rights Reserved * Thanks to Thomas Gleixner for suggestions, analysis and fixes. * * PI-futex support started by Ingo Molnar and Thomas Gleixner * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar * Copyright (C) 2006 Timesys Corp., Thomas Gleixner * * PRIVATE futexes by Eric Dumazet * Copyright (C) 2007 Eric Dumazet * * Requeue-PI support by Darren Hart * Copyright (C) IBM Corporation, 2009 * Thanks to Thomas Gleixner for conceptual design and careful reviews. * * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly * enough at me, Linus for the original (flawed) idea, Matthew * Kirkwood for proof-of-concept implementation. * * "The futexes are also cursed." * "But they come in a choice of three flavours!" */ #include #include #include #include #include #include #include #include "futex.h" #include "../locking/rtmutex_common.h" /* * READ this before attempting to hack on futexes! * * Basic futex operation and ordering guarantees * ============================================= * * The waiter reads the futex value in user space and calls * futex_wait(). This function computes the hash bucket and acquires * the hash bucket lock. After that it reads the futex user space value * again and verifies that the data has not changed. If it has not changed * it enqueues itself into the hash bucket, releases the hash bucket lock * and schedules. * * The waker side modifies the user space value of the futex and calls * futex_wake(). This function computes the hash bucket and acquires the * hash bucket lock. Then it looks for waiters on that futex in the hash * bucket and wakes them. * * In futex wake up scenarios where no tasks are blocked on a futex, taking * the hb spinlock can be avoided and simply return. In order for this * optimization to work, ordering guarantees must exist so that the waiter * being added to the list is acknowledged when the list is concurrently being * checked by the waker, avoiding scenarios like the following: * * CPU 0 CPU 1 * val = *futex; * sys_futex(WAIT, futex, val); * futex_wait(futex, val); * uval = *futex; * *futex = newval; * sys_futex(WAKE, futex); * futex_wake(futex); * if (queue_empty()) * return; * if (uval == val) * lock(hash_bucket(futex)); * queue(); * unlock(hash_bucket(futex)); * schedule(); * * This would cause the waiter on CPU 0 to wait forever because it * missed the transition of the user space value from val to newval * and the waker did not find the waiter in the hash bucket queue. * * The correct serialization ensures that a waiter either observes * the changed user space value before blocking or is woken by a * concurrent waker: * * CPU 0 CPU 1 * val = *futex; * sys_futex(WAIT, futex, val); * futex_wait(futex, val); * * waiters++; (a) * smp_mb(); (A) <-- paired with -. * | * lock(hash_bucket(futex)); | * | * uval = *futex; | * | *futex = newval; * | sys_futex(WAKE, futex); * | futex_wake(futex); * | * `--------> smp_mb(); (B) * if (uval == val) * queue(); * unlock(hash_bucket(futex)); * schedule(); if (waiters) * lock(hash_bucket(futex)); * else wake_waiters(futex); * waiters--; (b) unlock(hash_bucket(futex)); * * Where (A) orders the waiters increment and the futex value read through * atomic operations (see hb_waiters_inc) and where (B) orders the write * to futex and the waiters read (see hb_waiters_pending()). * * This yields the following case (where X:=waiters, Y:=futex): * * X = Y = 0 * * w[X]=1 w[Y]=1 * MB MB * r[Y]=y r[X]=x * * Which guarantees that x==0 && y==0 is impossible; which translates back into * the guarantee that we cannot both miss the futex variable change and the * enqueue. * * Note that a new waiter is accounted for in (a) even when it is possible that * the wait call can return error, in which case we backtrack from it in (b). * Refer to the comment in queue_lock(). * * Similarly, in order to account for waiters being requeued on another * address we always increment the waiters for the destination bucket before * acquiring the lock. It then decrements them again after releasing it - * the code that actually moves the futex(es) between hash buckets (requeue_futex) * will do the additional required waiter count housekeeping. This is done for * double_lock_hb() and double_unlock_hb(), respectively. */ #ifndef CONFIG_HAVE_FUTEX_CMPXCHG int __read_mostly futex_cmpxchg_enabled; #endif /* * Priority Inheritance state: */ struct futex_pi_state { /* * list of 'owned' pi_state instances - these have to be * cleaned up in do_exit() if the task exits prematurely: */ struct list_head list; /* * The PI object: */ struct rt_mutex_base pi_mutex; struct task_struct *owner; refcount_t refcount; union futex_key key; } __randomize_layout; /** * struct futex_q - The hashed futex queue entry, one per waiting task * @list: priority-sorted list of tasks waiting on this futex * @task: the task waiting on the futex * @lock_ptr: the hash bucket lock * @key: the key the futex is hashed on * @pi_state: optional priority inheritance state * @rt_waiter: rt_waiter storage for use with requeue_pi * @requeue_pi_key: the requeue_pi target futex key * @bitset: bitset for the optional bitmasked wakeup * @requeue_state: State field for futex_requeue_pi() * @requeue_wait: RCU wait for futex_requeue_pi() (RT only) * * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so * we can wake only the relevant ones (hashed queues may be shared). * * A futex_q has a woken state, just like tasks have TASK_RUNNING. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. * The order of wakeup is always to make the first condition true, then * the second. * * PI futexes are typically woken before they are removed from the hash list via * the rt_mutex code. See futex_unqueue_pi(). */ struct futex_q { struct plist_node list; struct task_struct *task; spinlock_t *lock_ptr; union futex_key key; struct futex_pi_state *pi_state; struct rt_mutex_waiter *rt_waiter; union futex_key *requeue_pi_key; u32 bitset; atomic_t requeue_state; #ifdef CONFIG_PREEMPT_RT struct rcuwait requeue_wait; #endif } __randomize_layout; /* * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an * underlying rtmutex. The task which is about to be requeued could have * just woken up (timeout, signal). After the wake up the task has to * acquire hash bucket lock, which is held by the requeue code. As a task * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking * and the hash bucket lock blocking would collide and corrupt state. * * On !PREEMPT_RT this is not a problem and everything could be serialized * on hash bucket lock, but aside of having the benefit of common code, * this allows to avoid doing the requeue when the task is already on the * way out and taking the hash bucket lock of the original uaddr1 when the * requeue has been completed. * * The following state transitions are valid: * * On the waiter side: * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_IGNORE * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_WAIT * * On the requeue side: * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_INPROGRESS * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_DONE/LOCKED * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_NONE (requeue failed) * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_DONE/LOCKED * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_IGNORE (requeue failed) * * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this * signals that the waiter is already on the way out. It also means that * the waiter is still on the 'wait' futex, i.e. uaddr1. * * The waiter side signals early wakeup to the requeue side either through * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT, * which means the wakeup is interleaving with a requeue in progress it has * to wait for the requeue side to change the state. Either to DONE/LOCKED * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by * the requeue side when the requeue attempt failed via deadlock detection * and therefore the waiter q is still on the uaddr1 futex. */ enum { Q_REQUEUE_PI_NONE = 0, Q_REQUEUE_PI_IGNORE, Q_REQUEUE_PI_IN_PROGRESS, Q_REQUEUE_PI_WAIT, Q_REQUEUE_PI_DONE, Q_REQUEUE_PI_LOCKED, }; static const struct futex_q futex_q_init = { /* list gets initialized in futex_queue()*/ .key = FUTEX_KEY_INIT, .bitset = FUTEX_BITSET_MATCH_ANY, .requeue_state = ATOMIC_INIT(Q_REQUEUE_PI_NONE), }; /* * Hash buckets are shared by all the futex_keys that hash to the same * location. Each key may have multiple futex_q structures, one for each task * waiting on a futex. */ struct futex_hash_bucket { atomic_t waiters; spinlock_t lock; struct plist_head chain; } ____cacheline_aligned_in_smp; /* * The base of the bucket array and its size are always used together * (after initialization only in hash_futex()), so ensure that they * reside in the same cacheline. */ static struct { struct futex_hash_bucket *queues; unsigned long hashsize; } __futex_data __read_mostly __aligned(2*sizeof(long)); #define futex_queues (__futex_data.queues) #define futex_hashsize (__futex_data.hashsize) /* * Fault injections for futexes. */ #ifdef CONFIG_FAIL_FUTEX static struct { struct fault_attr attr; bool ignore_private; } fail_futex = { .attr = FAULT_ATTR_INITIALIZER, .ignore_private = false, }; static int __init setup_fail_futex(char *str) { return setup_fault_attr(&fail_futex.attr, str); } __setup("fail_futex=", setup_fail_futex); bool should_fail_futex(bool fshared) { if (fail_futex.ignore_private && !fshared) return false; return should_fail(&fail_futex.attr, 1); } #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS static int __init fail_futex_debugfs(void) { umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; struct dentry *dir; dir = fault_create_debugfs_attr("fail_futex", NULL, &fail_futex.attr); if (IS_ERR(dir)) return PTR_ERR(dir); debugfs_create_bool("ignore-private", mode, dir, &fail_futex.ignore_private); return 0; } late_initcall(fail_futex_debugfs); #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ #endif /* CONFIG_FAIL_FUTEX */ /* * Reflects a new waiter being added to the waitqueue. */ static inline void hb_waiters_inc(struct futex_hash_bucket *hb) { #ifdef CONFIG_SMP atomic_inc(&hb->waiters); /* * Full barrier (A), see the ordering comment above. */ smp_mb__after_atomic(); #endif } /* * Reflects a waiter being removed from the waitqueue by wakeup * paths. */ static inline void hb_waiters_dec(struct futex_hash_bucket *hb) { #ifdef CONFIG_SMP atomic_dec(&hb->waiters); #endif } static inline int hb_waiters_pending(struct futex_hash_bucket *hb) { #ifdef CONFIG_SMP /* * Full barrier (B), see the ordering comment above. */ smp_mb(); return atomic_read(&hb->waiters); #else return 1; #endif } /** * hash_futex - Return the hash bucket in the global hash * @key: Pointer to the futex key for which the hash is calculated * * We hash on the keys returned from get_futex_key (see below) and return the * corresponding hash bucket in the global hash. */ static struct futex_hash_bucket *hash_futex(union futex_key *key) { u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4, key->both.offset); return &futex_queues[hash & (futex_hashsize - 1)]; } /** * match_futex - Check whether two futex keys are equal * @key1: Pointer to key1 * @key2: Pointer to key2 * * Return 1 if two futex_keys are equal, 0 otherwise. */ static inline int match_futex(union futex_key *key1, union futex_key *key2) { return (key1 && key2 && key1->both.word == key2->both.word && key1->both.ptr == key2->both.ptr && key1->both.offset == key2->both.offset); } enum futex_access { FUTEX_READ, FUTEX_WRITE }; /** * futex_setup_timer - set up the sleeping hrtimer. * @time: ptr to the given timeout value * @timeout: the hrtimer_sleeper structure to be set up * @flags: futex flags * @range_ns: optional range in ns * * Return: Initialized hrtimer_sleeper structure or NULL if no timeout * value given */ static inline struct hrtimer_sleeper * futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout, int flags, u64 range_ns) { if (!time) return NULL; hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC, HRTIMER_MODE_ABS); /* * If range_ns is 0, calling hrtimer_set_expires_range_ns() is * effectively the same as calling hrtimer_set_expires(). */ hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns); return timeout; } /* * Generate a machine wide unique identifier for this inode. * * This relies on u64 not wrapping in the life-time of the machine; which with * 1ns resolution means almost 585 years. * * This further relies on the fact that a well formed program will not unmap * the file while it has a (shared) futex waiting on it. This mapping will have * a file reference which pins the mount and inode. * * If for some reason an inode gets evicted and read back in again, it will get * a new sequence number and will _NOT_ match, even though it is the exact same * file. * * It is important that match_futex() will never have a false-positive, esp. * for PI futexes that can mess up the state. The above argues that false-negatives * are only possible for malformed programs. */ static u64 get_inode_sequence_number(struct inode *inode) { static atomic64_t i_seq; u64 old; /* Does the inode already have a sequence number? */ old = atomic64_read(&inode->i_sequence); if (likely(old)) return old; for (;;) { u64 new = atomic64_add_return(1, &i_seq); if (WARN_ON_ONCE(!new)) continue; old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new); if (old) return old; return new; } } /** * get_futex_key() - Get parameters which are the keys for a futex * @uaddr: virtual address of the futex * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED * @key: address where result is stored. * @rw: mapping needs to be read/write (values: FUTEX_READ, * FUTEX_WRITE) * * Return: a negative error code or 0 * * The key words are stored in @key on success. * * For shared mappings (when @fshared), the key is: * * ( inode->i_sequence, page->index, offset_within_page ) * * [ also see get_inode_sequence_number() ] * * For private mappings (or when !@fshared), the key is: * * ( current->mm, address, 0 ) * * This allows (cross process, where applicable) identification of the futex * without keeping the page pinned for the duration of the FUTEX_WAIT. * * lock_page() might sleep, the caller should not hold a spinlock. */ static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key, enum futex_access rw) { unsigned long address = (unsigned long)uaddr; struct mm_struct *mm = current->mm; struct page *page, *tail; struct address_space *mapping; int err, ro = 0; /* * The futex address must be "naturally" aligned. */ key->both.offset = address % PAGE_SIZE; if (unlikely((address % sizeof(u32)) != 0)) return -EINVAL; address -= key->both.offset; if (unlikely(!access_ok(uaddr, sizeof(u32)))) return -EFAULT; if (unlikely(should_fail_futex(fshared))) return -EFAULT; /* * PROCESS_PRIVATE futexes are fast. * As the mm cannot disappear under us and the 'key' only needs * virtual address, we dont even have to find the underlying vma. * Note : We do have to check 'uaddr' is a valid user address, * but access_ok() should be faster than find_vma() */ if (!fshared) { key->private.mm = mm; key->private.address = address; return 0; } again: /* Ignore any VERIFY_READ mapping (futex common case) */ if (unlikely(should_fail_futex(true))) return -EFAULT; err = get_user_pages_fast(address, 1, FOLL_WRITE, &page); /* * If write access is not required (eg. FUTEX_WAIT), try * and get read-only access. */ if (err == -EFAULT && rw == FUTEX_READ) { err = get_user_pages_fast(address, 1, 0, &page); ro = 1; } if (err < 0) return err; else err = 0; /* * The treatment of mapping from this point on is critical. The page * lock protects many things but in this context the page lock * stabilizes mapping, prevents inode freeing in the shared * file-backed region case and guards against movement to swap cache. * * Strictly speaking the page lock is not needed in all cases being * considered here and page lock forces unnecessarily serialization * From this point on, mapping will be re-verified if necessary and * page lock will be acquired only if it is unavoidable * * Mapping checks require the head page for any compound page so the * head page and mapping is looked up now. For anonymous pages, it * does not matter if the page splits in the future as the key is * based on the address. For filesystem-backed pages, the tail is * required as the index of the page determines the key. For * base pages, there is no tail page and tail == page. */ tail = page; page = compound_head(page); mapping = READ_ONCE(page->mapping); /* * If page->mapping is NULL, then it cannot be a PageAnon * page; but it might be the ZERO_PAGE or in the gate area or * in a special mapping (all cases which we are happy to fail); * or it may have been a good file page when get_user_pages_fast * found it, but truncated or holepunched or subjected to * invalidate_complete_page2 before we got the page lock (also * cases which we are happy to fail). And we hold a reference, * so refcount care in invalidate_complete_page's remove_mapping * prevents drop_caches from setting mapping to NULL beneath us. * * The case we do have to guard against is when memory pressure made * shmem_writepage move it from filecache to swapcache beneath us: * an unlikely race, but we do need to retry for page->mapping. */ if (unlikely(!mapping)) { int shmem_swizzled; /* * Page lock is required to identify which special case above * applies. If this is really a shmem page then the page lock * will prevent unexpected transitions. */ lock_page(page); shmem_swizzled = PageSwapCache(page) || page->mapping; unlock_page(page); put_page(page); if (shmem_swizzled) goto again; return -EFAULT; } /* * Private mappings are handled in a simple way. * * If the futex key is stored on an anonymous page, then the associated * object is the mm which is implicitly pinned by the calling process. * * NOTE: When userspace waits on a MAP_SHARED mapping, even if * it's a read-only handle, it's expected that futexes attach to * the object not the particular process. */ if (PageAnon(page)) { /* * A RO anonymous page will never change and thus doesn't make * sense for futex operations. */ if (unlikely(should_fail_futex(true)) || ro) { err = -EFAULT; goto out; } key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ key->private.mm = mm; key->private.address = address; } else { struct inode *inode; /* * The associated futex object in this case is the inode and * the page->mapping must be traversed. Ordinarily this should * be stabilised under page lock but it's not strictly * necessary in this case as we just want to pin the inode, not * update the radix tree or anything like that. * * The RCU read lock is taken as the inode is finally freed * under RCU. If the mapping still matches expectations then the * mapping->host can be safely accessed as being a valid inode. */ rcu_read_lock(); if (READ_ONCE(page->mapping) != mapping) { rcu_read_unlock(); put_page(page); goto again; } inode = READ_ONCE(mapping->host); if (!inode) { rcu_read_unlock(); put_page(page); goto again; } key->both.offset |= FUT_OFF_INODE; /* inode-based key */ key->shared.i_seq = get_inode_sequence_number(inode); key->shared.pgoff = page_to_pgoff(tail); rcu_read_unlock(); } out: put_page(page); return err; } /** * fault_in_user_writeable() - Fault in user address and verify RW access * @uaddr: pointer to faulting user space address * * Slow path to fixup the fault we just took in the atomic write * access to @uaddr. * * We have no generic implementation of a non-destructive write to the * user address. We know that we faulted in the atomic pagefault * disabled section so we can as well avoid the #PF overhead by * calling get_user_pages() right away. */ static int fault_in_user_writeable(u32 __user *uaddr) { struct mm_struct *mm = current->mm; int ret; mmap_read_lock(mm); ret = fixup_user_fault(mm, (unsigned long)uaddr, FAULT_FLAG_WRITE, NULL); mmap_read_unlock(mm); return ret < 0 ? ret : 0; } /** * futex_top_waiter() - Return the highest priority waiter on a futex * @hb: the hash bucket the futex_q's reside in * @key: the futex key (to distinguish it from other futex futex_q's) * * Must be called with the hb lock held. */ static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union futex_key *key) { struct futex_q *this; plist_for_each_entry(this, &hb->chain, list) { if (match_futex(&this->key, key)) return this; } return NULL; } static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, u32 uval, u32 newval) { int ret; pagefault_disable(); ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); pagefault_enable(); return ret; } static int get_futex_value_locked(u32 *dest, u32 __user *from) { int ret; pagefault_disable(); ret = __get_user(*dest, from); pagefault_enable(); return ret ? -EFAULT : 0; } /* * PI code: */ static int refill_pi_state_cache(void) { struct futex_pi_state *pi_state; if (likely(current->pi_state_cache)) return 0; pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); if (!pi_state) return -ENOMEM; INIT_LIST_HEAD(&pi_state->list); /* pi_mutex gets initialized later */ pi_state->owner = NULL; refcount_set(&pi_state->refcount, 1); pi_state->key = FUTEX_KEY_INIT; current->pi_state_cache = pi_state; return 0; } static struct futex_pi_state *alloc_pi_state(void) { struct futex_pi_state *pi_state = current->pi_state_cache; WARN_ON(!pi_state); current->pi_state_cache = NULL; return pi_state; } static void pi_state_update_owner(struct futex_pi_state *pi_state, struct task_struct *new_owner) { struct task_struct *old_owner = pi_state->owner; lockdep_assert_held(&pi_state->pi_mutex.wait_lock); if (old_owner) { raw_spin_lock(&old_owner->pi_lock); WARN_ON(list_empty(&pi_state->list)); list_del_init(&pi_state->list); raw_spin_unlock(&old_owner->pi_lock); } if (new_owner) { raw_spin_lock(&new_owner->pi_lock); WARN_ON(!list_empty(&pi_state->list)); list_add(&pi_state->list, &new_owner->pi_state_list); pi_state->owner = new_owner; raw_spin_unlock(&new_owner->pi_lock); } } static void get_pi_state(struct futex_pi_state *pi_state) { WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount)); } /* * Drops a reference to the pi_state object and frees or caches it * when the last reference is gone. */ static void put_pi_state(struct futex_pi_state *pi_state) { if (!pi_state) return; if (!refcount_dec_and_test(&pi_state->refcount)) return; /* * If pi_state->owner is NULL, the owner is most probably dying * and has cleaned up the pi_state already */ if (pi_state->owner) { unsigned long flags; raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags); pi_state_update_owner(pi_state, NULL); rt_mutex_proxy_unlock(&pi_state->pi_mutex); raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags); } if (current->pi_state_cache) { kfree(pi_state); } else { /* * pi_state->list is already empty. * clear pi_state->owner. * refcount is at 0 - put it back to 1. */ pi_state->owner = NULL; refcount_set(&pi_state->refcount, 1); current->pi_state_cache = pi_state; } } #ifdef CONFIG_FUTEX_PI /* * This task is holding PI mutexes at exit time => bad. * Kernel cleans up PI-state, but userspace is likely hosed. * (Robust-futex cleanup is separate and might save the day for userspace.) */ static void exit_pi_state_list(struct task_struct *curr) { struct list_head *next, *head = &curr->pi_state_list; struct futex_pi_state *pi_state; struct futex_hash_bucket *hb; union futex_key key = FUTEX_KEY_INIT; if (!futex_cmpxchg_enabled) return; /* * We are a ZOMBIE and nobody can enqueue itself on * pi_state_list anymore, but we have to be careful * versus waiters unqueueing themselves: */ raw_spin_lock_irq(&curr->pi_lock); while (!list_empty(head)) { next = head->next; pi_state = list_entry(next, struct futex_pi_state, list); key = pi_state->key; hb = hash_futex(&key); /* * We can race against put_pi_state() removing itself from the * list (a waiter going away). put_pi_state() will first * decrement the reference count and then modify the list, so * its possible to see the list entry but fail this reference * acquire. * * In that case; drop the locks to let put_pi_state() make * progress and retry the loop. */ if (!refcount_inc_not_zero(&pi_state->refcount)) { raw_spin_unlock_irq(&curr->pi_lock); cpu_relax(); raw_spin_lock_irq(&curr->pi_lock); continue; } raw_spin_unlock_irq(&curr->pi_lock); spin_lock(&hb->lock); raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); raw_spin_lock(&curr->pi_lock); /* * We dropped the pi-lock, so re-check whether this * task still owns the PI-state: */ if (head->next != next) { /* retain curr->pi_lock for the loop invariant */ raw_spin_unlock(&pi_state->pi_mutex.wait_lock); spin_unlock(&hb->lock); put_pi_state(pi_state); continue; } WARN_ON(pi_state->owner != curr); WARN_ON(list_empty(&pi_state->list)); list_del_init(&pi_state->list); pi_state->owner = NULL; raw_spin_unlock(&curr->pi_lock); raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); spin_unlock(&hb->lock); rt_mutex_futex_unlock(&pi_state->pi_mutex); put_pi_state(pi_state); raw_spin_lock_irq(&curr->pi_lock); } raw_spin_unlock_irq(&curr->pi_lock); } #else static inline void exit_pi_state_list(struct task_struct *curr) { } #endif /* * We need to check the following states: * * Waiter | pi_state | pi->owner | uTID | uODIED | ? * * [1] NULL | --- | --- | 0 | 0/1 | Valid * [2] NULL | --- | --- | >0 | 0/1 | Valid * * [3] Found | NULL | -- | Any | 0/1 | Invalid * * [4] Found | Found | NULL | 0 | 1 | Valid * [5] Found | Found | NULL | >0 | 1 | Invalid * * [6] Found | Found | task | 0 | 1 | Valid * * [7] Found | Found | NULL | Any | 0 | Invalid * * [8] Found | Found | task | ==taskTID | 0/1 | Valid * [9] Found | Found | task | 0 | 0 | Invalid * [10] Found | Found | task | !=taskTID | 0/1 | Invalid * * [1] Indicates that the kernel can acquire the futex atomically. We * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit. * * [2] Valid, if TID does not belong to a kernel thread. If no matching * thread is found then it indicates that the owner TID has died. * * [3] Invalid. The waiter is queued on a non PI futex * * [4] Valid state after exit_robust_list(), which sets the user space * value to FUTEX_WAITERS | FUTEX_OWNER_DIED. * * [5] The user space value got manipulated between exit_robust_list() * and exit_pi_state_list() * * [6] Valid state after exit_pi_state_list() which sets the new owner in * the pi_state but cannot access the user space value. * * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set. * * [8] Owner and user space value match * * [9] There is no transient state which sets the user space TID to 0 * except exit_robust_list(), but this is indicated by the * FUTEX_OWNER_DIED bit. See [4] * * [10] There is no transient state which leaves owner and user space * TID out of sync. Except one error case where the kernel is denied * write access to the user address, see fixup_pi_state_owner(). * * * Serialization and lifetime rules: * * hb->lock: * * hb -> futex_q, relation * futex_q -> pi_state, relation * * (cannot be raw because hb can contain arbitrary amount * of futex_q's) * * pi_mutex->wait_lock: * * {uval, pi_state} * * (and pi_mutex 'obviously') * * p->pi_lock: * * p->pi_state_list -> pi_state->list, relation * pi_mutex->owner -> pi_state->owner, relation * * pi_state->refcount: * * pi_state lifetime * * * Lock order: * * hb->lock * pi_mutex->wait_lock * p->pi_lock * */ /* * Validate that the existing waiter has a pi_state and sanity check * the pi_state against the user space value. If correct, attach to * it. */ static int attach_to_pi_state(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state, struct futex_pi_state **ps) { pid_t pid = uval & FUTEX_TID_MASK; u32 uval2; int ret; /* * Userspace might have messed up non-PI and PI futexes [3] */ if (unlikely(!pi_state)) return -EINVAL; /* * We get here with hb->lock held, and having found a * futex_top_waiter(). This means that futex_lock_pi() of said futex_q * has dropped the hb->lock in between futex_queue() and futex_unqueue_pi(), * which in turn means that futex_lock_pi() still has a reference on * our pi_state. * * The waiter holding a reference on @pi_state also protects against * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi() * and futex_wait_requeue_pi() as it cannot go to 0 and consequently * free pi_state before we can take a reference ourselves. */ WARN_ON(!refcount_read(&pi_state->refcount)); /* * Now that we have a pi_state, we can acquire wait_lock * and do the state validation. */ raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); /* * Since {uval, pi_state} is serialized by wait_lock, and our current * uval was read without holding it, it can have changed. Verify it * still is what we expect it to be, otherwise retry the entire * operation. */ if (get_futex_value_locked(&uval2, uaddr)) goto out_efault; if (uval != uval2) goto out_eagain; /* * Handle the owner died case: */ if (uval & FUTEX_OWNER_DIED) { /* * exit_pi_state_list sets owner to NULL and wakes the * topmost waiter. The task which acquires the * pi_state->rt_mutex will fixup owner. */ if (!pi_state->owner) { /* * No pi state owner, but the user space TID * is not 0. Inconsistent state. [5] */ if (pid) goto out_einval; /* * Take a ref on the state and return success. [4] */ goto out_attach; } /* * If TID is 0, then either the dying owner has not * yet executed exit_pi_state_list() or some waiter * acquired the rtmutex in the pi state, but did not * yet fixup the TID in user space. * * Take a ref on the state and return success. [6] */ if (!pid) goto out_attach; } else { /* * If the owner died bit is not set, then the pi_state * must have an owner. [7] */ if (!pi_state->owner) goto out_einval; } /* * Bail out if user space manipulated the futex value. If pi * state exists then the owner TID must be the same as the * user space TID. [9/10] */ if (pid != task_pid_vnr(pi_state->owner)) goto out_einval; out_attach: get_pi_state(pi_state); raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); *ps = pi_state; return 0; out_einval: ret = -EINVAL; goto out_error; out_eagain: ret = -EAGAIN; goto out_error; out_efault: ret = -EFAULT; goto out_error; out_error: raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); return ret; } /** * wait_for_owner_exiting - Block until the owner has exited * @ret: owner's current futex lock status * @exiting: Pointer to the exiting task * * Caller must hold a refcount on @exiting. */ static void wait_for_owner_exiting(int ret, struct task_struct *exiting) { if (ret != -EBUSY) { WARN_ON_ONCE(exiting); return; } if (WARN_ON_ONCE(ret == -EBUSY && !exiting)) return; mutex_lock(&exiting->futex_exit_mutex); /* * No point in doing state checking here. If the waiter got here * while the task was in exec()->exec_futex_release() then it can * have any FUTEX_STATE_* value when the waiter has acquired the * mutex. OK, if running, EXITING or DEAD if it reached exit() * already. Highly unlikely and not a problem. Just one more round * through the futex maze. */ mutex_unlock(&exiting->futex_exit_mutex); put_task_struct(exiting); } static int handle_exit_race(u32 __user *uaddr, u32 uval, struct task_struct *tsk) { u32 uval2; /* * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the * caller that the alleged owner is busy. */ if (tsk && tsk->futex_state != FUTEX_STATE_DEAD) return -EBUSY; /* * Reread the user space value to handle the following situation: * * CPU0 CPU1 * * sys_exit() sys_futex() * do_exit() futex_lock_pi() * futex_lock_pi_atomic() * exit_signals(tsk) No waiters: * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID * mm_release(tsk) Set waiter bit * exit_robust_list(tsk) { *uaddr = 0x80000PID; * Set owner died attach_to_pi_owner() { * *uaddr = 0xC0000000; tsk = get_task(PID); * } if (!tsk->flags & PF_EXITING) { * ... attach(); * tsk->futex_state = } else { * FUTEX_STATE_DEAD; if (tsk->futex_state != * FUTEX_STATE_DEAD) * return -EAGAIN; * return -ESRCH; <--- FAIL * } * * Returning ESRCH unconditionally is wrong here because the * user space value has been changed by the exiting task. * * The same logic applies to the case where the exiting task is * already gone. */ if (get_futex_value_locked(&uval2, uaddr)) return -EFAULT; /* If the user space value has changed, try again. */ if (uval2 != uval) return -EAGAIN; /* * The exiting task did not have a robust list, the robust list was * corrupted or the user space value in *uaddr is simply bogus. * Give up and tell user space. */ return -ESRCH; } static void __attach_to_pi_owner(struct task_struct *p, union futex_key *key, struct futex_pi_state **ps) { /* * No existing pi state. First waiter. [2] * * This creates pi_state, we have hb->lock held, this means nothing can * observe this state, wait_lock is irrelevant. */ struct futex_pi_state *pi_state = alloc_pi_state(); /* * Initialize the pi_mutex in locked state and make @p * the owner of it: */ rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); /* Store the key for possible exit cleanups: */ pi_state->key = *key; WARN_ON(!list_empty(&pi_state->list)); list_add(&pi_state->list, &p->pi_state_list); /* * Assignment without holding pi_state->pi_mutex.wait_lock is safe * because there is no concurrency as the object is not published yet. */ pi_state->owner = p; *ps = pi_state; } /* * Lookup the task for the TID provided from user space and attach to * it after doing proper sanity checks. */ static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key, struct futex_pi_state **ps, struct task_struct **exiting) { pid_t pid = uval & FUTEX_TID_MASK; struct task_struct *p; /* * We are the first waiter - try to look up the real owner and attach * the new pi_state to it, but bail out when TID = 0 [1] * * The !pid check is paranoid. None of the call sites should end up * with pid == 0, but better safe than sorry. Let the caller retry */ if (!pid) return -EAGAIN; p = find_get_task_by_vpid(pid); if (!p) return handle_exit_race(uaddr, uval, NULL); if (unlikely(p->flags & PF_KTHREAD)) { put_task_struct(p); return -EPERM; } /* * We need to look at the task state to figure out, whether the * task is exiting. To protect against the change of the task state * in futex_exit_release(), we do this protected by p->pi_lock: */ raw_spin_lock_irq(&p->pi_lock); if (unlikely(p->futex_state != FUTEX_STATE_OK)) { /* * The task is on the way out. When the futex state is * FUTEX_STATE_DEAD, we know that the task has finished * the cleanup: */ int ret = handle_exit_race(uaddr, uval, p); raw_spin_unlock_irq(&p->pi_lock); /* * If the owner task is between FUTEX_STATE_EXITING and * FUTEX_STATE_DEAD then store the task pointer and keep * the reference on the task struct. The calling code will * drop all locks, wait for the task to reach * FUTEX_STATE_DEAD and then drop the refcount. This is * required to prevent a live lock when the current task * preempted the exiting task between the two states. */ if (ret == -EBUSY) *exiting = p; else put_task_struct(p); return ret; } __attach_to_pi_owner(p, key, ps); raw_spin_unlock_irq(&p->pi_lock); put_task_struct(p); return 0; } static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval) { int err; u32 curval; if (unlikely(should_fail_futex(true))) return -EFAULT; err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); if (unlikely(err)) return err; /* If user space value changed, let the caller retry */ return curval != uval ? -EAGAIN : 0; } /** * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex * @uaddr: the pi futex user address * @hb: the pi futex hash bucket * @key: the futex key associated with uaddr and hb * @ps: the pi_state pointer where we store the result of the * lookup * @task: the task to perform the atomic lock work for. This will * be "current" except in the case of requeue pi. * @exiting: Pointer to store the task pointer of the owner task * which is in the middle of exiting * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) * * Return: * - 0 - ready to wait; * - 1 - acquired the lock; * - <0 - error * * The hb->lock must be held by the caller. * * @exiting is only set when the return value is -EBUSY. If so, this holds * a refcount on the exiting task on return and the caller needs to drop it * after waiting for the exit to complete. */ static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, union futex_key *key, struct futex_pi_state **ps, struct task_struct *task, struct task_struct **exiting, int set_waiters) { u32 uval, newval, vpid = task_pid_vnr(task); struct futex_q *top_waiter; int ret; /* * Read the user space value first so we can validate a few * things before proceeding further. */ if (get_futex_value_locked(&uval, uaddr)) return -EFAULT; if (unlikely(should_fail_futex(true))) return -EFAULT; /* * Detect deadlocks. */ if ((unlikely((uval & FUTEX_TID_MASK) == vpid))) return -EDEADLK; if ((unlikely(should_fail_futex(true)))) return -EDEADLK; /* * Lookup existing state first. If it exists, try to attach to * its pi_state. */ top_waiter = futex_top_waiter(hb, key); if (top_waiter) return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps); /* * No waiter and user TID is 0. We are here because the * waiters or the owner died bit is set or called from * requeue_cmp_pi or for whatever reason something took the * syscall. */ if (!(uval & FUTEX_TID_MASK)) { /* * We take over the futex. No other waiters and the user space * TID is 0. We preserve the owner died bit. */ newval = uval & FUTEX_OWNER_DIED; newval |= vpid; /* The futex requeue_pi code can enforce the waiters bit */ if (set_waiters) newval |= FUTEX_WAITERS; ret = lock_pi_update_atomic(uaddr, uval, newval); if (ret) return ret; /* * If the waiter bit was requested the caller also needs PI * state attached to the new owner of the user space futex. * * @task is guaranteed to be alive and it cannot be exiting * because it is either sleeping or waiting in * futex_requeue_pi_wakeup_sync(). * * No need to do the full attach_to_pi_owner() exercise * because @task is known and valid. */ if (set_waiters) { raw_spin_lock_irq(&task->pi_lock); __attach_to_pi_owner(task, key, ps); raw_spin_unlock_irq(&task->pi_lock); } return 1; } /* * First waiter. Set the waiters bit before attaching ourself to * the owner. If owner tries to unlock, it will be forced into * the kernel and blocked on hb->lock. */ newval = uval | FUTEX_WAITERS; ret = lock_pi_update_atomic(uaddr, uval, newval); if (ret) return ret; /* * If the update of the user space value succeeded, we try to * attach to the owner. If that fails, no harm done, we only * set the FUTEX_WAITERS bit in the user space variable. */ return attach_to_pi_owner(uaddr, newval, key, ps, exiting); } /** * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket * @q: The futex_q to unqueue * * The q->lock_ptr must not be NULL and must be held by the caller. */ static void __unqueue_futex(struct futex_q *q) { struct futex_hash_bucket *hb; if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list))) return; lockdep_assert_held(q->lock_ptr); hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); plist_del(&q->list, &hb->chain); hb_waiters_dec(hb); } /* * The hash bucket lock must be held when this is called. * Afterwards, the futex_q must not be accessed. Callers * must ensure to later call wake_up_q() for the actual * wakeups to occur. */ static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q) { struct task_struct *p = q->task; if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) return; get_task_struct(p); __unqueue_futex(q); /* * The waiting task can free the futex_q as soon as q->lock_ptr = NULL * is written, without taking any locks. This is possible in the event * of a spurious wakeup, for example. A memory barrier is required here * to prevent the following store to lock_ptr from getting ahead of the * plist_del in __unqueue_futex(). */ smp_store_release(&q->lock_ptr, NULL); /* * Queue the task for later wakeup for after we've released * the hb->lock. */ wake_q_add_safe(wake_q, p); } /* * Caller must hold a reference on @pi_state. */ static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state) { struct rt_mutex_waiter *top_waiter; struct task_struct *new_owner; bool postunlock = false; DEFINE_RT_WAKE_Q(wqh); u32 curval, newval; int ret = 0; top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex); if (WARN_ON_ONCE(!top_waiter)) { /* * As per the comment in futex_unlock_pi() this should not happen. * * When this happens, give up our locks and try again, giving * the futex_lock_pi() instance time to complete, either by * waiting on the rtmutex or removing itself from the futex * queue. */ ret = -EAGAIN; goto out_unlock; } new_owner = top_waiter->task; /* * We pass it to the next owner. The WAITERS bit is always kept * enabled while there is PI state around. We cleanup the owner * died bit, because we are the owner. */ newval = FUTEX_WAITERS | task_pid_vnr(new_owner); if (unlikely(should_fail_futex(true))) { ret = -EFAULT; goto out_unlock; } ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); if (!ret && (curval != uval)) { /* * If a unconditional UNLOCK_PI operation (user space did not * try the TID->0 transition) raced with a waiter setting the * FUTEX_WAITERS flag between get_user() and locking the hash * bucket lock, retry the operation. */ if ((FUTEX_TID_MASK & curval) == uval) ret = -EAGAIN; else ret = -EINVAL; } if (!ret) { /* * This is a point of no return; once we modified the uval * there is no going back and subsequent operations must * not fail. */ pi_state_update_owner(pi_state, new_owner); postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh); } out_unlock: raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); if (postunlock) rt_mutex_postunlock(&wqh); return ret; } /* * Express the locking dependencies for lockdep: */ static inline void double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) { if (hb1 <= hb2) { spin_lock(&hb1->lock); if (hb1 < hb2) spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); } else { /* hb1 > hb2 */ spin_lock(&hb2->lock); spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); } } static inline void double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) { spin_unlock(&hb1->lock); if (hb1 != hb2) spin_unlock(&hb2->lock); } /* * Wake up waiters matching bitset queued on this futex (uaddr). */ int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) { struct futex_hash_bucket *hb; struct futex_q *this, *next; union futex_key key = FUTEX_KEY_INIT; int ret; DEFINE_WAKE_Q(wake_q); if (!bitset) return -EINVAL; ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ); if (unlikely(ret != 0)) return ret; hb = hash_futex(&key); /* Make sure we really have tasks to wakeup */ if (!hb_waiters_pending(hb)) return ret; spin_lock(&hb->lock); plist_for_each_entry_safe(this, next, &hb->chain, list) { if (match_futex (&this->key, &key)) { if (this->pi_state || this->rt_waiter) { ret = -EINVAL; break; } /* Check if one of the bits is set in both bitsets */ if (!(this->bitset & bitset)) continue; mark_wake_futex(&wake_q, this); if (++ret >= nr_wake) break; } } spin_unlock(&hb->lock); wake_up_q(&wake_q); return ret; } static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr) { unsigned int op = (encoded_op & 0x70000000) >> 28; unsigned int cmp = (encoded_op & 0x0f000000) >> 24; int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11); int cmparg = sign_extend32(encoded_op & 0x00000fff, 11); int oldval, ret; if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) { if (oparg < 0 || oparg > 31) { char comm[sizeof(current->comm)]; /* * kill this print and return -EINVAL when userspace * is sane again */ pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n", get_task_comm(comm, current), oparg); oparg &= 31; } oparg = 1 << oparg; } pagefault_disable(); ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr); pagefault_enable(); if (ret) return ret; switch (cmp) { case FUTEX_OP_CMP_EQ: return oldval == cmparg; case FUTEX_OP_CMP_NE: return oldval != cmparg; case FUTEX_OP_CMP_LT: return oldval < cmparg; case FUTEX_OP_CMP_GE: return oldval >= cmparg; case FUTEX_OP_CMP_LE: return oldval <= cmparg; case FUTEX_OP_CMP_GT: return oldval > cmparg; default: return -ENOSYS; } } /* * Wake up all waiters hashed on the physical page that is mapped * to this virtual address: */ int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, int nr_wake, int nr_wake2, int op) { union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; struct futex_hash_bucket *hb1, *hb2; struct futex_q *this, *next; int ret, op_ret; DEFINE_WAKE_Q(wake_q); retry: ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ); if (unlikely(ret != 0)) return ret; ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); if (unlikely(ret != 0)) return ret; hb1 = hash_futex(&key1); hb2 = hash_futex(&key2); retry_private: double_lock_hb(hb1, hb2); op_ret = futex_atomic_op_inuser(op, uaddr2); if (unlikely(op_ret < 0)) { double_unlock_hb(hb1, hb2); if (!IS_ENABLED(CONFIG_MMU) || unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) { /* * we don't get EFAULT from MMU faults if we don't have * an MMU, but we might get them from range checking */ ret = op_ret; return ret; } if (op_ret == -EFAULT) { ret = fault_in_user_writeable(uaddr2); if (ret) return ret; } cond_resched(); if (!(flags & FLAGS_SHARED)) goto retry_private; goto retry; } plist_for_each_entry_safe(this, next, &hb1->chain, list) { if (match_futex (&this->key, &key1)) { if (this->pi_state || this->rt_waiter) { ret = -EINVAL; goto out_unlock; } mark_wake_futex(&wake_q, this); if (++ret >= nr_wake) break; } } if (op_ret > 0) { op_ret = 0; plist_for_each_entry_safe(this, next, &hb2->chain, list) { if (match_futex (&this->key, &key2)) { if (this->pi_state || this->rt_waiter) { ret = -EINVAL; goto out_unlock; } mark_wake_futex(&wake_q, this); if (++op_ret >= nr_wake2) break; } } ret += op_ret; } out_unlock: double_unlock_hb(hb1, hb2); wake_up_q(&wake_q); return ret; } /** * requeue_futex() - Requeue a futex_q from one hb to another * @q: the futex_q to requeue * @hb1: the source hash_bucket * @hb2: the target hash_bucket * @key2: the new key for the requeued futex_q */ static inline void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2, union futex_key *key2) { /* * If key1 and key2 hash to the same bucket, no need to * requeue. */ if (likely(&hb1->chain != &hb2->chain)) { plist_del(&q->list, &hb1->chain); hb_waiters_dec(hb1); hb_waiters_inc(hb2); plist_add(&q->list, &hb2->chain); q->lock_ptr = &hb2->lock; } q->key = *key2; } static inline bool futex_requeue_pi_prepare(struct futex_q *q, struct futex_pi_state *pi_state) { int old, new; /* * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has * already set Q_REQUEUE_PI_IGNORE to signal that requeue should * ignore the waiter. */ old = atomic_read_acquire(&q->requeue_state); do { if (old == Q_REQUEUE_PI_IGNORE) return false; /* * futex_proxy_trylock_atomic() might have set it to * IN_PROGRESS and a interleaved early wake to WAIT. * * It was considered to have an extra state for that * trylock, but that would just add more conditionals * all over the place for a dubious value. */ if (old != Q_REQUEUE_PI_NONE) break; new = Q_REQUEUE_PI_IN_PROGRESS; } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new)); q->pi_state = pi_state; return true; } static inline void futex_requeue_pi_complete(struct futex_q *q, int locked) { int old, new; old = atomic_read_acquire(&q->requeue_state); do { if (old == Q_REQUEUE_PI_IGNORE) return; if (locked >= 0) { /* Requeue succeeded. Set DONE or LOCKED */ WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS && old != Q_REQUEUE_PI_WAIT); new = Q_REQUEUE_PI_DONE + locked; } else if (old == Q_REQUEUE_PI_IN_PROGRESS) { /* Deadlock, no early wakeup interleave */ new = Q_REQUEUE_PI_NONE; } else { /* Deadlock, early wakeup interleave. */ WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT); new = Q_REQUEUE_PI_IGNORE; } } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new)); #ifdef CONFIG_PREEMPT_RT /* If the waiter interleaved with the requeue let it know */ if (unlikely(old == Q_REQUEUE_PI_WAIT)) rcuwait_wake_up(&q->requeue_wait); #endif } static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q) { int old, new; old = atomic_read_acquire(&q->requeue_state); do { /* Is requeue done already? */ if (old >= Q_REQUEUE_PI_DONE) return old; /* * If not done, then tell the requeue code to either ignore * the waiter or to wake it up once the requeue is done. */ new = Q_REQUEUE_PI_WAIT; if (old == Q_REQUEUE_PI_NONE) new = Q_REQUEUE_PI_IGNORE; } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new)); /* If the requeue was in progress, wait for it to complete */ if (old == Q_REQUEUE_PI_IN_PROGRESS) { #ifdef CONFIG_PREEMPT_RT rcuwait_wait_event(&q->requeue_wait, atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT, TASK_UNINTERRUPTIBLE); #else (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT); #endif } /* * Requeue is now either prohibited or complete. Reread state * because during the wait above it might have changed. Nothing * will modify q->requeue_state after this point. */ return atomic_read(&q->requeue_state); } /** * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue * @q: the futex_q * @key: the key of the requeue target futex * @hb: the hash_bucket of the requeue target futex * * During futex_requeue, with requeue_pi=1, it is possible to acquire the * target futex if it is uncontended or via a lock steal. * * 1) Set @q::key to the requeue target futex key so the waiter can detect * the wakeup on the right futex. * * 2) Dequeue @q from the hash bucket. * * 3) Set @q::rt_waiter to NULL so the woken up task can detect atomic lock * acquisition. * * 4) Set the q->lock_ptr to the requeue target hb->lock for the case that * the waiter has to fixup the pi state. * * 5) Complete the requeue state so the waiter can make progress. After * this point the waiter task can return from the syscall immediately in * case that the pi state does not have to be fixed up. * * 6) Wake the waiter task. * * Must be called with both q->lock_ptr and hb->lock held. */ static inline void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, struct futex_hash_bucket *hb) { q->key = *key; __unqueue_futex(q); WARN_ON(!q->rt_waiter); q->rt_waiter = NULL; q->lock_ptr = &hb->lock; /* Signal locked state to the waiter */ futex_requeue_pi_complete(q, 1); wake_up_state(q->task, TASK_NORMAL); } /** * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter * @pifutex: the user address of the to futex * @hb1: the from futex hash bucket, must be locked by the caller * @hb2: the to futex hash bucket, must be locked by the caller * @key1: the from futex key * @key2: the to futex key * @ps: address to store the pi_state pointer * @exiting: Pointer to store the task pointer of the owner task * which is in the middle of exiting * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) * * Try and get the lock on behalf of the top waiter if we can do it atomically. * Wake the top waiter if we succeed. If the caller specified set_waiters, * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. * hb1 and hb2 must be held by the caller. * * @exiting is only set when the return value is -EBUSY. If so, this holds * a refcount on the exiting task on return and the caller needs to drop it * after waiting for the exit to complete. * * Return: * - 0 - failed to acquire the lock atomically; * - >0 - acquired the lock, return value is vpid of the top_waiter * - <0 - error */ static int futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2, union futex_key *key1, union futex_key *key2, struct futex_pi_state **ps, struct task_struct **exiting, int set_waiters) { struct futex_q *top_waiter = NULL; u32 curval; int ret; if (get_futex_value_locked(&curval, pifutex)) return -EFAULT; if (unlikely(should_fail_futex(true))) return -EFAULT; /* * Find the top_waiter and determine if there are additional waiters. * If the caller intends to requeue more than 1 waiter to pifutex, * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, * as we have means to handle the possible fault. If not, don't set * the bit unnecessarily as it will force the subsequent unlock to enter * the kernel. */ top_waiter = futex_top_waiter(hb1, key1); /* There are no waiters, nothing for us to do. */ if (!top_waiter) return 0; /* * Ensure that this is a waiter sitting in futex_wait_requeue_pi() * and waiting on the 'waitqueue' futex which is always !PI. */ if (!top_waiter->rt_waiter || top_waiter->pi_state) return -EINVAL; /* Ensure we requeue to the expected futex. */ if (!match_futex(top_waiter->requeue_pi_key, key2)) return -EINVAL; /* Ensure that this does not race against an early wakeup */ if (!futex_requeue_pi_prepare(top_waiter, NULL)) return -EAGAIN; /* * Try to take the lock for top_waiter and set the FUTEX_WAITERS bit * in the contended case or if @set_waiters is true. * * In the contended case PI state is attached to the lock owner. If * the user space lock can be acquired then PI state is attached to * the new owner (@top_waiter->task) when @set_waiters is true. */ ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, exiting, set_waiters); if (ret == 1) { /* * Lock was acquired in user space and PI state was * attached to @top_waiter->task. That means state is fully * consistent and the waiter can return to user space * immediately after the wakeup. */ requeue_pi_wake_futex(top_waiter, key2, hb2); } else if (ret < 0) { /* Rewind top_waiter::requeue_state */ futex_requeue_pi_complete(top_waiter, ret); } else { /* * futex_lock_pi_atomic() did not acquire the user space * futex, but managed to establish the proxy lock and pi * state. top_waiter::requeue_state cannot be fixed up here * because the waiter is not enqueued on the rtmutex * yet. This is handled at the callsite depending on the * result of rt_mutex_start_proxy_lock() which is * guaranteed to be reached with this function returning 0. */ } return ret; } /** * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 * @uaddr1: source futex user address * @flags: futex flags (FLAGS_SHARED, etc.) * @uaddr2: target futex user address * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) * @nr_requeue: number of waiters to requeue (0-INT_MAX) * @cmpval: @uaddr1 expected value (or %NULL) * @requeue_pi: if we are attempting to requeue from a non-pi futex to a * pi futex (pi to pi requeue is not supported) * * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire * uaddr2 atomically on behalf of the top waiter. * * Return: * - >=0 - on success, the number of tasks requeued or woken; * - <0 - on error */ int futex_requeue(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, int nr_wake, int nr_requeue, u32 *cmpval, int requeue_pi) { union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; int task_count = 0, ret; struct futex_pi_state *pi_state = NULL; struct futex_hash_bucket *hb1, *hb2; struct futex_q *this, *next; DEFINE_WAKE_Q(wake_q); if (nr_wake < 0 || nr_requeue < 0) return -EINVAL; /* * When PI not supported: return -ENOSYS if requeue_pi is true, * consequently the compiler knows requeue_pi is always false past * this point which will optimize away all the conditional code * further down. */ if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi) return -ENOSYS; if (requeue_pi) { /* * Requeue PI only works on two distinct uaddrs. This * check is only valid for private futexes. See below. */ if (uaddr1 == uaddr2) return -EINVAL; /* * futex_requeue() allows the caller to define the number * of waiters to wake up via the @nr_wake argument. With * REQUEUE_PI, waking up more than one waiter is creating * more problems than it solves. Waking up a waiter makes * only sense if the PI futex @uaddr2 is uncontended as * this allows the requeue code to acquire the futex * @uaddr2 before waking the waiter. The waiter can then * return to user space without further action. A secondary * wakeup would just make the futex_wait_requeue_pi() * handling more complex, because that code would have to * look up pi_state and do more or less all the handling * which the requeue code has to do for the to be requeued * waiters. So restrict the number of waiters to wake to * one, and only wake it up when the PI futex is * uncontended. Otherwise requeue it and let the unlock of * the PI futex handle the wakeup. * * All REQUEUE_PI users, e.g. pthread_cond_signal() and * pthread_cond_broadcast() must use nr_wake=1. */ if (nr_wake != 1) return -EINVAL; /* * requeue_pi requires a pi_state, try to allocate it now * without any locks in case it fails. */ if (refill_pi_state_cache()) return -ENOMEM; } retry: ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ); if (unlikely(ret != 0)) return ret; ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, requeue_pi ? FUTEX_WRITE : FUTEX_READ); if (unlikely(ret != 0)) return ret; /* * The check above which compares uaddrs is not sufficient for * shared futexes. We need to compare the keys: */ if (requeue_pi && match_futex(&key1, &key2)) return -EINVAL; hb1 = hash_futex(&key1); hb2 = hash_futex(&key2); retry_private: hb_waiters_inc(hb2); double_lock_hb(hb1, hb2); if (likely(cmpval != NULL)) { u32 curval; ret = get_futex_value_locked(&curval, uaddr1); if (unlikely(ret)) { double_unlock_hb(hb1, hb2); hb_waiters_dec(hb2); ret = get_user(curval, uaddr1); if (ret) return ret; if (!(flags & FLAGS_SHARED)) goto retry_private; goto retry; } if (curval != *cmpval) { ret = -EAGAIN; goto out_unlock; } } if (requeue_pi) { struct task_struct *exiting = NULL; /* * Attempt to acquire uaddr2 and wake the top waiter. If we * intend to requeue waiters, force setting the FUTEX_WAITERS * bit. We force this here where we are able to easily handle * faults rather in the requeue loop below. * * Updates topwaiter::requeue_state if a top waiter exists. */ ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, &key2, &pi_state, &exiting, nr_requeue); /* * At this point the top_waiter has either taken uaddr2 or * is waiting on it. In both cases pi_state has been * established and an initial refcount on it. In case of an * error there's nothing. * * The top waiter's requeue_state is up to date: * * - If the lock was acquired atomically (ret == 1), then * the state is Q_REQUEUE_PI_LOCKED. * * The top waiter has been dequeued and woken up and can * return to user space immediately. The kernel/user * space state is consistent. In case that there must be * more waiters requeued the WAITERS bit in the user * space futex is set so the top waiter task has to go * into the syscall slowpath to unlock the futex. This * will block until this requeue operation has been * completed and the hash bucket locks have been * dropped. * * - If the trylock failed with an error (ret < 0) then * the state is either Q_REQUEUE_PI_NONE, i.e. "nothing * happened", or Q_REQUEUE_PI_IGNORE when there was an * interleaved early wakeup. * * - If the trylock did not succeed (ret == 0) then the * state is either Q_REQUEUE_PI_IN_PROGRESS or * Q_REQUEUE_PI_WAIT if an early wakeup interleaved. * This will be cleaned up in the loop below, which * cannot fail because futex_proxy_trylock_atomic() did * the same sanity checks for requeue_pi as the loop * below does. */ switch (ret) { case 0: /* We hold a reference on the pi state. */ break; case 1: /* * futex_proxy_trylock_atomic() acquired the user space * futex. Adjust task_count. */ task_count++; ret = 0; break; /* * If the above failed, then pi_state is NULL and * waiter::requeue_state is correct. */ case -EFAULT: double_unlock_hb(hb1, hb2); hb_waiters_dec(hb2); ret = fault_in_user_writeable(uaddr2); if (!ret) goto retry; return ret; case -EBUSY: case -EAGAIN: /* * Two reasons for this: * - EBUSY: Owner is exiting and we just wait for the * exit to complete. * - EAGAIN: The user space value changed. */ double_unlock_hb(hb1, hb2); hb_waiters_dec(hb2); /* * Handle the case where the owner is in the middle of * exiting. Wait for the exit to complete otherwise * this task might loop forever, aka. live lock. */ wait_for_owner_exiting(ret, exiting); cond_resched(); goto retry; default: goto out_unlock; } } plist_for_each_entry_safe(this, next, &hb1->chain, list) { if (task_count - nr_wake >= nr_requeue) break; if (!match_futex(&this->key, &key1)) continue; /* * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always * be paired with each other and no other futex ops. * * We should never be requeueing a futex_q with a pi_state, * which is awaiting a futex_unlock_pi(). */ if ((requeue_pi && !this->rt_waiter) || (!requeue_pi && this->rt_waiter) || this->pi_state) { ret = -EINVAL; break; } /* Plain futexes just wake or requeue and are done */ if (!requeue_pi) { if (++task_count <= nr_wake) mark_wake_futex(&wake_q, this); else requeue_futex(this, hb1, hb2, &key2); continue; } /* Ensure we requeue to the expected futex for requeue_pi. */ if (!match_futex(this->requeue_pi_key, &key2)) { ret = -EINVAL; break; } /* * Requeue nr_requeue waiters and possibly one more in the case * of requeue_pi if we couldn't acquire the lock atomically. * * Prepare the waiter to take the rt_mutex. Take a refcount * on the pi_state and store the pointer in the futex_q * object of the waiter. */ get_pi_state(pi_state); /* Don't requeue when the waiter is already on the way out. */ if (!futex_requeue_pi_prepare(this, pi_state)) { /* * Early woken waiter signaled that it is on the * way out. Drop the pi_state reference and try the * next waiter. @this->pi_state is still NULL. */ put_pi_state(pi_state); continue; } ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, this->rt_waiter, this->task); if (ret == 1) { /* * We got the lock. We do neither drop the refcount * on pi_state nor clear this->pi_state because the * waiter needs the pi_state for cleaning up the * user space value. It will drop the refcount * after doing so. this::requeue_state is updated * in the wakeup as well. */ requeue_pi_wake_futex(this, &key2, hb2); task_count++; } else if (!ret) { /* Waiter is queued, move it to hb2 */ requeue_futex(this, hb1, hb2, &key2); futex_requeue_pi_complete(this, 0); task_count++; } else { /* * rt_mutex_start_proxy_lock() detected a potential * deadlock when we tried to queue that waiter. * Drop the pi_state reference which we took above * and remove the pointer to the state from the * waiters futex_q object. */ this->pi_state = NULL; put_pi_state(pi_state); futex_requeue_pi_complete(this, ret); /* * We stop queueing more waiters and let user space * deal with the mess. */ break; } } /* * We took an extra initial reference to the pi_state in * futex_proxy_trylock_atomic(). We need to drop it here again. */ put_pi_state(pi_state); out_unlock: double_unlock_hb(hb1, hb2); wake_up_q(&wake_q); hb_waiters_dec(hb2); return ret ? ret : task_count; } /* The key must be already stored in q->key. */ static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) __acquires(&hb->lock) { struct futex_hash_bucket *hb; hb = hash_futex(&q->key); /* * Increment the counter before taking the lock so that * a potential waker won't miss a to-be-slept task that is * waiting for the spinlock. This is safe as all queue_lock() * users end up calling futex_queue(). Similarly, for housekeeping, * decrement the counter at queue_unlock() when some error has * occurred and we don't end up adding the task to the list. */ hb_waiters_inc(hb); /* implies smp_mb(); (A) */ q->lock_ptr = &hb->lock; spin_lock(&hb->lock); return hb; } static inline void queue_unlock(struct futex_hash_bucket *hb) __releases(&hb->lock) { spin_unlock(&hb->lock); hb_waiters_dec(hb); } static inline void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb) { int prio; /* * The priority used to register this element is * - either the real thread-priority for the real-time threads * (i.e. threads with a priority lower than MAX_RT_PRIO) * - or MAX_RT_PRIO for non-RT threads. * Thus, all RT-threads are woken first in priority order, and * the others are woken last, in FIFO order. */ prio = min(current->normal_prio, MAX_RT_PRIO); plist_node_init(&q->list, prio); plist_add(&q->list, &hb->chain); q->task = current; } /** * futex_queue() - Enqueue the futex_q on the futex_hash_bucket * @q: The futex_q to enqueue * @hb: The destination hash bucket * * The hb->lock must be held by the caller, and is released here. A call to * futex_queue() is typically paired with exactly one call to futex_unqueue(). The * exceptions involve the PI related operations, which may use futex_unqueue_pi() * or nothing if the unqueue is done as part of the wake process and the unqueue * state is implicit in the state of woken task (see futex_wait_requeue_pi() for * an example). */ static inline void futex_queue(struct futex_q *q, struct futex_hash_bucket *hb) __releases(&hb->lock) { __futex_queue(q, hb); spin_unlock(&hb->lock); } /** * futex_unqueue() - Remove the futex_q from its futex_hash_bucket * @q: The futex_q to unqueue * * The q->lock_ptr must not be held by the caller. A call to futex_unqueue() must * be paired with exactly one earlier call to futex_queue(). * * Return: * - 1 - if the futex_q was still queued (and we removed unqueued it); * - 0 - if the futex_q was already removed by the waking thread */ static int futex_unqueue(struct futex_q *q) { spinlock_t *lock_ptr; int ret = 0; /* In the common case we don't take the spinlock, which is nice. */ retry: /* * q->lock_ptr can change between this read and the following spin_lock. * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and * optimizing lock_ptr out of the logic below. */ lock_ptr = READ_ONCE(q->lock_ptr); if (lock_ptr != NULL) { spin_lock(lock_ptr); /* * q->lock_ptr can change between reading it and * spin_lock(), causing us to take the wrong lock. This * corrects the race condition. * * Reasoning goes like this: if we have the wrong lock, * q->lock_ptr must have changed (maybe several times) * between reading it and the spin_lock(). It can * change again after the spin_lock() but only if it was * already changed before the spin_lock(). It cannot, * however, change back to the original value. Therefore * we can detect whether we acquired the correct lock. */ if (unlikely(lock_ptr != q->lock_ptr)) { spin_unlock(lock_ptr); goto retry; } __unqueue_futex(q); BUG_ON(q->pi_state); spin_unlock(lock_ptr); ret = 1; } return ret; } /* * PI futexes can not be requeued and must remove themselves from the * hash bucket. The hash bucket lock (i.e. lock_ptr) is held. */ static void futex_unqueue_pi(struct futex_q *q) { __unqueue_futex(q); BUG_ON(!q->pi_state); put_pi_state(q->pi_state); q->pi_state = NULL; } static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, struct task_struct *argowner) { struct futex_pi_state *pi_state = q->pi_state; struct task_struct *oldowner, *newowner; u32 uval, curval, newval, newtid; int err = 0; oldowner = pi_state->owner; /* * We are here because either: * * - we stole the lock and pi_state->owner needs updating to reflect * that (@argowner == current), * * or: * * - someone stole our lock and we need to fix things to point to the * new owner (@argowner == NULL). * * Either way, we have to replace the TID in the user space variable. * This must be atomic as we have to preserve the owner died bit here. * * Note: We write the user space value _before_ changing the pi_state * because we can fault here. Imagine swapped out pages or a fork * that marked all the anonymous memory readonly for cow. * * Modifying pi_state _before_ the user space value would leave the * pi_state in an inconsistent state when we fault here, because we * need to drop the locks to handle the fault. This might be observed * in the PID checks when attaching to PI state . */ retry: if (!argowner) { if (oldowner != current) { /* * We raced against a concurrent self; things are * already fixed up. Nothing to do. */ return 0; } if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) { /* We got the lock. pi_state is correct. Tell caller. */ return 1; } /* * The trylock just failed, so either there is an owner or * there is a higher priority waiter than this one. */ newowner = rt_mutex_owner(&pi_state->pi_mutex); /* * If the higher priority waiter has not yet taken over the * rtmutex then newowner is NULL. We can't return here with * that state because it's inconsistent vs. the user space * state. So drop the locks and try again. It's a valid * situation and not any different from the other retry * conditions. */ if (unlikely(!newowner)) { err = -EAGAIN; goto handle_err; } } else { WARN_ON_ONCE(argowner != current); if (oldowner == current) { /* * We raced against a concurrent self; things are * already fixed up. Nothing to do. */ return 1; } newowner = argowner; } newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; /* Owner died? */ if (!pi_state->owner) newtid |= FUTEX_OWNER_DIED; err = get_futex_value_locked(&uval, uaddr); if (err) goto handle_err; for (;;) { newval = (uval & FUTEX_OWNER_DIED) | newtid; err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval); if (err) goto handle_err; if (curval == uval) break; uval = curval; } /* * We fixed up user space. Now we need to fix the pi_state * itself. */ pi_state_update_owner(pi_state, newowner); return argowner == current; /* * In order to reschedule or handle a page fault, we need to drop the * locks here. In the case of a fault, this gives the other task * (either the highest priority waiter itself or the task which stole * the rtmutex) the chance to try the fixup of the pi_state. So once we * are back from handling the fault we need to check the pi_state after * reacquiring the locks and before trying to do another fixup. When * the fixup has been done already we simply return. * * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely * drop hb->lock since the caller owns the hb -> futex_q relation. * Dropping the pi_mutex->wait_lock requires the state revalidate. */ handle_err: raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); spin_unlock(q->lock_ptr); switch (err) { case -EFAULT: err = fault_in_user_writeable(uaddr); break; case -EAGAIN: cond_resched(); err = 0; break; default: WARN_ON_ONCE(1); break; } spin_lock(q->lock_ptr); raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); /* * Check if someone else fixed it for us: */ if (pi_state->owner != oldowner) return argowner == current; /* Retry if err was -EAGAIN or the fault in succeeded */ if (!err) goto retry; /* * fault_in_user_writeable() failed so user state is immutable. At * best we can make the kernel state consistent but user state will * be most likely hosed and any subsequent unlock operation will be * rejected due to PI futex rule [10]. * * Ensure that the rtmutex owner is also the pi_state owner despite * the user space value claiming something different. There is no * point in unlocking the rtmutex if current is the owner as it * would need to wait until the next waiter has taken the rtmutex * to guarantee consistent state. Keep it simple. Userspace asked * for this wreckaged state. * * The rtmutex has an owner - either current or some other * task. See the EAGAIN loop above. */ pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex)); return err; } static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, struct task_struct *argowner) { struct futex_pi_state *pi_state = q->pi_state; int ret; lockdep_assert_held(q->lock_ptr); raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); ret = __fixup_pi_state_owner(uaddr, q, argowner); raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock); return ret; } static long futex_wait_restart(struct restart_block *restart); /** * fixup_owner() - Post lock pi_state and corner case management * @uaddr: user address of the futex * @q: futex_q (contains pi_state and access to the rt_mutex) * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) * * After attempting to lock an rt_mutex, this function is called to cleanup * the pi_state owner as well as handle race conditions that may allow us to * acquire the lock. Must be called with the hb lock held. * * Return: * - 1 - success, lock taken; * - 0 - success, lock not taken; * - <0 - on error (-EFAULT) */ static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) { if (locked) { /* * Got the lock. We might not be the anticipated owner if we * did a lock-steal - fix up the PI-state in that case: * * Speculative pi_state->owner read (we don't hold wait_lock); * since we own the lock pi_state->owner == current is the * stable state, anything else needs more attention. */ if (q->pi_state->owner != current) return fixup_pi_state_owner(uaddr, q, current); return 1; } /* * If we didn't get the lock; check if anybody stole it from us. In * that case, we need to fix up the uval to point to them instead of * us, otherwise bad things happen. [10] * * Another speculative read; pi_state->owner == current is unstable * but needs our attention. */ if (q->pi_state->owner == current) return fixup_pi_state_owner(uaddr, q, NULL); /* * Paranoia check. If we did not take the lock, then we should not be * the owner of the rt_mutex. Warn and establish consistent state. */ if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current)) return fixup_pi_state_owner(uaddr, q, current); return 0; } /** * futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal * @hb: the futex hash bucket, must be locked by the caller * @q: the futex_q to queue up on * @timeout: the prepared hrtimer_sleeper, or null for no timeout */ static void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q, struct hrtimer_sleeper *timeout) { /* * The task state is guaranteed to be set before another task can * wake it. set_current_state() is implemented using smp_store_mb() and * futex_queue() calls spin_unlock() upon completion, both serializing * access to the hash list and forcing another memory barrier. */ set_current_state(TASK_INTERRUPTIBLE); futex_queue(q, hb); /* Arm the timer */ if (timeout) hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS); /* * If we have been removed from the hash list, then another task * has tried to wake us, and we can skip the call to schedule(). */ if (likely(!plist_node_empty(&q->list))) { /* * If the timer has already expired, current will already be * flagged for rescheduling. Only call schedule if there * is no timeout, or if it has yet to expire. */ if (!timeout || timeout->task) freezable_schedule(); } __set_current_state(TASK_RUNNING); } /** * futex_wait_setup() - Prepare to wait on a futex * @uaddr: the futex userspace address * @val: the expected value * @flags: futex flags (FLAGS_SHARED, etc.) * @q: the associated futex_q * @hb: storage for hash_bucket pointer to be returned to caller * * Setup the futex_q and locate the hash_bucket. Get the futex value and * compare it with the expected value. Handle atomic faults internally. * Return with the hb lock held on success, and unlocked on failure. * * Return: * - 0 - uaddr contains val and hb has been locked; * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked */ static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, struct futex_q *q, struct futex_hash_bucket **hb) { u32 uval; int ret; /* * Access the page AFTER the hash-bucket is locked. * Order is important: * * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } * * The basic logical guarantee of a futex is that it blocks ONLY * if cond(var) is known to be true at the time of blocking, for * any cond. If we locked the hash-bucket after testing *uaddr, that * would open a race condition where we could block indefinitely with * cond(var) false, which would violate the guarantee. * * On the other hand, we insert q and release the hash-bucket only * after testing *uaddr. This guarantees that futex_wait() will NOT * absorb a wakeup if *uaddr does not match the desired values * while the syscall executes. */ retry: ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ); if (unlikely(ret != 0)) return ret; retry_private: *hb = queue_lock(q); ret = get_futex_value_locked(&uval, uaddr); if (ret) { queue_unlock(*hb); ret = get_user(uval, uaddr); if (ret) return ret; if (!(flags & FLAGS_SHARED)) goto retry_private; goto retry; } if (uval != val) { queue_unlock(*hb); ret = -EWOULDBLOCK; } return ret; } int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset) { struct hrtimer_sleeper timeout, *to; struct restart_block *restart; struct futex_hash_bucket *hb; struct futex_q q = futex_q_init; int ret; if (!bitset) return -EINVAL; q.bitset = bitset; to = futex_setup_timer(abs_time, &timeout, flags, current->timer_slack_ns); retry: /* * Prepare to wait on uaddr. On success, it holds hb->lock and q * is initialized. */ ret = futex_wait_setup(uaddr, val, flags, &q, &hb); if (ret) goto out; /* futex_queue and wait for wakeup, timeout, or a signal. */ futex_wait_queue(hb, &q, to); /* If we were woken (and unqueued), we succeeded, whatever. */ ret = 0; if (!futex_unqueue(&q)) goto out; ret = -ETIMEDOUT; if (to && !to->task) goto out; /* * We expect signal_pending(current), but we might be the * victim of a spurious wakeup as well. */ if (!signal_pending(current)) goto retry; ret = -ERESTARTSYS; if (!abs_time) goto out; restart = ¤t->restart_block; restart->futex.uaddr = uaddr; restart->futex.val = val; restart->futex.time = *abs_time; restart->futex.bitset = bitset; restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; ret = set_restart_fn(restart, futex_wait_restart); out: if (to) { hrtimer_cancel(&to->timer); destroy_hrtimer_on_stack(&to->timer); } return ret; } static long futex_wait_restart(struct restart_block *restart) { u32 __user *uaddr = restart->futex.uaddr; ktime_t t, *tp = NULL; if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { t = restart->futex.time; tp = &t; } restart->fn = do_no_restart_syscall; return (long)futex_wait(uaddr, restart->futex.flags, restart->futex.val, tp, restart->futex.bitset); } /* * Userspace tried a 0 -> TID atomic transition of the futex value * and failed. The kernel side here does the whole locking operation: * if there are waiters then it will block as a consequence of relying * on rt-mutexes, it does PI, etc. (Due to races the kernel might see * a 0 value of the futex too.). * * Also serves as futex trylock_pi()'ing, and due semantics. */ int futex_lock_pi(u32 __user *uaddr, unsigned int flags, ktime_t *time, int trylock) { struct hrtimer_sleeper timeout, *to; struct task_struct *exiting = NULL; struct rt_mutex_waiter rt_waiter; struct futex_hash_bucket *hb; struct futex_q q = futex_q_init; int res, ret; if (!IS_ENABLED(CONFIG_FUTEX_PI)) return -ENOSYS; if (refill_pi_state_cache()) return -ENOMEM; to = futex_setup_timer(time, &timeout, flags, 0); retry: ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE); if (unlikely(ret != 0)) goto out; retry_private: hb = queue_lock(&q); ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, &exiting, 0); if (unlikely(ret)) { /* * Atomic work succeeded and we got the lock, * or failed. Either way, we do _not_ block. */ switch (ret) { case 1: /* We got the lock. */ ret = 0; goto out_unlock_put_key; case -EFAULT: goto uaddr_faulted; case -EBUSY: case -EAGAIN: /* * Two reasons for this: * - EBUSY: Task is exiting and we just wait for the * exit to complete. * - EAGAIN: The user space value changed. */ queue_unlock(hb); /* * Handle the case where the owner is in the middle of * exiting. Wait for the exit to complete otherwise * this task might loop forever, aka. live lock. */ wait_for_owner_exiting(ret, exiting); cond_resched(); goto retry; default: goto out_unlock_put_key; } } WARN_ON(!q.pi_state); /* * Only actually queue now that the atomic ops are done: */ __futex_queue(&q, hb); if (trylock) { ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex); /* Fixup the trylock return value: */ ret = ret ? 0 : -EWOULDBLOCK; goto no_block; } rt_mutex_init_waiter(&rt_waiter); /* * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not * hold it while doing rt_mutex_start_proxy(), because then it will * include hb->lock in the blocking chain, even through we'll not in * fact hold it while blocking. This will lead it to report -EDEADLK * and BUG when futex_unlock_pi() interleaves with this. * * Therefore acquire wait_lock while holding hb->lock, but drop the * latter before calling __rt_mutex_start_proxy_lock(). This * interleaves with futex_unlock_pi() -- which does a similar lock * handoff -- such that the latter can observe the futex_q::pi_state * before __rt_mutex_start_proxy_lock() is done. */ raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock); spin_unlock(q.lock_ptr); /* * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter * such that futex_unlock_pi() is guaranteed to observe the waiter when * it sees the futex_q::pi_state. */ ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current); raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock); if (ret) { if (ret == 1) ret = 0; goto cleanup; } if (unlikely(to)) hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS); ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter); cleanup: spin_lock(q.lock_ptr); /* * If we failed to acquire the lock (deadlock/signal/timeout), we must * first acquire the hb->lock before removing the lock from the * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait * lists consistent. * * In particular; it is important that futex_unlock_pi() can not * observe this inconsistency. */ if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter)) ret = 0; no_block: /* * Fixup the pi_state owner and possibly acquire the lock if we * haven't already. */ res = fixup_owner(uaddr, &q, !ret); /* * If fixup_owner() returned an error, propagate that. If it acquired * the lock, clear our -ETIMEDOUT or -EINTR. */ if (res) ret = (res < 0) ? res : 0; futex_unqueue_pi(&q); spin_unlock(q.lock_ptr); goto out; out_unlock_put_key: queue_unlock(hb); out: if (to) { hrtimer_cancel(&to->timer); destroy_hrtimer_on_stack(&to->timer); } return ret != -EINTR ? ret : -ERESTARTNOINTR; uaddr_faulted: queue_unlock(hb); ret = fault_in_user_writeable(uaddr); if (ret) goto out; if (!(flags & FLAGS_SHARED)) goto retry_private; goto retry; } /* * Userspace attempted a TID -> 0 atomic transition, and failed. * This is the in-kernel slowpath: we look up the PI state (if any), * and do the rt-mutex unlock. */ int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) { u32 curval, uval, vpid = task_pid_vnr(current); union futex_key key = FUTEX_KEY_INIT; struct futex_hash_bucket *hb; struct futex_q *top_waiter; int ret; if (!IS_ENABLED(CONFIG_FUTEX_PI)) return -ENOSYS; retry: if (get_user(uval, uaddr)) return -EFAULT; /* * We release only a lock we actually own: */ if ((uval & FUTEX_TID_MASK) != vpid) return -EPERM; ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE); if (ret) return ret; hb = hash_futex(&key); spin_lock(&hb->lock); /* * Check waiters first. We do not trust user space values at * all and we at least want to know if user space fiddled * with the futex value instead of blindly unlocking. */ top_waiter = futex_top_waiter(hb, &key); if (top_waiter) { struct futex_pi_state *pi_state = top_waiter->pi_state; ret = -EINVAL; if (!pi_state) goto out_unlock; /* * If current does not own the pi_state then the futex is * inconsistent and user space fiddled with the futex value. */ if (pi_state->owner != current) goto out_unlock; get_pi_state(pi_state); /* * By taking wait_lock while still holding hb->lock, we ensure * there is no point where we hold neither; and therefore * wake_futex_pi() must observe a state consistent with what we * observed. * * In particular; this forces __rt_mutex_start_proxy() to * complete such that we're guaranteed to observe the * rt_waiter. Also see the WARN in wake_futex_pi(). */ raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock); spin_unlock(&hb->lock); /* drops pi_state->pi_mutex.wait_lock */ ret = wake_futex_pi(uaddr, uval, pi_state); put_pi_state(pi_state); /* * Success, we're done! No tricky corner cases. */ if (!ret) return ret; /* * The atomic access to the futex value generated a * pagefault, so retry the user-access and the wakeup: */ if (ret == -EFAULT) goto pi_faulted; /* * A unconditional UNLOCK_PI op raced against a waiter * setting the FUTEX_WAITERS bit. Try again. */ if (ret == -EAGAIN) goto pi_retry; /* * wake_futex_pi has detected invalid state. Tell user * space. */ return ret; } /* * We have no kernel internal state, i.e. no waiters in the * kernel. Waiters which are about to queue themselves are stuck * on hb->lock. So we can safely ignore them. We do neither * preserve the WAITERS bit not the OWNER_DIED one. We are the * owner. */ if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) { spin_unlock(&hb->lock); switch (ret) { case -EFAULT: goto pi_faulted; case -EAGAIN: goto pi_retry; default: WARN_ON_ONCE(1); return ret; } } /* * If uval has changed, let user space handle it. */ ret = (curval == uval) ? 0 : -EAGAIN; out_unlock: spin_unlock(&hb->lock); return ret; pi_retry: cond_resched(); goto retry; pi_faulted: ret = fault_in_user_writeable(uaddr); if (!ret) goto retry; return ret; } /** * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex * @hb: the hash_bucket futex_q was original enqueued on * @q: the futex_q woken while waiting to be requeued * @timeout: the timeout associated with the wait (NULL if none) * * Determine the cause for the early wakeup. * * Return: * -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR */ static inline int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, struct futex_q *q, struct hrtimer_sleeper *timeout) { int ret; /* * With the hb lock held, we avoid races while we process the wakeup. * We only need to hold hb (and not hb2) to ensure atomicity as the * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. * It can't be requeued from uaddr2 to something else since we don't * support a PI aware source futex for requeue. */ WARN_ON_ONCE(&hb->lock != q->lock_ptr); /* * We were woken prior to requeue by a timeout or a signal. * Unqueue the futex_q and determine which it was. */ plist_del(&q->list, &hb->chain); hb_waiters_dec(hb); /* Handle spurious wakeups gracefully */ ret = -EWOULDBLOCK; if (timeout && !timeout->task) ret = -ETIMEDOUT; else if (signal_pending(current)) ret = -ERESTARTNOINTR; return ret; } /** * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 * @uaddr: the futex we initially wait on (non-pi) * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be * the same type, no requeueing from private to shared, etc. * @val: the expected value of uaddr * @abs_time: absolute timeout * @bitset: 32 bit wakeup bitset set by userspace, defaults to all * @uaddr2: the pi futex we will take prior to returning to user-space * * The caller will wait on uaddr and will be requeued by futex_requeue() to * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to * userspace. This ensures the rt_mutex maintains an owner when it has waiters; * without one, the pi logic would not know which task to boost/deboost, if * there was a need to. * * We call schedule in futex_wait_queue() when we enqueue and return there * via the following-- * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() * 2) wakeup on uaddr2 after a requeue * 3) signal * 4) timeout * * If 3, cleanup and return -ERESTARTNOINTR. * * If 2, we may then block on trying to take the rt_mutex and return via: * 5) successful lock * 6) signal * 7) timeout * 8) other lock acquisition failure * * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). * * If 4 or 7, we cleanup and return with -ETIMEDOUT. * * Return: * - 0 - On success; * - <0 - On error */ int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset, u32 __user *uaddr2) { struct hrtimer_sleeper timeout, *to; struct rt_mutex_waiter rt_waiter; struct futex_hash_bucket *hb; union futex_key key2 = FUTEX_KEY_INIT; struct futex_q q = futex_q_init; struct rt_mutex_base *pi_mutex; int res, ret; if (!IS_ENABLED(CONFIG_FUTEX_PI)) return -ENOSYS; if (uaddr == uaddr2) return -EINVAL; if (!bitset) return -EINVAL; to = futex_setup_timer(abs_time, &timeout, flags, current->timer_slack_ns); /* * The waiter is allocated on our stack, manipulated by the requeue * code while we sleep on uaddr. */ rt_mutex_init_waiter(&rt_waiter); ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE); if (unlikely(ret != 0)) goto out; q.bitset = bitset; q.rt_waiter = &rt_waiter; q.requeue_pi_key = &key2; /* * Prepare to wait on uaddr. On success, it holds hb->lock and q * is initialized. */ ret = futex_wait_setup(uaddr, val, flags, &q, &hb); if (ret) goto out; /* * The check above which compares uaddrs is not sufficient for * shared futexes. We need to compare the keys: */ if (match_futex(&q.key, &key2)) { queue_unlock(hb); ret = -EINVAL; goto out; } /* Queue the futex_q, drop the hb lock, wait for wakeup. */ futex_wait_queue(hb, &q, to); switch (futex_requeue_pi_wakeup_sync(&q)) { case Q_REQUEUE_PI_IGNORE: /* The waiter is still on uaddr1 */ spin_lock(&hb->lock); ret = handle_early_requeue_pi_wakeup(hb, &q, to); spin_unlock(&hb->lock); break; case Q_REQUEUE_PI_LOCKED: /* The requeue acquired the lock */ if (q.pi_state && (q.pi_state->owner != current)) { spin_lock(q.lock_ptr); ret = fixup_owner(uaddr2, &q, true); /* * Drop the reference to the pi state which the * requeue_pi() code acquired for us. */ put_pi_state(q.pi_state); spin_unlock(q.lock_ptr); /* * Adjust the return value. It's either -EFAULT or * success (1) but the caller expects 0 for success. */ ret = ret < 0 ? ret : 0; } break; case Q_REQUEUE_PI_DONE: /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */ pi_mutex = &q.pi_state->pi_mutex; ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter); /* Current is not longer pi_blocked_on */ spin_lock(q.lock_ptr); if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter)) ret = 0; debug_rt_mutex_free_waiter(&rt_waiter); /* * Fixup the pi_state owner and possibly acquire the lock if we * haven't already. */ res = fixup_owner(uaddr2, &q, !ret); /* * If fixup_owner() returned an error, propagate that. If it * acquired the lock, clear -ETIMEDOUT or -EINTR. */ if (res) ret = (res < 0) ? res : 0; futex_unqueue_pi(&q); spin_unlock(q.lock_ptr); if (ret == -EINTR) { /* * We've already been requeued, but cannot restart * by calling futex_lock_pi() directly. We could * restart this syscall, but it would detect that * the user space "val" changed and return * -EWOULDBLOCK. Save the overhead of the restart * and return -EWOULDBLOCK directly. */ ret = -EWOULDBLOCK; } break; default: BUG(); } out: if (to) { hrtimer_cancel(&to->timer); destroy_hrtimer_on_stack(&to->timer); } return ret; } /* Constants for the pending_op argument of handle_futex_death */ #define HANDLE_DEATH_PENDING true #define HANDLE_DEATH_LIST false /* * Process a futex-list entry, check whether it's owned by the * dying task, and do notification if so: */ static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, bool pi, bool pending_op) { u32 uval, nval, mval; int err; /* Futex address must be 32bit aligned */ if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0) return -1; retry: if (get_user(uval, uaddr)) return -1; /* * Special case for regular (non PI) futexes. The unlock path in * user space has two race scenarios: * * 1. The unlock path releases the user space futex value and * before it can execute the futex() syscall to wake up * waiters it is killed. * * 2. A woken up waiter is killed before it can acquire the * futex in user space. * * In both cases the TID validation below prevents a wakeup of * potential waiters which can cause these waiters to block * forever. * * In both cases the following conditions are met: * * 1) task->robust_list->list_op_pending != NULL * @pending_op == true * 2) User space futex value == 0 * 3) Regular futex: @pi == false * * If these conditions are met, it is safe to attempt waking up a * potential waiter without touching the user space futex value and * trying to set the OWNER_DIED bit. The user space futex value is * uncontended and the rest of the user space mutex state is * consistent, so a woken waiter will just take over the * uncontended futex. Setting the OWNER_DIED bit would create * inconsistent state and malfunction of the user space owner died * handling. */ if (pending_op && !pi && !uval) { futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); return 0; } if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr)) return 0; /* * Ok, this dying thread is truly holding a futex * of interest. Set the OWNER_DIED bit atomically * via cmpxchg, and if the value had FUTEX_WAITERS * set, wake up a waiter (if any). (We have to do a * futex_wake() even if OWNER_DIED is already set - * to handle the rare but possible case of recursive * thread-death.) The rest of the cleanup is done in * userspace. */ mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; /* * We are not holding a lock here, but we want to have * the pagefault_disable/enable() protection because * we want to handle the fault gracefully. If the * access fails we try to fault in the futex with R/W * verification via get_user_pages. get_user() above * does not guarantee R/W access. If that fails we * give up and leave the futex locked. */ if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) { switch (err) { case -EFAULT: if (fault_in_user_writeable(uaddr)) return -1; goto retry; case -EAGAIN: cond_resched(); goto retry; default: WARN_ON_ONCE(1); return err; } } if (nval != uval) goto retry; /* * Wake robust non-PI futexes here. The wakeup of * PI futexes happens in exit_pi_state(): */ if (!pi && (uval & FUTEX_WAITERS)) futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); return 0; } /* * Fetch a robust-list pointer. Bit 0 signals PI futexes: */ static inline int fetch_robust_entry(struct robust_list __user **entry, struct robust_list __user * __user *head, unsigned int *pi) { unsigned long uentry; if (get_user(uentry, (unsigned long __user *)head)) return -EFAULT; *entry = (void __user *)(uentry & ~1UL); *pi = uentry & 1; return 0; } /* * Walk curr->robust_list (very carefully, it's a userspace list!) * and mark any locks found there dead, and notify any waiters. * * We silently return on any sign of list-walking problem. */ static void exit_robust_list(struct task_struct *curr) { struct robust_list_head __user *head = curr->robust_list; struct robust_list __user *entry, *next_entry, *pending; unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; unsigned int next_pi; unsigned long futex_offset; int rc; if (!futex_cmpxchg_enabled) return; /* * Fetch the list head (which was registered earlier, via * sys_set_robust_list()): */ if (fetch_robust_entry(&entry, &head->list.next, &pi)) return; /* * Fetch the relative futex offset: */ if (get_user(futex_offset, &head->futex_offset)) return; /* * Fetch any possibly pending lock-add first, and handle it * if it exists: */ if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) return; next_entry = NULL; /* avoid warning with gcc */ while (entry != &head->list) { /* * Fetch the next entry in the list before calling * handle_futex_death: */ rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); /* * A pending lock might already be on the list, so * don't process it twice: */ if (entry != pending) { if (handle_futex_death((void __user *)entry + futex_offset, curr, pi, HANDLE_DEATH_LIST)) return; } if (rc) return; entry = next_entry; pi = next_pi; /* * Avoid excessively long or circular lists: */ if (!--limit) break; cond_resched(); } if (pending) { handle_futex_death((void __user *)pending + futex_offset, curr, pip, HANDLE_DEATH_PENDING); } } #ifdef CONFIG_COMPAT static void __user *futex_uaddr(struct robust_list __user *entry, compat_long_t futex_offset) { compat_uptr_t base = ptr_to_compat(entry); void __user *uaddr = compat_ptr(base + futex_offset); return uaddr; } /* * Fetch a robust-list pointer. Bit 0 signals PI futexes: */ static inline int compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry, compat_uptr_t __user *head, unsigned int *pi) { if (get_user(*uentry, head)) return -EFAULT; *entry = compat_ptr((*uentry) & ~1); *pi = (unsigned int)(*uentry) & 1; return 0; } /* * Walk curr->robust_list (very carefully, it's a userspace list!) * and mark any locks found there dead, and notify any waiters. * * We silently return on any sign of list-walking problem. */ static void compat_exit_robust_list(struct task_struct *curr) { struct compat_robust_list_head __user *head = curr->compat_robust_list; struct robust_list __user *entry, *next_entry, *pending; unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; unsigned int next_pi; compat_uptr_t uentry, next_uentry, upending; compat_long_t futex_offset; int rc; if (!futex_cmpxchg_enabled) return; /* * Fetch the list head (which was registered earlier, via * sys_set_robust_list()): */ if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi)) return; /* * Fetch the relative futex offset: */ if (get_user(futex_offset, &head->futex_offset)) return; /* * Fetch any possibly pending lock-add first, and handle it * if it exists: */ if (compat_fetch_robust_entry(&upending, &pending, &head->list_op_pending, &pip)) return; next_entry = NULL; /* avoid warning with gcc */ while (entry != (struct robust_list __user *) &head->list) { /* * Fetch the next entry in the list before calling * handle_futex_death: */ rc = compat_fetch_robust_entry(&next_uentry, &next_entry, (compat_uptr_t __user *)&entry->next, &next_pi); /* * A pending lock might already be on the list, so * dont process it twice: */ if (entry != pending) { void __user *uaddr = futex_uaddr(entry, futex_offset); if (handle_futex_death(uaddr, curr, pi, HANDLE_DEATH_LIST)) return; } if (rc) return; uentry = next_uentry; entry = next_entry; pi = next_pi; /* * Avoid excessively long or circular lists: */ if (!--limit) break; cond_resched(); } if (pending) { void __user *uaddr = futex_uaddr(pending, futex_offset); handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING); } } #endif static void futex_cleanup(struct task_struct *tsk) { if (unlikely(tsk->robust_list)) { exit_robust_list(tsk); tsk->robust_list = NULL; } #ifdef CONFIG_COMPAT if (unlikely(tsk->compat_robust_list)) { compat_exit_robust_list(tsk); tsk->compat_robust_list = NULL; } #endif if (unlikely(!list_empty(&tsk->pi_state_list))) exit_pi_state_list(tsk); } /** * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD * @tsk: task to set the state on * * Set the futex exit state of the task lockless. The futex waiter code * observes that state when a task is exiting and loops until the task has * actually finished the futex cleanup. The worst case for this is that the * waiter runs through the wait loop until the state becomes visible. * * This is called from the recursive fault handling path in do_exit(). * * This is best effort. Either the futex exit code has run already or * not. If the OWNER_DIED bit has been set on the futex then the waiter can * take it over. If not, the problem is pushed back to user space. If the * futex exit code did not run yet, then an already queued waiter might * block forever, but there is nothing which can be done about that. */ void futex_exit_recursive(struct task_struct *tsk) { /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */ if (tsk->futex_state == FUTEX_STATE_EXITING) mutex_unlock(&tsk->futex_exit_mutex); tsk->futex_state = FUTEX_STATE_DEAD; } static void futex_cleanup_begin(struct task_struct *tsk) { /* * Prevent various race issues against a concurrent incoming waiter * including live locks by forcing the waiter to block on * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in * attach_to_pi_owner(). */ mutex_lock(&tsk->futex_exit_mutex); /* * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock. * * This ensures that all subsequent checks of tsk->futex_state in * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with * tsk->pi_lock held. * * It guarantees also that a pi_state which was queued right before * the state change under tsk->pi_lock by a concurrent waiter must * be observed in exit_pi_state_list(). */ raw_spin_lock_irq(&tsk->pi_lock); tsk->futex_state = FUTEX_STATE_EXITING; raw_spin_unlock_irq(&tsk->pi_lock); } static void futex_cleanup_end(struct task_struct *tsk, int state) { /* * Lockless store. The only side effect is that an observer might * take another loop until it becomes visible. */ tsk->futex_state = state; /* * Drop the exit protection. This unblocks waiters which observed * FUTEX_STATE_EXITING to reevaluate the state. */ mutex_unlock(&tsk->futex_exit_mutex); } void futex_exec_release(struct task_struct *tsk) { /* * The state handling is done for consistency, but in the case of * exec() there is no way to prevent further damage as the PID stays * the same. But for the unlikely and arguably buggy case that a * futex is held on exec(), this provides at least as much state * consistency protection which is possible. */ futex_cleanup_begin(tsk); futex_cleanup(tsk); /* * Reset the state to FUTEX_STATE_OK. The task is alive and about * exec a new binary. */ futex_cleanup_end(tsk, FUTEX_STATE_OK); } void futex_exit_release(struct task_struct *tsk) { futex_cleanup_begin(tsk); futex_cleanup(tsk); futex_cleanup_end(tsk, FUTEX_STATE_DEAD); } static void __init futex_detect_cmpxchg(void) { #ifndef CONFIG_HAVE_FUTEX_CMPXCHG u32 curval; /* * This will fail and we want it. Some arch implementations do * runtime detection of the futex_atomic_cmpxchg_inatomic() * functionality. We want to know that before we call in any * of the complex code paths. Also we want to prevent * registration of robust lists in that case. NULL is * guaranteed to fault and we get -EFAULT on functional * implementation, the non-functional ones will return * -ENOSYS. */ if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) futex_cmpxchg_enabled = 1; #endif } static int __init futex_init(void) { unsigned int futex_shift; unsigned long i; #if CONFIG_BASE_SMALL futex_hashsize = 16; #else futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus()); #endif futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues), futex_hashsize, 0, futex_hashsize < 256 ? HASH_SMALL : 0, &futex_shift, NULL, futex_hashsize, futex_hashsize); futex_hashsize = 1UL << futex_shift; futex_detect_cmpxchg(); for (i = 0; i < futex_hashsize; i++) { atomic_set(&futex_queues[i].waiters, 0); plist_head_init(&futex_queues[i].chain); spin_lock_init(&futex_queues[i].lock); } return 0; } core_initcall(futex_init);