// SPDX-License-Identifier: GPL-2.0-only /* * linux/kernel/fork.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * 'fork.c' contains the help-routines for the 'fork' system call * (see also entry.S and others). * Fork is rather simple, once you get the hang of it, but the memory * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include /* * Minimum number of threads to boot the kernel */ #define MIN_THREADS 20 /* * Maximum number of threads */ #define MAX_THREADS FUTEX_TID_MASK /* * Protected counters by write_lock_irq(&tasklist_lock) */ unsigned long total_forks; /* Handle normal Linux uptimes. */ int nr_threads; /* The idle threads do not count.. */ static int max_threads; /* tunable limit on nr_threads */ #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) static const char * const resident_page_types[] = { NAMED_ARRAY_INDEX(MM_FILEPAGES), NAMED_ARRAY_INDEX(MM_ANONPAGES), NAMED_ARRAY_INDEX(MM_SWAPENTS), NAMED_ARRAY_INDEX(MM_SHMEMPAGES), }; DEFINE_PER_CPU(unsigned long, process_counts) = 0; __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ #ifdef CONFIG_PROVE_RCU int lockdep_tasklist_lock_is_held(void) { return lockdep_is_held(&tasklist_lock); } EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); #endif /* #ifdef CONFIG_PROVE_RCU */ int nr_processes(void) { int cpu; int total = 0; for_each_possible_cpu(cpu) total += per_cpu(process_counts, cpu); return total; } void __weak arch_release_task_struct(struct task_struct *tsk) { } #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR static struct kmem_cache *task_struct_cachep; static inline struct task_struct *alloc_task_struct_node(int node) { return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); } static inline void free_task_struct(struct task_struct *tsk) { kmem_cache_free(task_struct_cachep, tsk); } #endif #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR /* * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a * kmemcache based allocator. */ # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) #ifdef CONFIG_VMAP_STACK /* * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB * flush. Try to minimize the number of calls by caching stacks. */ #define NR_CACHED_STACKS 2 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); static int free_vm_stack_cache(unsigned int cpu) { struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); int i; for (i = 0; i < NR_CACHED_STACKS; i++) { struct vm_struct *vm_stack = cached_vm_stacks[i]; if (!vm_stack) continue; vfree(vm_stack->addr); cached_vm_stacks[i] = NULL; } return 0; } #endif static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) { #ifdef CONFIG_VMAP_STACK void *stack; int i; for (i = 0; i < NR_CACHED_STACKS; i++) { struct vm_struct *s; s = this_cpu_xchg(cached_stacks[i], NULL); if (!s) continue; /* Clear stale pointers from reused stack. */ memset(s->addr, 0, THREAD_SIZE); tsk->stack_vm_area = s; tsk->stack = s->addr; return s->addr; } /* * Allocated stacks are cached and later reused by new threads, * so memcg accounting is performed manually on assigning/releasing * stacks to tasks. Drop __GFP_ACCOUNT. */ stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, VMALLOC_START, VMALLOC_END, THREADINFO_GFP & ~__GFP_ACCOUNT, PAGE_KERNEL, 0, node, __builtin_return_address(0)); /* * We can't call find_vm_area() in interrupt context, and * free_thread_stack() can be called in interrupt context, * so cache the vm_struct. */ if (stack) { tsk->stack_vm_area = find_vm_area(stack); tsk->stack = stack; } return stack; #else struct page *page = alloc_pages_node(node, THREADINFO_GFP, THREAD_SIZE_ORDER); if (likely(page)) { tsk->stack = page_address(page); return tsk->stack; } return NULL; #endif } static inline void free_thread_stack(struct task_struct *tsk) { #ifdef CONFIG_VMAP_STACK struct vm_struct *vm = task_stack_vm_area(tsk); if (vm) { int i; for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { mod_memcg_page_state(vm->pages[i], MEMCG_KERNEL_STACK_KB, -(int)(PAGE_SIZE / 1024)); memcg_kmem_uncharge(vm->pages[i], 0); } for (i = 0; i < NR_CACHED_STACKS; i++) { if (this_cpu_cmpxchg(cached_stacks[i], NULL, tsk->stack_vm_area) != NULL) continue; return; } vfree_atomic(tsk->stack); return; } #endif __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); } # else static struct kmem_cache *thread_stack_cache; static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) { unsigned long *stack; stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); tsk->stack = stack; return stack; } static void free_thread_stack(struct task_struct *tsk) { kmem_cache_free(thread_stack_cache, tsk->stack); } void thread_stack_cache_init(void) { thread_stack_cache = kmem_cache_create_usercopy("thread_stack", THREAD_SIZE, THREAD_SIZE, 0, 0, THREAD_SIZE, NULL); BUG_ON(thread_stack_cache == NULL); } # endif #endif /* SLAB cache for signal_struct structures (tsk->signal) */ static struct kmem_cache *signal_cachep; /* SLAB cache for sighand_struct structures (tsk->sighand) */ struct kmem_cache *sighand_cachep; /* SLAB cache for files_struct structures (tsk->files) */ struct kmem_cache *files_cachep; /* SLAB cache for fs_struct structures (tsk->fs) */ struct kmem_cache *fs_cachep; /* SLAB cache for vm_area_struct structures */ static struct kmem_cache *vm_area_cachep; /* SLAB cache for mm_struct structures (tsk->mm) */ static struct kmem_cache *mm_cachep; struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) { struct vm_area_struct *vma; vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); if (vma) vma_init(vma, mm); return vma; } struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) { struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); if (new) { *new = *orig; INIT_LIST_HEAD(&new->anon_vma_chain); } return new; } void vm_area_free(struct vm_area_struct *vma) { kmem_cache_free(vm_area_cachep, vma); } static void account_kernel_stack(struct task_struct *tsk, int account) { void *stack = task_stack_page(tsk); struct vm_struct *vm = task_stack_vm_area(tsk); BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); if (vm) { int i; BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { mod_zone_page_state(page_zone(vm->pages[i]), NR_KERNEL_STACK_KB, PAGE_SIZE / 1024 * account); } } else { /* * All stack pages are in the same zone and belong to the * same memcg. */ struct page *first_page = virt_to_page(stack); mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, THREAD_SIZE / 1024 * account); mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, account * (THREAD_SIZE / 1024)); } } static int memcg_charge_kernel_stack(struct task_struct *tsk) { #ifdef CONFIG_VMAP_STACK struct vm_struct *vm = task_stack_vm_area(tsk); int ret; if (vm) { int i; for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { /* * If memcg_kmem_charge() fails, page->mem_cgroup * pointer is NULL, and both memcg_kmem_uncharge() * and mod_memcg_page_state() in free_thread_stack() * will ignore this page. So it's safe. */ ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); if (ret) return ret; mod_memcg_page_state(vm->pages[i], MEMCG_KERNEL_STACK_KB, PAGE_SIZE / 1024); } } #endif return 0; } static void release_task_stack(struct task_struct *tsk) { if (WARN_ON(tsk->state != TASK_DEAD)) return; /* Better to leak the stack than to free prematurely */ account_kernel_stack(tsk, -1); free_thread_stack(tsk); tsk->stack = NULL; #ifdef CONFIG_VMAP_STACK tsk->stack_vm_area = NULL; #endif } #ifdef CONFIG_THREAD_INFO_IN_TASK void put_task_stack(struct task_struct *tsk) { if (refcount_dec_and_test(&tsk->stack_refcount)) release_task_stack(tsk); } #endif void free_task(struct task_struct *tsk) { #ifndef CONFIG_THREAD_INFO_IN_TASK /* * The task is finally done with both the stack and thread_info, * so free both. */ release_task_stack(tsk); #else /* * If the task had a separate stack allocation, it should be gone * by now. */ WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); #endif rt_mutex_debug_task_free(tsk); ftrace_graph_exit_task(tsk); put_seccomp_filter(tsk); arch_release_task_struct(tsk); if (tsk->flags & PF_KTHREAD) free_kthread_struct(tsk); free_task_struct(tsk); } EXPORT_SYMBOL(free_task); #ifdef CONFIG_MMU static __latent_entropy int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) { struct vm_area_struct *mpnt, *tmp, *prev, **pprev; struct rb_node **rb_link, *rb_parent; int retval; unsigned long charge; LIST_HEAD(uf); uprobe_start_dup_mmap(); if (down_write_killable(&oldmm->mmap_sem)) { retval = -EINTR; goto fail_uprobe_end; } flush_cache_dup_mm(oldmm); uprobe_dup_mmap(oldmm, mm); /* * Not linked in yet - no deadlock potential: */ down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); /* No ordering required: file already has been exposed. */ RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); mm->total_vm = oldmm->total_vm; mm->data_vm = oldmm->data_vm; mm->exec_vm = oldmm->exec_vm; mm->stack_vm = oldmm->stack_vm; rb_link = &mm->mm_rb.rb_node; rb_parent = NULL; pprev = &mm->mmap; retval = ksm_fork(mm, oldmm); if (retval) goto out; retval = khugepaged_fork(mm, oldmm); if (retval) goto out; prev = NULL; for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { struct file *file; if (mpnt->vm_flags & VM_DONTCOPY) { vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); continue; } charge = 0; /* * Don't duplicate many vmas if we've been oom-killed (for * example) */ if (fatal_signal_pending(current)) { retval = -EINTR; goto out; } if (mpnt->vm_flags & VM_ACCOUNT) { unsigned long len = vma_pages(mpnt); if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ goto fail_nomem; charge = len; } tmp = vm_area_dup(mpnt); if (!tmp) goto fail_nomem; retval = vma_dup_policy(mpnt, tmp); if (retval) goto fail_nomem_policy; tmp->vm_mm = mm; retval = dup_userfaultfd(tmp, &uf); if (retval) goto fail_nomem_anon_vma_fork; if (tmp->vm_flags & VM_WIPEONFORK) { /* VM_WIPEONFORK gets a clean slate in the child. */ tmp->anon_vma = NULL; if (anon_vma_prepare(tmp)) goto fail_nomem_anon_vma_fork; } else if (anon_vma_fork(tmp, mpnt)) goto fail_nomem_anon_vma_fork; tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); tmp->vm_next = tmp->vm_prev = NULL; file = tmp->vm_file; if (file) { struct inode *inode = file_inode(file); struct address_space *mapping = file->f_mapping; get_file(file); if (tmp->vm_flags & VM_DENYWRITE) atomic_dec(&inode->i_writecount); i_mmap_lock_write(mapping); if (tmp->vm_flags & VM_SHARED) atomic_inc(&mapping->i_mmap_writable); flush_dcache_mmap_lock(mapping); /* insert tmp into the share list, just after mpnt */ vma_interval_tree_insert_after(tmp, mpnt, &mapping->i_mmap); flush_dcache_mmap_unlock(mapping); i_mmap_unlock_write(mapping); } /* * Clear hugetlb-related page reserves for children. This only * affects MAP_PRIVATE mappings. Faults generated by the child * are not guaranteed to succeed, even if read-only */ if (is_vm_hugetlb_page(tmp)) reset_vma_resv_huge_pages(tmp); /* * Link in the new vma and copy the page table entries. */ *pprev = tmp; pprev = &tmp->vm_next; tmp->vm_prev = prev; prev = tmp; __vma_link_rb(mm, tmp, rb_link, rb_parent); rb_link = &tmp->vm_rb.rb_right; rb_parent = &tmp->vm_rb; mm->map_count++; if (!(tmp->vm_flags & VM_WIPEONFORK)) retval = copy_page_range(mm, oldmm, mpnt); if (tmp->vm_ops && tmp->vm_ops->open) tmp->vm_ops->open(tmp); if (retval) goto out; } /* a new mm has just been created */ retval = arch_dup_mmap(oldmm, mm); out: up_write(&mm->mmap_sem); flush_tlb_mm(oldmm); up_write(&oldmm->mmap_sem); dup_userfaultfd_complete(&uf); fail_uprobe_end: uprobe_end_dup_mmap(); return retval; fail_nomem_anon_vma_fork: mpol_put(vma_policy(tmp)); fail_nomem_policy: vm_area_free(tmp); fail_nomem: retval = -ENOMEM; vm_unacct_memory(charge); goto out; } static inline int mm_alloc_pgd(struct mm_struct *mm) { mm->pgd = pgd_alloc(mm); if (unlikely(!mm->pgd)) return -ENOMEM; return 0; } static inline void mm_free_pgd(struct mm_struct *mm) { pgd_free(mm, mm->pgd); } #else static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) { down_write(&oldmm->mmap_sem); RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); up_write(&oldmm->mmap_sem); return 0; } #define mm_alloc_pgd(mm) (0) #define mm_free_pgd(mm) #endif /* CONFIG_MMU */ static void check_mm(struct mm_struct *mm) { int i; BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, "Please make sure 'struct resident_page_types[]' is updated as well"); for (i = 0; i < NR_MM_COUNTERS; i++) { long x = atomic_long_read(&mm->rss_stat.count[i]); if (unlikely(x)) pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", mm, resident_page_types[i], x); } if (mm_pgtables_bytes(mm)) pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", mm_pgtables_bytes(mm)); #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS VM_BUG_ON_MM(mm->pmd_huge_pte, mm); #endif } #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) /* * Called when the last reference to the mm * is dropped: either by a lazy thread or by * mmput. Free the page directory and the mm. */ void __mmdrop(struct mm_struct *mm) { BUG_ON(mm == &init_mm); WARN_ON_ONCE(mm == current->mm); WARN_ON_ONCE(mm == current->active_mm); mm_free_pgd(mm); destroy_context(mm); mmu_notifier_mm_destroy(mm); check_mm(mm); put_user_ns(mm->user_ns); free_mm(mm); } EXPORT_SYMBOL_GPL(__mmdrop); static void mmdrop_async_fn(struct work_struct *work) { struct mm_struct *mm; mm = container_of(work, struct mm_struct, async_put_work); __mmdrop(mm); } static void mmdrop_async(struct mm_struct *mm) { if (unlikely(atomic_dec_and_test(&mm->mm_count))) { INIT_WORK(&mm->async_put_work, mmdrop_async_fn); schedule_work(&mm->async_put_work); } } static inline void free_signal_struct(struct signal_struct *sig) { taskstats_tgid_free(sig); sched_autogroup_exit(sig); /* * __mmdrop is not safe to call from softirq context on x86 due to * pgd_dtor so postpone it to the async context */ if (sig->oom_mm) mmdrop_async(sig->oom_mm); kmem_cache_free(signal_cachep, sig); } static inline void put_signal_struct(struct signal_struct *sig) { if (refcount_dec_and_test(&sig->sigcnt)) free_signal_struct(sig); } void __put_task_struct(struct task_struct *tsk) { WARN_ON(!tsk->exit_state); WARN_ON(refcount_read(&tsk->usage)); WARN_ON(tsk == current); cgroup_free(tsk); task_numa_free(tsk, true); security_task_free(tsk); exit_creds(tsk); delayacct_tsk_free(tsk); put_signal_struct(tsk->signal); if (!profile_handoff_task(tsk)) free_task(tsk); } EXPORT_SYMBOL_GPL(__put_task_struct); void __init __weak arch_task_cache_init(void) { } /* * set_max_threads */ static void set_max_threads(unsigned int max_threads_suggested) { u64 threads; unsigned long nr_pages = totalram_pages(); /* * The number of threads shall be limited such that the thread * structures may only consume a small part of the available memory. */ if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) threads = MAX_THREADS; else threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, (u64) THREAD_SIZE * 8UL); if (threads > max_threads_suggested) threads = max_threads_suggested; max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); } #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT /* Initialized by the architecture: */ int arch_task_struct_size __read_mostly; #endif #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR static void task_struct_whitelist(unsigned long *offset, unsigned long *size) { /* Fetch thread_struct whitelist for the architecture. */ arch_thread_struct_whitelist(offset, size); /* * Handle zero-sized whitelist or empty thread_struct, otherwise * adjust offset to position of thread_struct in task_struct. */ if (unlikely(*size == 0)) *offset = 0; else *offset += offsetof(struct task_struct, thread); } #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ void __init fork_init(void) { int i; #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR #ifndef ARCH_MIN_TASKALIGN #define ARCH_MIN_TASKALIGN 0 #endif int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); unsigned long useroffset, usersize; /* create a slab on which task_structs can be allocated */ task_struct_whitelist(&useroffset, &usersize); task_struct_cachep = kmem_cache_create_usercopy("task_struct", arch_task_struct_size, align, SLAB_PANIC|SLAB_ACCOUNT, useroffset, usersize, NULL); #endif /* do the arch specific task caches init */ arch_task_cache_init(); set_max_threads(MAX_THREADS); init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; init_task.signal->rlim[RLIMIT_SIGPENDING] = init_task.signal->rlim[RLIMIT_NPROC]; for (i = 0; i < UCOUNT_COUNTS; i++) { init_user_ns.ucount_max[i] = max_threads/2; } #ifdef CONFIG_VMAP_STACK cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", NULL, free_vm_stack_cache); #endif lockdep_init_task(&init_task); uprobes_init(); } int __weak arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) { *dst = *src; return 0; } void set_task_stack_end_magic(struct task_struct *tsk) { unsigned long *stackend; stackend = end_of_stack(tsk); *stackend = STACK_END_MAGIC; /* for overflow detection */ } static struct task_struct *dup_task_struct(struct task_struct *orig, int node) { struct task_struct *tsk; unsigned long *stack; struct vm_struct *stack_vm_area __maybe_unused; int err; if (node == NUMA_NO_NODE) node = tsk_fork_get_node(orig); tsk = alloc_task_struct_node(node); if (!tsk) return NULL; stack = alloc_thread_stack_node(tsk, node); if (!stack) goto free_tsk; if (memcg_charge_kernel_stack(tsk)) goto free_stack; stack_vm_area = task_stack_vm_area(tsk); err = arch_dup_task_struct(tsk, orig); /* * arch_dup_task_struct() clobbers the stack-related fields. Make * sure they're properly initialized before using any stack-related * functions again. */ tsk->stack = stack; #ifdef CONFIG_VMAP_STACK tsk->stack_vm_area = stack_vm_area; #endif #ifdef CONFIG_THREAD_INFO_IN_TASK refcount_set(&tsk->stack_refcount, 1); #endif if (err) goto free_stack; #ifdef CONFIG_SECCOMP /* * We must handle setting up seccomp filters once we're under * the sighand lock in case orig has changed between now and * then. Until then, filter must be NULL to avoid messing up * the usage counts on the error path calling free_task. */ tsk->seccomp.filter = NULL; #endif setup_thread_stack(tsk, orig); clear_user_return_notifier(tsk); clear_tsk_need_resched(tsk); set_task_stack_end_magic(tsk); #ifdef CONFIG_STACKPROTECTOR tsk->stack_canary = get_random_canary(); #endif if (orig->cpus_ptr == &orig->cpus_mask) tsk->cpus_ptr = &tsk->cpus_mask; /* * One for the user space visible state that goes away when reaped. * One for the scheduler. */ refcount_set(&tsk->rcu_users, 2); /* One for the rcu users */ refcount_set(&tsk->usage, 1); #ifdef CONFIG_BLK_DEV_IO_TRACE tsk->btrace_seq = 0; #endif tsk->splice_pipe = NULL; tsk->task_frag.page = NULL; tsk->wake_q.next = NULL; account_kernel_stack(tsk, 1); kcov_task_init(tsk); #ifdef CONFIG_FAULT_INJECTION tsk->fail_nth = 0; #endif #ifdef CONFIG_BLK_CGROUP tsk->throttle_queue = NULL; tsk->use_memdelay = 0; #endif #ifdef CONFIG_MEMCG tsk->active_memcg = NULL; #endif return tsk; free_stack: free_thread_stack(tsk); free_tsk: free_task_struct(tsk); return NULL; } __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; static int __init coredump_filter_setup(char *s) { default_dump_filter = (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & MMF_DUMP_FILTER_MASK; return 1; } __setup("coredump_filter=", coredump_filter_setup); #include static void mm_init_aio(struct mm_struct *mm) { #ifdef CONFIG_AIO spin_lock_init(&mm->ioctx_lock); mm->ioctx_table = NULL; #endif } static __always_inline void mm_clear_owner(struct mm_struct *mm, struct task_struct *p) { #ifdef CONFIG_MEMCG if (mm->owner == p) WRITE_ONCE(mm->owner, NULL); #endif } static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) { #ifdef CONFIG_MEMCG mm->owner = p; #endif } static void mm_init_uprobes_state(struct mm_struct *mm) { #ifdef CONFIG_UPROBES mm->uprobes_state.xol_area = NULL; #endif } static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, struct user_namespace *user_ns) { mm->mmap = NULL; mm->mm_rb = RB_ROOT; mm->vmacache_seqnum = 0; atomic_set(&mm->mm_users, 1); atomic_set(&mm->mm_count, 1); init_rwsem(&mm->mmap_sem); INIT_LIST_HEAD(&mm->mmlist); mm->core_state = NULL; mm_pgtables_bytes_init(mm); mm->map_count = 0; mm->locked_vm = 0; atomic64_set(&mm->pinned_vm, 0); memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); spin_lock_init(&mm->page_table_lock); spin_lock_init(&mm->arg_lock); mm_init_cpumask(mm); mm_init_aio(mm); mm_init_owner(mm, p); RCU_INIT_POINTER(mm->exe_file, NULL); mmu_notifier_mm_init(mm); init_tlb_flush_pending(mm); #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS mm->pmd_huge_pte = NULL; #endif mm_init_uprobes_state(mm); if (current->mm) { mm->flags = current->mm->flags & MMF_INIT_MASK; mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; } else { mm->flags = default_dump_filter; mm->def_flags = 0; } if (mm_alloc_pgd(mm)) goto fail_nopgd; if (init_new_context(p, mm)) goto fail_nocontext; mm->user_ns = get_user_ns(user_ns); return mm; fail_nocontext: mm_free_pgd(mm); fail_nopgd: free_mm(mm); return NULL; } /* * Allocate and initialize an mm_struct. */ struct mm_struct *mm_alloc(void) { struct mm_struct *mm; mm = allocate_mm(); if (!mm) return NULL; memset(mm, 0, sizeof(*mm)); return mm_init(mm, current, current_user_ns()); } static inline void __mmput(struct mm_struct *mm) { VM_BUG_ON(atomic_read(&mm->mm_users)); uprobe_clear_state(mm); exit_aio(mm); ksm_exit(mm); khugepaged_exit(mm); /* must run before exit_mmap */ exit_mmap(mm); mm_put_huge_zero_page(mm); set_mm_exe_file(mm, NULL); if (!list_empty(&mm->mmlist)) { spin_lock(&mmlist_lock); list_del(&mm->mmlist); spin_unlock(&mmlist_lock); } if (mm->binfmt) module_put(mm->binfmt->module); mmdrop(mm); } /* * Decrement the use count and release all resources for an mm. */ void mmput(struct mm_struct *mm) { might_sleep(); if (atomic_dec_and_test(&mm->mm_users)) __mmput(mm); } EXPORT_SYMBOL_GPL(mmput); #ifdef CONFIG_MMU static void mmput_async_fn(struct work_struct *work) { struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); __mmput(mm); } void mmput_async(struct mm_struct *mm) { if (atomic_dec_and_test(&mm->mm_users)) { INIT_WORK(&mm->async_put_work, mmput_async_fn); schedule_work(&mm->async_put_work); } } #endif /** * set_mm_exe_file - change a reference to the mm's executable file * * This changes mm's executable file (shown as symlink /proc/[pid]/exe). * * Main users are mmput() and sys_execve(). Callers prevent concurrent * invocations: in mmput() nobody alive left, in execve task is single * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the * mm->exe_file, but does so without using set_mm_exe_file() in order * to do avoid the need for any locks. */ void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) { struct file *old_exe_file; /* * It is safe to dereference the exe_file without RCU as * this function is only called if nobody else can access * this mm -- see comment above for justification. */ old_exe_file = rcu_dereference_raw(mm->exe_file); if (new_exe_file) get_file(new_exe_file); rcu_assign_pointer(mm->exe_file, new_exe_file); if (old_exe_file) fput(old_exe_file); } /** * get_mm_exe_file - acquire a reference to the mm's executable file * * Returns %NULL if mm has no associated executable file. * User must release file via fput(). */ struct file *get_mm_exe_file(struct mm_struct *mm) { struct file *exe_file; rcu_read_lock(); exe_file = rcu_dereference(mm->exe_file); if (exe_file && !get_file_rcu(exe_file)) exe_file = NULL; rcu_read_unlock(); return exe_file; } EXPORT_SYMBOL(get_mm_exe_file); /** * get_task_exe_file - acquire a reference to the task's executable file * * Returns %NULL if task's mm (if any) has no associated executable file or * this is a kernel thread with borrowed mm (see the comment above get_task_mm). * User must release file via fput(). */ struct file *get_task_exe_file(struct task_struct *task) { struct file *exe_file = NULL; struct mm_struct *mm; task_lock(task); mm = task->mm; if (mm) { if (!(task->flags & PF_KTHREAD)) exe_file = get_mm_exe_file(mm); } task_unlock(task); return exe_file; } EXPORT_SYMBOL(get_task_exe_file); /** * get_task_mm - acquire a reference to the task's mm * * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning * this kernel workthread has transiently adopted a user mm with use_mm, * to do its AIO) is not set and if so returns a reference to it, after * bumping up the use count. User must release the mm via mmput() * after use. Typically used by /proc and ptrace. */ struct mm_struct *get_task_mm(struct task_struct *task) { struct mm_struct *mm; task_lock(task); mm = task->mm; if (mm) { if (task->flags & PF_KTHREAD) mm = NULL; else mmget(mm); } task_unlock(task); return mm; } EXPORT_SYMBOL_GPL(get_task_mm); struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) { struct mm_struct *mm; int err; err = mutex_lock_killable(&task->signal->cred_guard_mutex); if (err) return ERR_PTR(err); mm = get_task_mm(task); if (mm && mm != current->mm && !ptrace_may_access(task, mode)) { mmput(mm); mm = ERR_PTR(-EACCES); } mutex_unlock(&task->signal->cred_guard_mutex); return mm; } static void complete_vfork_done(struct task_struct *tsk) { struct completion *vfork; task_lock(tsk); vfork = tsk->vfork_done; if (likely(vfork)) { tsk->vfork_done = NULL; complete(vfork); } task_unlock(tsk); } static int wait_for_vfork_done(struct task_struct *child, struct completion *vfork) { int killed; freezer_do_not_count(); cgroup_enter_frozen(); killed = wait_for_completion_killable(vfork); cgroup_leave_frozen(false); freezer_count(); if (killed) { task_lock(child); child->vfork_done = NULL; task_unlock(child); } put_task_struct(child); return killed; } /* Please note the differences between mmput and mm_release. * mmput is called whenever we stop holding onto a mm_struct, * error success whatever. * * mm_release is called after a mm_struct has been removed * from the current process. * * This difference is important for error handling, when we * only half set up a mm_struct for a new process and need to restore * the old one. Because we mmput the new mm_struct before * restoring the old one. . . * Eric Biederman 10 January 1998 */ void mm_release(struct task_struct *tsk, struct mm_struct *mm) { /* Get rid of any futexes when releasing the mm */ #ifdef CONFIG_FUTEX if (unlikely(tsk->robust_list)) { exit_robust_list(tsk); tsk->robust_list = NULL; } #ifdef CONFIG_COMPAT if (unlikely(tsk->compat_robust_list)) { compat_exit_robust_list(tsk); tsk->compat_robust_list = NULL; } #endif if (unlikely(!list_empty(&tsk->pi_state_list))) exit_pi_state_list(tsk); #endif uprobe_free_utask(tsk); /* Get rid of any cached register state */ deactivate_mm(tsk, mm); /* * Signal userspace if we're not exiting with a core dump * because we want to leave the value intact for debugging * purposes. */ if (tsk->clear_child_tid) { if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && atomic_read(&mm->mm_users) > 1) { /* * We don't check the error code - if userspace has * not set up a proper pointer then tough luck. */ put_user(0, tsk->clear_child_tid); do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1, NULL, NULL, 0, 0); } tsk->clear_child_tid = NULL; } /* * All done, finally we can wake up parent and return this mm to him. * Also kthread_stop() uses this completion for synchronization. */ if (tsk->vfork_done) complete_vfork_done(tsk); } /** * dup_mm() - duplicates an existing mm structure * @tsk: the task_struct with which the new mm will be associated. * @oldmm: the mm to duplicate. * * Allocates a new mm structure and duplicates the provided @oldmm structure * content into it. * * Return: the duplicated mm or NULL on failure. */ static struct mm_struct *dup_mm(struct task_struct *tsk, struct mm_struct *oldmm) { struct mm_struct *mm; int err; mm = allocate_mm(); if (!mm) goto fail_nomem; memcpy(mm, oldmm, sizeof(*mm)); if (!mm_init(mm, tsk, mm->user_ns)) goto fail_nomem; err = dup_mmap(mm, oldmm); if (err) goto free_pt; mm->hiwater_rss = get_mm_rss(mm); mm->hiwater_vm = mm->total_vm; if (mm->binfmt && !try_module_get(mm->binfmt->module)) goto free_pt; return mm; free_pt: /* don't put binfmt in mmput, we haven't got module yet */ mm->binfmt = NULL; mm_init_owner(mm, NULL); mmput(mm); fail_nomem: return NULL; } static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) { struct mm_struct *mm, *oldmm; int retval; tsk->min_flt = tsk->maj_flt = 0; tsk->nvcsw = tsk->nivcsw = 0; #ifdef CONFIG_DETECT_HUNG_TASK tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; tsk->last_switch_time = 0; #endif tsk->mm = NULL; tsk->active_mm = NULL; /* * Are we cloning a kernel thread? * * We need to steal a active VM for that.. */ oldmm = current->mm; if (!oldmm) return 0; /* initialize the new vmacache entries */ vmacache_flush(tsk); if (clone_flags & CLONE_VM) { mmget(oldmm); mm = oldmm; goto good_mm; } retval = -ENOMEM; mm = dup_mm(tsk, current->mm); if (!mm) goto fail_nomem; good_mm: tsk->mm = mm; tsk->active_mm = mm; return 0; fail_nomem: return retval; } static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) { struct fs_struct *fs = current->fs; if (clone_flags & CLONE_FS) { /* tsk->fs is already what we want */ spin_lock(&fs->lock); if (fs->in_exec) { spin_unlock(&fs->lock); return -EAGAIN; } fs->users++; spin_unlock(&fs->lock); return 0; } tsk->fs = copy_fs_struct(fs); if (!tsk->fs) return -ENOMEM; return 0; } static int copy_files(unsigned long clone_flags, struct task_struct *tsk) { struct files_struct *oldf, *newf; int error = 0; /* * A background process may not have any files ... */ oldf = current->files; if (!oldf) goto out; if (clone_flags & CLONE_FILES) { atomic_inc(&oldf->count); goto out; } newf = dup_fd(oldf, &error); if (!newf) goto out; tsk->files = newf; error = 0; out: return error; } static int copy_io(unsigned long clone_flags, struct task_struct *tsk) { #ifdef CONFIG_BLOCK struct io_context *ioc = current->io_context; struct io_context *new_ioc; if (!ioc) return 0; /* * Share io context with parent, if CLONE_IO is set */ if (clone_flags & CLONE_IO) { ioc_task_link(ioc); tsk->io_context = ioc; } else if (ioprio_valid(ioc->ioprio)) { new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); if (unlikely(!new_ioc)) return -ENOMEM; new_ioc->ioprio = ioc->ioprio; put_io_context(new_ioc); } #endif return 0; } static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) { struct sighand_struct *sig; if (clone_flags & CLONE_SIGHAND) { refcount_inc(¤t->sighand->count); return 0; } sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); rcu_assign_pointer(tsk->sighand, sig); if (!sig) return -ENOMEM; refcount_set(&sig->count, 1); spin_lock_irq(¤t->sighand->siglock); memcpy(sig->action, current->sighand->action, sizeof(sig->action)); spin_unlock_irq(¤t->sighand->siglock); /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ if (clone_flags & CLONE_CLEAR_SIGHAND) flush_signal_handlers(tsk, 0); return 0; } void __cleanup_sighand(struct sighand_struct *sighand) { if (refcount_dec_and_test(&sighand->count)) { signalfd_cleanup(sighand); /* * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it * without an RCU grace period, see __lock_task_sighand(). */ kmem_cache_free(sighand_cachep, sighand); } } /* * Initialize POSIX timer handling for a thread group. */ static void posix_cpu_timers_init_group(struct signal_struct *sig) { struct posix_cputimers *pct = &sig->posix_cputimers; unsigned long cpu_limit; cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); posix_cputimers_group_init(pct, cpu_limit); } static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) { struct signal_struct *sig; if (clone_flags & CLONE_THREAD) return 0; sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); tsk->signal = sig; if (!sig) return -ENOMEM; sig->nr_threads = 1; atomic_set(&sig->live, 1); refcount_set(&sig->sigcnt, 1); /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); init_waitqueue_head(&sig->wait_chldexit); sig->curr_target = tsk; init_sigpending(&sig->shared_pending); INIT_HLIST_HEAD(&sig->multiprocess); seqlock_init(&sig->stats_lock); prev_cputime_init(&sig->prev_cputime); #ifdef CONFIG_POSIX_TIMERS INIT_LIST_HEAD(&sig->posix_timers); hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); sig->real_timer.function = it_real_fn; #endif task_lock(current->group_leader); memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); task_unlock(current->group_leader); posix_cpu_timers_init_group(sig); tty_audit_fork(sig); sched_autogroup_fork(sig); sig->oom_score_adj = current->signal->oom_score_adj; sig->oom_score_adj_min = current->signal->oom_score_adj_min; mutex_init(&sig->cred_guard_mutex); return 0; } static void copy_seccomp(struct task_struct *p) { #ifdef CONFIG_SECCOMP /* * Must be called with sighand->lock held, which is common to * all threads in the group. Holding cred_guard_mutex is not * needed because this new task is not yet running and cannot * be racing exec. */ assert_spin_locked(¤t->sighand->siglock); /* Ref-count the new filter user, and assign it. */ get_seccomp_filter(current); p->seccomp = current->seccomp; /* * Explicitly enable no_new_privs here in case it got set * between the task_struct being duplicated and holding the * sighand lock. The seccomp state and nnp must be in sync. */ if (task_no_new_privs(current)) task_set_no_new_privs(p); /* * If the parent gained a seccomp mode after copying thread * flags and between before we held the sighand lock, we have * to manually enable the seccomp thread flag here. */ if (p->seccomp.mode != SECCOMP_MODE_DISABLED) set_tsk_thread_flag(p, TIF_SECCOMP); #endif } SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) { current->clear_child_tid = tidptr; return task_pid_vnr(current); } static void rt_mutex_init_task(struct task_struct *p) { raw_spin_lock_init(&p->pi_lock); #ifdef CONFIG_RT_MUTEXES p->pi_waiters = RB_ROOT_CACHED; p->pi_top_task = NULL; p->pi_blocked_on = NULL; #endif } static inline void init_task_pid_links(struct task_struct *task) { enum pid_type type; for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { INIT_HLIST_NODE(&task->pid_links[type]); } } static inline void init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) { if (type == PIDTYPE_PID) task->thread_pid = pid; else task->signal->pids[type] = pid; } static inline void rcu_copy_process(struct task_struct *p) { #ifdef CONFIG_PREEMPT_RCU p->rcu_read_lock_nesting = 0; p->rcu_read_unlock_special.s = 0; p->rcu_blocked_node = NULL; INIT_LIST_HEAD(&p->rcu_node_entry); #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TASKS_RCU p->rcu_tasks_holdout = false; INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); p->rcu_tasks_idle_cpu = -1; #endif /* #ifdef CONFIG_TASKS_RCU */ } struct pid *pidfd_pid(const struct file *file) { if (file->f_op == &pidfd_fops) return file->private_data; return ERR_PTR(-EBADF); } static int pidfd_release(struct inode *inode, struct file *file) { struct pid *pid = file->private_data; file->private_data = NULL; put_pid(pid); return 0; } #ifdef CONFIG_PROC_FS /** * pidfd_show_fdinfo - print information about a pidfd * @m: proc fdinfo file * @f: file referencing a pidfd * * Pid: * This function will print the pid that a given pidfd refers to in the * pid namespace of the procfs instance. * If the pid namespace of the process is not a descendant of the pid * namespace of the procfs instance 0 will be shown as its pid. This is * similar to calling getppid() on a process whose parent is outside of * its pid namespace. * * NSpid: * If pid namespaces are supported then this function will also print * the pid of a given pidfd refers to for all descendant pid namespaces * starting from the current pid namespace of the instance, i.e. the * Pid field and the first entry in the NSpid field will be identical. * If the pid namespace of the process is not a descendant of the pid * namespace of the procfs instance 0 will be shown as its first NSpid * entry and no others will be shown. * Note that this differs from the Pid and NSpid fields in * /proc//status where Pid and NSpid are always shown relative to * the pid namespace of the procfs instance. The difference becomes * obvious when sending around a pidfd between pid namespaces from a * different branch of the tree, i.e. where no ancestoral relation is * present between the pid namespaces: * - create two new pid namespaces ns1 and ns2 in the initial pid * namespace (also take care to create new mount namespaces in the * new pid namespace and mount procfs) * - create a process with a pidfd in ns1 * - send pidfd from ns1 to ns2 * - read /proc/self/fdinfo/ and observe that both Pid and NSpid * have exactly one entry, which is 0 */ static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) { struct pid *pid = f->private_data; struct pid_namespace *ns; pid_t nr = -1; if (likely(pid_has_task(pid, PIDTYPE_PID))) { ns = proc_pid_ns(file_inode(m->file)); nr = pid_nr_ns(pid, ns); } seq_put_decimal_ll(m, "Pid:\t", nr); #ifdef CONFIG_PID_NS seq_put_decimal_ll(m, "\nNSpid:\t", nr); if (nr > 0) { int i; /* If nr is non-zero it means that 'pid' is valid and that * ns, i.e. the pid namespace associated with the procfs * instance, is in the pid namespace hierarchy of pid. * Start at one below the already printed level. */ for (i = ns->level + 1; i <= pid->level; i++) seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); } #endif seq_putc(m, '\n'); } #endif /* * Poll support for process exit notification. */ static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts) { struct task_struct *task; struct pid *pid = file->private_data; int poll_flags = 0; poll_wait(file, &pid->wait_pidfd, pts); rcu_read_lock(); task = pid_task(pid, PIDTYPE_PID); /* * Inform pollers only when the whole thread group exits. * If the thread group leader exits before all other threads in the * group, then poll(2) should block, similar to the wait(2) family. */ if (!task || (task->exit_state && thread_group_empty(task))) poll_flags = POLLIN | POLLRDNORM; rcu_read_unlock(); return poll_flags; } const struct file_operations pidfd_fops = { .release = pidfd_release, .poll = pidfd_poll, #ifdef CONFIG_PROC_FS .show_fdinfo = pidfd_show_fdinfo, #endif }; static void __delayed_free_task(struct rcu_head *rhp) { struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); free_task(tsk); } static __always_inline void delayed_free_task(struct task_struct *tsk) { if (IS_ENABLED(CONFIG_MEMCG)) call_rcu(&tsk->rcu, __delayed_free_task); else free_task(tsk); } /* * This creates a new process as a copy of the old one, * but does not actually start it yet. * * It copies the registers, and all the appropriate * parts of the process environment (as per the clone * flags). The actual kick-off is left to the caller. */ static __latent_entropy struct task_struct *copy_process( struct pid *pid, int trace, int node, struct kernel_clone_args *args) { int pidfd = -1, retval; struct task_struct *p; struct multiprocess_signals delayed; struct file *pidfile = NULL; u64 clone_flags = args->flags; /* * Don't allow sharing the root directory with processes in a different * namespace */ if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) return ERR_PTR(-EINVAL); if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) return ERR_PTR(-EINVAL); /* * Thread groups must share signals as well, and detached threads * can only be started up within the thread group. */ if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) return ERR_PTR(-EINVAL); /* * Shared signal handlers imply shared VM. By way of the above, * thread groups also imply shared VM. Blocking this case allows * for various simplifications in other code. */ if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) return ERR_PTR(-EINVAL); /* * Siblings of global init remain as zombies on exit since they are * not reaped by their parent (swapper). To solve this and to avoid * multi-rooted process trees, prevent global and container-inits * from creating siblings. */ if ((clone_flags & CLONE_PARENT) && current->signal->flags & SIGNAL_UNKILLABLE) return ERR_PTR(-EINVAL); /* * If the new process will be in a different pid or user namespace * do not allow it to share a thread group with the forking task. */ if (clone_flags & CLONE_THREAD) { if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || (task_active_pid_ns(current) != current->nsproxy->pid_ns_for_children)) return ERR_PTR(-EINVAL); } if (clone_flags & CLONE_PIDFD) { /* * - CLONE_DETACHED is blocked so that we can potentially * reuse it later for CLONE_PIDFD. * - CLONE_THREAD is blocked until someone really needs it. */ if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) return ERR_PTR(-EINVAL); } /* * Force any signals received before this point to be delivered * before the fork happens. Collect up signals sent to multiple * processes that happen during the fork and delay them so that * they appear to happen after the fork. */ sigemptyset(&delayed.signal); INIT_HLIST_NODE(&delayed.node); spin_lock_irq(¤t->sighand->siglock); if (!(clone_flags & CLONE_THREAD)) hlist_add_head(&delayed.node, ¤t->signal->multiprocess); recalc_sigpending(); spin_unlock_irq(¤t->sighand->siglock); retval = -ERESTARTNOINTR; if (signal_pending(current)) goto fork_out; retval = -ENOMEM; p = dup_task_struct(current, node); if (!p) goto fork_out; /* * This _must_ happen before we call free_task(), i.e. before we jump * to any of the bad_fork_* labels. This is to avoid freeing * p->set_child_tid which is (ab)used as a kthread's data pointer for * kernel threads (PF_KTHREAD). */ p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; /* * Clear TID on mm_release()? */ p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; ftrace_graph_init_task(p); rt_mutex_init_task(p); #ifdef CONFIG_PROVE_LOCKING DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); #endif retval = -EAGAIN; if (atomic_read(&p->real_cred->user->processes) >= task_rlimit(p, RLIMIT_NPROC)) { if (p->real_cred->user != INIT_USER && !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) goto bad_fork_free; } current->flags &= ~PF_NPROC_EXCEEDED; retval = copy_creds(p, clone_flags); if (retval < 0) goto bad_fork_free; /* * If multiple threads are within copy_process(), then this check * triggers too late. This doesn't hurt, the check is only there * to stop root fork bombs. */ retval = -EAGAIN; if (nr_threads >= max_threads) goto bad_fork_cleanup_count; delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); p->flags |= PF_FORKNOEXEC; INIT_LIST_HEAD(&p->children); INIT_LIST_HEAD(&p->sibling); rcu_copy_process(p); p->vfork_done = NULL; spin_lock_init(&p->alloc_lock); init_sigpending(&p->pending); p->utime = p->stime = p->gtime = 0; #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME p->utimescaled = p->stimescaled = 0; #endif prev_cputime_init(&p->prev_cputime); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN seqcount_init(&p->vtime.seqcount); p->vtime.starttime = 0; p->vtime.state = VTIME_INACTIVE; #endif #if defined(SPLIT_RSS_COUNTING) memset(&p->rss_stat, 0, sizeof(p->rss_stat)); #endif p->default_timer_slack_ns = current->timer_slack_ns; #ifdef CONFIG_PSI p->psi_flags = 0; #endif task_io_accounting_init(&p->ioac); acct_clear_integrals(p); posix_cputimers_init(&p->posix_cputimers); p->io_context = NULL; audit_set_context(p, NULL); cgroup_fork(p); #ifdef CONFIG_NUMA p->mempolicy = mpol_dup(p->mempolicy); if (IS_ERR(p->mempolicy)) { retval = PTR_ERR(p->mempolicy); p->mempolicy = NULL; goto bad_fork_cleanup_threadgroup_lock; } #endif #ifdef CONFIG_CPUSETS p->cpuset_mem_spread_rotor = NUMA_NO_NODE; p->cpuset_slab_spread_rotor = NUMA_NO_NODE; seqcount_init(&p->mems_allowed_seq); #endif #ifdef CONFIG_TRACE_IRQFLAGS p->irq_events = 0; p->hardirqs_enabled = 0; p->hardirq_enable_ip = 0; p->hardirq_enable_event = 0; p->hardirq_disable_ip = _THIS_IP_; p->hardirq_disable_event = 0; p->softirqs_enabled = 1; p->softirq_enable_ip = _THIS_IP_; p->softirq_enable_event = 0; p->softirq_disable_ip = 0; p->softirq_disable_event = 0; p->hardirq_context = 0; p->softirq_context = 0; #endif p->pagefault_disabled = 0; #ifdef CONFIG_LOCKDEP lockdep_init_task(p); #endif #ifdef CONFIG_DEBUG_MUTEXES p->blocked_on = NULL; /* not blocked yet */ #endif #ifdef CONFIG_BCACHE p->sequential_io = 0; p->sequential_io_avg = 0; #endif /* Perform scheduler related setup. Assign this task to a CPU. */ retval = sched_fork(clone_flags, p); if (retval) goto bad_fork_cleanup_policy; retval = perf_event_init_task(p); if (retval) goto bad_fork_cleanup_policy; retval = audit_alloc(p); if (retval) goto bad_fork_cleanup_perf; /* copy all the process information */ shm_init_task(p); retval = security_task_alloc(p, clone_flags); if (retval) goto bad_fork_cleanup_audit; retval = copy_semundo(clone_flags, p); if (retval) goto bad_fork_cleanup_security; retval = copy_files(clone_flags, p); if (retval) goto bad_fork_cleanup_semundo; retval = copy_fs(clone_flags, p); if (retval) goto bad_fork_cleanup_files; retval = copy_sighand(clone_flags, p); if (retval) goto bad_fork_cleanup_fs; retval = copy_signal(clone_flags, p); if (retval) goto bad_fork_cleanup_sighand; retval = copy_mm(clone_flags, p); if (retval) goto bad_fork_cleanup_signal; retval = copy_namespaces(clone_flags, p); if (retval) goto bad_fork_cleanup_mm; retval = copy_io(clone_flags, p); if (retval) goto bad_fork_cleanup_namespaces; retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p, args->tls); if (retval) goto bad_fork_cleanup_io; stackleak_task_init(p); if (pid != &init_struct_pid) { pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, args->set_tid_size); if (IS_ERR(pid)) { retval = PTR_ERR(pid); goto bad_fork_cleanup_thread; } } /* * This has to happen after we've potentially unshared the file * descriptor table (so that the pidfd doesn't leak into the child * if the fd table isn't shared). */ if (clone_flags & CLONE_PIDFD) { retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); if (retval < 0) goto bad_fork_free_pid; pidfd = retval; pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, O_RDWR | O_CLOEXEC); if (IS_ERR(pidfile)) { put_unused_fd(pidfd); retval = PTR_ERR(pidfile); goto bad_fork_free_pid; } get_pid(pid); /* held by pidfile now */ retval = put_user(pidfd, args->pidfd); if (retval) goto bad_fork_put_pidfd; } #ifdef CONFIG_BLOCK p->plug = NULL; #endif #ifdef CONFIG_FUTEX p->robust_list = NULL; #ifdef CONFIG_COMPAT p->compat_robust_list = NULL; #endif INIT_LIST_HEAD(&p->pi_state_list); p->pi_state_cache = NULL; #endif /* * sigaltstack should be cleared when sharing the same VM */ if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) sas_ss_reset(p); /* * Syscall tracing and stepping should be turned off in the * child regardless of CLONE_PTRACE. */ user_disable_single_step(p); clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); #ifdef TIF_SYSCALL_EMU clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); #endif clear_tsk_latency_tracing(p); /* ok, now we should be set up.. */ p->pid = pid_nr(pid); if (clone_flags & CLONE_THREAD) { p->exit_signal = -1; p->group_leader = current->group_leader; p->tgid = current->tgid; } else { if (clone_flags & CLONE_PARENT) p->exit_signal = current->group_leader->exit_signal; else p->exit_signal = args->exit_signal; p->group_leader = p; p->tgid = p->pid; } p->nr_dirtied = 0; p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); p->dirty_paused_when = 0; p->pdeath_signal = 0; INIT_LIST_HEAD(&p->thread_group); p->task_works = NULL; cgroup_threadgroup_change_begin(current); /* * Ensure that the cgroup subsystem policies allow the new process to be * forked. It should be noted the the new process's css_set can be changed * between here and cgroup_post_fork() if an organisation operation is in * progress. */ retval = cgroup_can_fork(p); if (retval) goto bad_fork_cgroup_threadgroup_change_end; /* * From this point on we must avoid any synchronous user-space * communication until we take the tasklist-lock. In particular, we do * not want user-space to be able to predict the process start-time by * stalling fork(2) after we recorded the start_time but before it is * visible to the system. */ p->start_time = ktime_get_ns(); p->real_start_time = ktime_get_boottime_ns(); /* * Make it visible to the rest of the system, but dont wake it up yet. * Need tasklist lock for parent etc handling! */ write_lock_irq(&tasklist_lock); /* CLONE_PARENT re-uses the old parent */ if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { p->real_parent = current->real_parent; p->parent_exec_id = current->parent_exec_id; } else { p->real_parent = current; p->parent_exec_id = current->self_exec_id; } klp_copy_process(p); spin_lock(¤t->sighand->siglock); /* * Copy seccomp details explicitly here, in case they were changed * before holding sighand lock. */ copy_seccomp(p); rseq_fork(p, clone_flags); /* Don't start children in a dying pid namespace */ if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { retval = -ENOMEM; goto bad_fork_cancel_cgroup; } /* Let kill terminate clone/fork in the middle */ if (fatal_signal_pending(current)) { retval = -EINTR; goto bad_fork_cancel_cgroup; } /* past the last point of failure */ if (pidfile) fd_install(pidfd, pidfile); init_task_pid_links(p); if (likely(p->pid)) { ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); init_task_pid(p, PIDTYPE_PID, pid); if (thread_group_leader(p)) { init_task_pid(p, PIDTYPE_TGID, pid); init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); init_task_pid(p, PIDTYPE_SID, task_session(current)); if (is_child_reaper(pid)) { ns_of_pid(pid)->child_reaper = p; p->signal->flags |= SIGNAL_UNKILLABLE; } p->signal->shared_pending.signal = delayed.signal; p->signal->tty = tty_kref_get(current->signal->tty); /* * Inherit has_child_subreaper flag under the same * tasklist_lock with adding child to the process tree * for propagate_has_child_subreaper optimization. */ p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || p->real_parent->signal->is_child_subreaper; list_add_tail(&p->sibling, &p->real_parent->children); list_add_tail_rcu(&p->tasks, &init_task.tasks); attach_pid(p, PIDTYPE_TGID); attach_pid(p, PIDTYPE_PGID); attach_pid(p, PIDTYPE_SID); __this_cpu_inc(process_counts); } else { current->signal->nr_threads++; atomic_inc(¤t->signal->live); refcount_inc(¤t->signal->sigcnt); task_join_group_stop(p); list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group); list_add_tail_rcu(&p->thread_node, &p->signal->thread_head); } attach_pid(p, PIDTYPE_PID); nr_threads++; } total_forks++; hlist_del_init(&delayed.node); spin_unlock(¤t->sighand->siglock); syscall_tracepoint_update(p); write_unlock_irq(&tasklist_lock); proc_fork_connector(p); cgroup_post_fork(p); cgroup_threadgroup_change_end(current); perf_event_fork(p); trace_task_newtask(p, clone_flags); uprobe_copy_process(p, clone_flags); return p; bad_fork_cancel_cgroup: spin_unlock(¤t->sighand->siglock); write_unlock_irq(&tasklist_lock); cgroup_cancel_fork(p); bad_fork_cgroup_threadgroup_change_end: cgroup_threadgroup_change_end(current); bad_fork_put_pidfd: if (clone_flags & CLONE_PIDFD) { fput(pidfile); put_unused_fd(pidfd); } bad_fork_free_pid: if (pid != &init_struct_pid) free_pid(pid); bad_fork_cleanup_thread: exit_thread(p); bad_fork_cleanup_io: if (p->io_context) exit_io_context(p); bad_fork_cleanup_namespaces: exit_task_namespaces(p); bad_fork_cleanup_mm: if (p->mm) { mm_clear_owner(p->mm, p); mmput(p->mm); } bad_fork_cleanup_signal: if (!(clone_flags & CLONE_THREAD)) free_signal_struct(p->signal); bad_fork_cleanup_sighand: __cleanup_sighand(p->sighand); bad_fork_cleanup_fs: exit_fs(p); /* blocking */ bad_fork_cleanup_files: exit_files(p); /* blocking */ bad_fork_cleanup_semundo: exit_sem(p); bad_fork_cleanup_security: security_task_free(p); bad_fork_cleanup_audit: audit_free(p); bad_fork_cleanup_perf: perf_event_free_task(p); bad_fork_cleanup_policy: lockdep_free_task(p); #ifdef CONFIG_NUMA mpol_put(p->mempolicy); bad_fork_cleanup_threadgroup_lock: #endif delayacct_tsk_free(p); bad_fork_cleanup_count: atomic_dec(&p->cred->user->processes); exit_creds(p); bad_fork_free: p->state = TASK_DEAD; put_task_stack(p); delayed_free_task(p); fork_out: spin_lock_irq(¤t->sighand->siglock); hlist_del_init(&delayed.node); spin_unlock_irq(¤t->sighand->siglock); return ERR_PTR(retval); } static inline void init_idle_pids(struct task_struct *idle) { enum pid_type type; for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ init_task_pid(idle, type, &init_struct_pid); } } struct task_struct *fork_idle(int cpu) { struct task_struct *task; struct kernel_clone_args args = { .flags = CLONE_VM, }; task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); if (!IS_ERR(task)) { init_idle_pids(task); init_idle(task, cpu); } return task; } struct mm_struct *copy_init_mm(void) { return dup_mm(NULL, &init_mm); } /* * Ok, this is the main fork-routine. * * It copies the process, and if successful kick-starts * it and waits for it to finish using the VM if required. * * args->exit_signal is expected to be checked for sanity by the caller. */ long _do_fork(struct kernel_clone_args *args) { u64 clone_flags = args->flags; struct completion vfork; struct pid *pid; struct task_struct *p; int trace = 0; long nr; /* * Determine whether and which event to report to ptracer. When * called from kernel_thread or CLONE_UNTRACED is explicitly * requested, no event is reported; otherwise, report if the event * for the type of forking is enabled. */ if (!(clone_flags & CLONE_UNTRACED)) { if (clone_flags & CLONE_VFORK) trace = PTRACE_EVENT_VFORK; else if (args->exit_signal != SIGCHLD) trace = PTRACE_EVENT_CLONE; else trace = PTRACE_EVENT_FORK; if (likely(!ptrace_event_enabled(current, trace))) trace = 0; } p = copy_process(NULL, trace, NUMA_NO_NODE, args); add_latent_entropy(); if (IS_ERR(p)) return PTR_ERR(p); /* * Do this prior waking up the new thread - the thread pointer * might get invalid after that point, if the thread exits quickly. */ trace_sched_process_fork(current, p); pid = get_task_pid(p, PIDTYPE_PID); nr = pid_vnr(pid); if (clone_flags & CLONE_PARENT_SETTID) put_user(nr, args->parent_tid); if (clone_flags & CLONE_VFORK) { p->vfork_done = &vfork; init_completion(&vfork); get_task_struct(p); } wake_up_new_task(p); /* forking complete and child started to run, tell ptracer */ if (unlikely(trace)) ptrace_event_pid(trace, pid); if (clone_flags & CLONE_VFORK) { if (!wait_for_vfork_done(p, &vfork)) ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); } put_pid(pid); return nr; } bool legacy_clone_args_valid(const struct kernel_clone_args *kargs) { /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */ if ((kargs->flags & CLONE_PIDFD) && (kargs->flags & CLONE_PARENT_SETTID)) return false; return true; } #ifndef CONFIG_HAVE_COPY_THREAD_TLS /* For compatibility with architectures that call do_fork directly rather than * using the syscall entry points below. */ long do_fork(unsigned long clone_flags, unsigned long stack_start, unsigned long stack_size, int __user *parent_tidptr, int __user *child_tidptr) { struct kernel_clone_args args = { .flags = (clone_flags & ~CSIGNAL), .pidfd = parent_tidptr, .child_tid = child_tidptr, .parent_tid = parent_tidptr, .exit_signal = (clone_flags & CSIGNAL), .stack = stack_start, .stack_size = stack_size, }; if (!legacy_clone_args_valid(&args)) return -EINVAL; return _do_fork(&args); } #endif /* * Create a kernel thread. */ pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) { struct kernel_clone_args args = { .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), .exit_signal = (flags & CSIGNAL), .stack = (unsigned long)fn, .stack_size = (unsigned long)arg, }; return _do_fork(&args); } #ifdef __ARCH_WANT_SYS_FORK SYSCALL_DEFINE0(fork) { #ifdef CONFIG_MMU struct kernel_clone_args args = { .exit_signal = SIGCHLD, }; return _do_fork(&args); #else /* can not support in nommu mode */ return -EINVAL; #endif } #endif #ifdef __ARCH_WANT_SYS_VFORK SYSCALL_DEFINE0(vfork) { struct kernel_clone_args args = { .flags = CLONE_VFORK | CLONE_VM, .exit_signal = SIGCHLD, }; return _do_fork(&args); } #endif #ifdef __ARCH_WANT_SYS_CLONE #ifdef CONFIG_CLONE_BACKWARDS SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, int __user *, parent_tidptr, unsigned long, tls, int __user *, child_tidptr) #elif defined(CONFIG_CLONE_BACKWARDS2) SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, int __user *, parent_tidptr, int __user *, child_tidptr, unsigned long, tls) #elif defined(CONFIG_CLONE_BACKWARDS3) SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, int, stack_size, int __user *, parent_tidptr, int __user *, child_tidptr, unsigned long, tls) #else SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, int __user *, parent_tidptr, int __user *, child_tidptr, unsigned long, tls) #endif { struct kernel_clone_args args = { .flags = (clone_flags & ~CSIGNAL), .pidfd = parent_tidptr, .child_tid = child_tidptr, .parent_tid = parent_tidptr, .exit_signal = (clone_flags & CSIGNAL), .stack = newsp, .tls = tls, }; if (!legacy_clone_args_valid(&args)) return -EINVAL; return _do_fork(&args); } #endif #ifdef __ARCH_WANT_SYS_CLONE3 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, struct clone_args __user *uargs, size_t usize) { int err; struct clone_args args; pid_t *kset_tid = kargs->set_tid; if (unlikely(usize > PAGE_SIZE)) return -E2BIG; if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) return -EINVAL; err = copy_struct_from_user(&args, sizeof(args), uargs, usize); if (err) return err; if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) return -EINVAL; if (unlikely(!args.set_tid && args.set_tid_size > 0)) return -EINVAL; if (unlikely(args.set_tid && args.set_tid_size == 0)) return -EINVAL; /* * Verify that higher 32bits of exit_signal are unset and that * it is a valid signal */ if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || !valid_signal(args.exit_signal))) return -EINVAL; *kargs = (struct kernel_clone_args){ .flags = args.flags, .pidfd = u64_to_user_ptr(args.pidfd), .child_tid = u64_to_user_ptr(args.child_tid), .parent_tid = u64_to_user_ptr(args.parent_tid), .exit_signal = args.exit_signal, .stack = args.stack, .stack_size = args.stack_size, .tls = args.tls, .set_tid_size = args.set_tid_size, }; if (args.set_tid && copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), (kargs->set_tid_size * sizeof(pid_t)))) return -EFAULT; kargs->set_tid = kset_tid; return 0; } static bool clone3_args_valid(const struct kernel_clone_args *kargs) { /* Verify that no unknown flags are passed along. */ if (kargs->flags & ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND)) return false; /* * - make the CLONE_DETACHED bit reuseable for clone3 * - make the CSIGNAL bits reuseable for clone3 */ if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) return false; if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) return false; if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && kargs->exit_signal) return false; return true; } /** * clone3 - create a new process with specific properties * @uargs: argument structure * @size: size of @uargs * * clone3() is the extensible successor to clone()/clone2(). * It takes a struct as argument that is versioned by its size. * * Return: On success, a positive PID for the child process. * On error, a negative errno number. */ SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) { int err; struct kernel_clone_args kargs; pid_t set_tid[MAX_PID_NS_LEVEL]; kargs.set_tid = set_tid; err = copy_clone_args_from_user(&kargs, uargs, size); if (err) return err; if (!clone3_args_valid(&kargs)) return -EINVAL; return _do_fork(&kargs); } #endif void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) { struct task_struct *leader, *parent, *child; int res; read_lock(&tasklist_lock); leader = top = top->group_leader; down: for_each_thread(leader, parent) { list_for_each_entry(child, &parent->children, sibling) { res = visitor(child, data); if (res) { if (res < 0) goto out; leader = child; goto down; } up: ; } } if (leader != top) { child = leader; parent = child->real_parent; leader = parent->group_leader; goto up; } out: read_unlock(&tasklist_lock); } #ifndef ARCH_MIN_MMSTRUCT_ALIGN #define ARCH_MIN_MMSTRUCT_ALIGN 0 #endif static void sighand_ctor(void *data) { struct sighand_struct *sighand = data; spin_lock_init(&sighand->siglock); init_waitqueue_head(&sighand->signalfd_wqh); } void __init proc_caches_init(void) { unsigned int mm_size; sighand_cachep = kmem_cache_create("sighand_cache", sizeof(struct sighand_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| SLAB_ACCOUNT, sighand_ctor); signal_cachep = kmem_cache_create("signal_cache", sizeof(struct signal_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); files_cachep = kmem_cache_create("files_cache", sizeof(struct files_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); fs_cachep = kmem_cache_create("fs_cache", sizeof(struct fs_struct), 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); /* * The mm_cpumask is located at the end of mm_struct, and is * dynamically sized based on the maximum CPU number this system * can have, taking hotplug into account (nr_cpu_ids). */ mm_size = sizeof(struct mm_struct) + cpumask_size(); mm_cachep = kmem_cache_create_usercopy("mm_struct", mm_size, ARCH_MIN_MMSTRUCT_ALIGN, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, offsetof(struct mm_struct, saved_auxv), sizeof_field(struct mm_struct, saved_auxv), NULL); vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); mmap_init(); nsproxy_cache_init(); } /* * Check constraints on flags passed to the unshare system call. */ static int check_unshare_flags(unsigned long unshare_flags) { if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) return -EINVAL; /* * Not implemented, but pretend it works if there is nothing * to unshare. Note that unsharing the address space or the * signal handlers also need to unshare the signal queues (aka * CLONE_THREAD). */ if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { if (!thread_group_empty(current)) return -EINVAL; } if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { if (refcount_read(¤t->sighand->count) > 1) return -EINVAL; } if (unshare_flags & CLONE_VM) { if (!current_is_single_threaded()) return -EINVAL; } return 0; } /* * Unshare the filesystem structure if it is being shared */ static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) { struct fs_struct *fs = current->fs; if (!(unshare_flags & CLONE_FS) || !fs) return 0; /* don't need lock here; in the worst case we'll do useless copy */ if (fs->users == 1) return 0; *new_fsp = copy_fs_struct(fs); if (!*new_fsp) return -ENOMEM; return 0; } /* * Unshare file descriptor table if it is being shared */ static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) { struct files_struct *fd = current->files; int error = 0; if ((unshare_flags & CLONE_FILES) && (fd && atomic_read(&fd->count) > 1)) { *new_fdp = dup_fd(fd, &error); if (!*new_fdp) return error; } return 0; } /* * unshare allows a process to 'unshare' part of the process * context which was originally shared using clone. copy_* * functions used by do_fork() cannot be used here directly * because they modify an inactive task_struct that is being * constructed. Here we are modifying the current, active, * task_struct. */ int ksys_unshare(unsigned long unshare_flags) { struct fs_struct *fs, *new_fs = NULL; struct files_struct *fd, *new_fd = NULL; struct cred *new_cred = NULL; struct nsproxy *new_nsproxy = NULL; int do_sysvsem = 0; int err; /* * If unsharing a user namespace must also unshare the thread group * and unshare the filesystem root and working directories. */ if (unshare_flags & CLONE_NEWUSER) unshare_flags |= CLONE_THREAD | CLONE_FS; /* * If unsharing vm, must also unshare signal handlers. */ if (unshare_flags & CLONE_VM) unshare_flags |= CLONE_SIGHAND; /* * If unsharing a signal handlers, must also unshare the signal queues. */ if (unshare_flags & CLONE_SIGHAND) unshare_flags |= CLONE_THREAD; /* * If unsharing namespace, must also unshare filesystem information. */ if (unshare_flags & CLONE_NEWNS) unshare_flags |= CLONE_FS; err = check_unshare_flags(unshare_flags); if (err) goto bad_unshare_out; /* * CLONE_NEWIPC must also detach from the undolist: after switching * to a new ipc namespace, the semaphore arrays from the old * namespace are unreachable. */ if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) do_sysvsem = 1; err = unshare_fs(unshare_flags, &new_fs); if (err) goto bad_unshare_out; err = unshare_fd(unshare_flags, &new_fd); if (err) goto bad_unshare_cleanup_fs; err = unshare_userns(unshare_flags, &new_cred); if (err) goto bad_unshare_cleanup_fd; err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_cred, new_fs); if (err) goto bad_unshare_cleanup_cred; if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { if (do_sysvsem) { /* * CLONE_SYSVSEM is equivalent to sys_exit(). */ exit_sem(current); } if (unshare_flags & CLONE_NEWIPC) { /* Orphan segments in old ns (see sem above). */ exit_shm(current); shm_init_task(current); } if (new_nsproxy) switch_task_namespaces(current, new_nsproxy); task_lock(current); if (new_fs) { fs = current->fs; spin_lock(&fs->lock); current->fs = new_fs; if (--fs->users) new_fs = NULL; else new_fs = fs; spin_unlock(&fs->lock); } if (new_fd) { fd = current->files; current->files = new_fd; new_fd = fd; } task_unlock(current); if (new_cred) { /* Install the new user namespace */ commit_creds(new_cred); new_cred = NULL; } } perf_event_namespaces(current); bad_unshare_cleanup_cred: if (new_cred) put_cred(new_cred); bad_unshare_cleanup_fd: if (new_fd) put_files_struct(new_fd); bad_unshare_cleanup_fs: if (new_fs) free_fs_struct(new_fs); bad_unshare_out: return err; } SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) { return ksys_unshare(unshare_flags); } /* * Helper to unshare the files of the current task. * We don't want to expose copy_files internals to * the exec layer of the kernel. */ int unshare_files(struct files_struct **displaced) { struct task_struct *task = current; struct files_struct *copy = NULL; int error; error = unshare_fd(CLONE_FILES, ©); if (error || !copy) { *displaced = NULL; return error; } *displaced = task->files; task_lock(task); task->files = copy; task_unlock(task); return 0; } int sysctl_max_threads(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { struct ctl_table t; int ret; int threads = max_threads; int min = 1; int max = MAX_THREADS; t = *table; t.data = &threads; t.extra1 = &min; t.extra2 = &max; ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); if (ret || !write) return ret; max_threads = threads; return 0; }