/* * linux/init/main.c * * Copyright (C) 1991, 1992 Linus Torvalds * * GK 2/5/95 - Changed to support mounting root fs via NFS * Added initrd & change_root: Werner Almesberger & Hans Lermen, Feb '96 * Moan early if gcc is old, avoiding bogus kernels - Paul Gortmaker, May '96 * Simplified starting of init: Michael A. Griffith <grif@acm.org> */ #define DEBUG /* Enable initcall_debug */ #include <linux/types.h> #include <linux/module.h> #include <linux/proc_fs.h> #include <linux/kernel.h> #include <linux/syscalls.h> #include <linux/stackprotector.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/init.h> #include <linux/initrd.h> #include <linux/bootmem.h> #include <linux/acpi.h> #include <linux/tty.h> #include <linux/percpu.h> #include <linux/kmod.h> #include <linux/vmalloc.h> #include <linux/kernel_stat.h> #include <linux/start_kernel.h> #include <linux/security.h> #include <linux/smp.h> #include <linux/profile.h> #include <linux/rcupdate.h> #include <linux/moduleparam.h> #include <linux/kallsyms.h> #include <linux/writeback.h> #include <linux/cpu.h> #include <linux/cpuset.h> #include <linux/cgroup.h> #include <linux/efi.h> #include <linux/tick.h> #include <linux/interrupt.h> #include <linux/taskstats_kern.h> #include <linux/delayacct.h> #include <linux/unistd.h> #include <linux/rmap.h> #include <linux/mempolicy.h> #include <linux/key.h> #include <linux/buffer_head.h> #include <linux/page_ext.h> #include <linux/debug_locks.h> #include <linux/debugobjects.h> #include <linux/lockdep.h> #include <linux/kmemleak.h> #include <linux/pid_namespace.h> #include <linux/device.h> #include <linux/kthread.h> #include <linux/sched.h> #include <linux/signal.h> #include <linux/idr.h> #include <linux/kgdb.h> #include <linux/ftrace.h> #include <linux/async.h> #include <linux/kmemcheck.h> #include <linux/sfi.h> #include <linux/shmem_fs.h> #include <linux/slab.h> #include <linux/perf_event.h> #include <linux/file.h> #include <linux/ptrace.h> #include <linux/blkdev.h> #include <linux/elevator.h> #include <linux/sched_clock.h> #include <linux/context_tracking.h> #include <linux/random.h> #include <linux/list.h> #include <linux/integrity.h> #include <linux/proc_ns.h> #include <linux/io.h> #include <asm/io.h> #include <asm/bugs.h> #include <asm/setup.h> #include <asm/sections.h> #include <asm/cacheflush.h> static int kernel_init(void *); extern void init_IRQ(void); extern void fork_init(void); extern void radix_tree_init(void); /* * Debug helper: via this flag we know that we are in 'early bootup code' * where only the boot processor is running with IRQ disabled. This means * two things - IRQ must not be enabled before the flag is cleared and some * operations which are not allowed with IRQ disabled are allowed while the * flag is set. */ bool early_boot_irqs_disabled __read_mostly; enum system_states system_state __read_mostly; EXPORT_SYMBOL(system_state); /* * Boot command-line arguments */ #define MAX_INIT_ARGS CONFIG_INIT_ENV_ARG_LIMIT #define MAX_INIT_ENVS CONFIG_INIT_ENV_ARG_LIMIT extern void time_init(void); /* Default late time init is NULL. archs can override this later. */ void (*__initdata late_time_init)(void); /* Untouched command line saved by arch-specific code. */ char __initdata boot_command_line[COMMAND_LINE_SIZE]; /* Untouched saved command line (eg. for /proc) */ char *saved_command_line; /* Command line for parameter parsing */ static char *static_command_line; /* Command line for per-initcall parameter parsing */ static char *initcall_command_line; static char *execute_command; static char *ramdisk_execute_command; /* * Used to generate warnings if static_key manipulation functions are used * before jump_label_init is called. */ bool static_key_initialized __read_mostly; EXPORT_SYMBOL_GPL(static_key_initialized); /* * If set, this is an indication to the drivers that reset the underlying * device before going ahead with the initialization otherwise driver might * rely on the BIOS and skip the reset operation. * * This is useful if kernel is booting in an unreliable environment. * For ex. kdump situation where previous kernel has crashed, BIOS has been * skipped and devices will be in unknown state. */ unsigned int reset_devices; EXPORT_SYMBOL(reset_devices); static int __init set_reset_devices(char *str) { reset_devices = 1; return 1; } __setup("reset_devices", set_reset_devices); static const char *argv_init[MAX_INIT_ARGS+2] = { "init", NULL, }; const char *envp_init[MAX_INIT_ENVS+2] = { "HOME=/", "TERM=linux", NULL, }; static const char *panic_later, *panic_param; extern const struct obs_kernel_param __setup_start[], __setup_end[]; static bool __init obsolete_checksetup(char *line) { const struct obs_kernel_param *p; bool had_early_param = false; p = __setup_start; do { int n = strlen(p->str); if (parameqn(line, p->str, n)) { if (p->early) { /* Already done in parse_early_param? * (Needs exact match on param part). * Keep iterating, as we can have early * params and __setups of same names 8( */ if (line[n] == '\0' || line[n] == '=') had_early_param = true; } else if (!p->setup_func) { pr_warn("Parameter %s is obsolete, ignored\n", p->str); return true; } else if (p->setup_func(line + n)) return true; } p++; } while (p < __setup_end); return had_early_param; } /* * This should be approx 2 Bo*oMips to start (note initial shift), and will * still work even if initially too large, it will just take slightly longer */ unsigned long loops_per_jiffy = (1<<12); EXPORT_SYMBOL(loops_per_jiffy); static int __init debug_kernel(char *str) { console_loglevel = CONSOLE_LOGLEVEL_DEBUG; return 0; } static int __init quiet_kernel(char *str) { console_loglevel = CONSOLE_LOGLEVEL_QUIET; return 0; } early_param("debug", debug_kernel); early_param("quiet", quiet_kernel); static int __init loglevel(char *str) { int newlevel; /* * Only update loglevel value when a correct setting was passed, * to prevent blind crashes (when loglevel being set to 0) that * are quite hard to debug */ if (get_option(&str, &newlevel)) { console_loglevel = newlevel; return 0; } return -EINVAL; } early_param("loglevel", loglevel); /* Change NUL term back to "=", to make "param" the whole string. */ static int __init repair_env_string(char *param, char *val, const char *unused, void *arg) { if (val) { /* param=val or param="val"? */ if (val == param+strlen(param)+1) val[-1] = '='; else if (val == param+strlen(param)+2) { val[-2] = '='; memmove(val-1, val, strlen(val)+1); val--; } else BUG(); } return 0; } /* Anything after -- gets handed straight to init. */ static int __init set_init_arg(char *param, char *val, const char *unused, void *arg) { unsigned int i; if (panic_later) return 0; repair_env_string(param, val, unused, NULL); for (i = 0; argv_init[i]; i++) { if (i == MAX_INIT_ARGS) { panic_later = "init"; panic_param = param; return 0; } } argv_init[i] = param; return 0; } /* * Unknown boot options get handed to init, unless they look like * unused parameters (modprobe will find them in /proc/cmdline). */ static int __init unknown_bootoption(char *param, char *val, const char *unused, void *arg) { repair_env_string(param, val, unused, NULL); /* Handle obsolete-style parameters */ if (obsolete_checksetup(param)) return 0; /* Unused module parameter. */ if (strchr(param, '.') && (!val || strchr(param, '.') < val)) return 0; if (panic_later) return 0; if (val) { /* Environment option */ unsigned int i; for (i = 0; envp_init[i]; i++) { if (i == MAX_INIT_ENVS) { panic_later = "env"; panic_param = param; } if (!strncmp(param, envp_init[i], val - param)) break; } envp_init[i] = param; } else { /* Command line option */ unsigned int i; for (i = 0; argv_init[i]; i++) { if (i == MAX_INIT_ARGS) { panic_later = "init"; panic_param = param; } } argv_init[i] = param; } return 0; } static int __init init_setup(char *str) { unsigned int i; execute_command = str; /* * In case LILO is going to boot us with default command line, * it prepends "auto" before the whole cmdline which makes * the shell think it should execute a script with such name. * So we ignore all arguments entered _before_ init=... [MJ] */ for (i = 1; i < MAX_INIT_ARGS; i++) argv_init[i] = NULL; return 1; } __setup("init=", init_setup); static int __init rdinit_setup(char *str) { unsigned int i; ramdisk_execute_command = str; /* See "auto" comment in init_setup */ for (i = 1; i < MAX_INIT_ARGS; i++) argv_init[i] = NULL; return 1; } __setup("rdinit=", rdinit_setup); #ifndef CONFIG_SMP static const unsigned int setup_max_cpus = NR_CPUS; static inline void setup_nr_cpu_ids(void) { } static inline void smp_prepare_cpus(unsigned int maxcpus) { } #endif /* * We need to store the untouched command line for future reference. * We also need to store the touched command line since the parameter * parsing is performed in place, and we should allow a component to * store reference of name/value for future reference. */ static void __init setup_command_line(char *command_line) { saved_command_line = memblock_virt_alloc(strlen(boot_command_line) + 1, 0); initcall_command_line = memblock_virt_alloc(strlen(boot_command_line) + 1, 0); static_command_line = memblock_virt_alloc(strlen(command_line) + 1, 0); strcpy(saved_command_line, boot_command_line); strcpy(static_command_line, command_line); } /* * We need to finalize in a non-__init function or else race conditions * between the root thread and the init thread may cause start_kernel to * be reaped by free_initmem before the root thread has proceeded to * cpu_idle. * * gcc-3.4 accidentally inlines this function, so use noinline. */ static __initdata DECLARE_COMPLETION(kthreadd_done); static noinline void __init_refok rest_init(void) { int pid; rcu_scheduler_starting(); /* * We need to spawn init first so that it obtains pid 1, however * the init task will end up wanting to create kthreads, which, if * we schedule it before we create kthreadd, will OOPS. */ kernel_thread(kernel_init, NULL, CLONE_FS); numa_default_policy(); pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES); rcu_read_lock(); kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns); rcu_read_unlock(); complete(&kthreadd_done); /* * The boot idle thread must execute schedule() * at least once to get things moving: */ init_idle_bootup_task(current); schedule_preempt_disabled(); /* Call into cpu_idle with preempt disabled */ cpu_startup_entry(CPUHP_ONLINE); } /* Check for early params. */ static int __init do_early_param(char *param, char *val, const char *unused, void *arg) { const struct obs_kernel_param *p; for (p = __setup_start; p < __setup_end; p++) { if ((p->early && parameq(param, p->str)) || (strcmp(param, "console") == 0 && strcmp(p->str, "earlycon") == 0) ) { if (p->setup_func(val) != 0) pr_warn("Malformed early option '%s'\n", param); } } /* We accept everything at this stage. */ return 0; } void __init parse_early_options(char *cmdline) { parse_args("early options", cmdline, NULL, 0, 0, 0, NULL, do_early_param); } /* Arch code calls this early on, or if not, just before other parsing. */ void __init parse_early_param(void) { static int done __initdata; static char tmp_cmdline[COMMAND_LINE_SIZE] __initdata; if (done) return; /* All fall through to do_early_param. */ strlcpy(tmp_cmdline, boot_command_line, COMMAND_LINE_SIZE); parse_early_options(tmp_cmdline); done = 1; } void __init __weak smp_setup_processor_id(void) { } # if THREAD_SIZE >= PAGE_SIZE void __init __weak thread_info_cache_init(void) { } #endif /* * Set up kernel memory allocators */ static void __init mm_init(void) { /* * page_ext requires contiguous pages, * bigger than MAX_ORDER unless SPARSEMEM. */ page_ext_init_flatmem(); mem_init(); kmem_cache_init(); percpu_init_late(); pgtable_init(); vmalloc_init(); ioremap_huge_init(); } asmlinkage __visible void __init start_kernel(void) { char *command_line; char *after_dashes; set_task_stack_end_magic(&init_task); smp_setup_processor_id(); debug_objects_early_init(); /* * Set up the the initial canary ASAP: */ boot_init_stack_canary(); cgroup_init_early(); local_irq_disable(); early_boot_irqs_disabled = true; /* * Interrupts are still disabled. Do necessary setups, then * enable them */ boot_cpu_init(); page_address_init(); pr_notice("%s", linux_banner); setup_arch(&command_line); mm_init_cpumask(&init_mm); setup_command_line(command_line); setup_nr_cpu_ids(); setup_per_cpu_areas(); boot_cpu_state_init(); smp_prepare_boot_cpu(); /* arch-specific boot-cpu hooks */ build_all_zonelists(NULL, NULL); page_alloc_init(); pr_notice("Kernel command line: %s\n", boot_command_line); parse_early_param(); after_dashes = parse_args("Booting kernel", static_command_line, __start___param, __stop___param - __start___param, -1, -1, NULL, &unknown_bootoption); if (!IS_ERR_OR_NULL(after_dashes)) parse_args("Setting init args", after_dashes, NULL, 0, -1, -1, NULL, set_init_arg); jump_label_init(); /* * These use large bootmem allocations and must precede * kmem_cache_init() */ setup_log_buf(0); pidhash_init(); vfs_caches_init_early(); sort_main_extable(); trap_init(); mm_init(); /* * Set up the scheduler prior starting any interrupts (such as the * timer interrupt). Full topology setup happens at smp_init() * time - but meanwhile we still have a functioning scheduler. */ sched_init(); /* * Disable preemption - early bootup scheduling is extremely * fragile until we cpu_idle() for the first time. */ preempt_disable(); if (WARN(!irqs_disabled(), "Interrupts were enabled *very* early, fixing it\n")) local_irq_disable(); idr_init_cache(); rcu_init(); /* trace_printk() and trace points may be used after this */ trace_init(); context_tracking_init(); radix_tree_init(); /* init some links before init_ISA_irqs() */ early_irq_init(); init_IRQ(); tick_init(); rcu_init_nohz(); init_timers(); hrtimers_init(); softirq_init(); timekeeping_init(); time_init(); sched_clock_postinit(); perf_event_init(); profile_init(); call_function_init(); WARN(!irqs_disabled(), "Interrupts were enabled early\n"); early_boot_irqs_disabled = false; local_irq_enable(); kmem_cache_init_late(); /* * HACK ALERT! This is early. We're enabling the console before * we've done PCI setups etc, and console_init() must be aware of * this. But we do want output early, in case something goes wrong. */ console_init(); if (panic_later) panic("Too many boot %s vars at `%s'", panic_later, panic_param); lockdep_info(); /* * Need to run this when irqs are enabled, because it wants * to self-test [hard/soft]-irqs on/off lock inversion bugs * too: */ locking_selftest(); #ifdef CONFIG_BLK_DEV_INITRD if (initrd_start && !initrd_below_start_ok && page_to_pfn(virt_to_page((void *)initrd_start)) < min_low_pfn) { pr_crit("initrd overwritten (0x%08lx < 0x%08lx) - disabling it.\n", page_to_pfn(virt_to_page((void *)initrd_start)), min_low_pfn); initrd_start = 0; } #endif page_ext_init(); debug_objects_mem_init(); kmemleak_init(); setup_per_cpu_pageset(); numa_policy_init(); if (late_time_init) late_time_init(); sched_clock_init(); calibrate_delay(); pidmap_init(); anon_vma_init(); acpi_early_init(); #ifdef CONFIG_X86 if (efi_enabled(EFI_RUNTIME_SERVICES)) efi_enter_virtual_mode(); #endif #ifdef CONFIG_X86_ESPFIX64 /* Should be run before the first non-init thread is created */ init_espfix_bsp(); #endif thread_info_cache_init(); cred_init(); fork_init(); proc_caches_init(); buffer_init(); key_init(); security_init(); dbg_late_init(); vfs_caches_init(); signals_init(); /* rootfs populating might need page-writeback */ page_writeback_init(); proc_root_init(); nsfs_init(); cpuset_init(); cgroup_init(); taskstats_init_early(); delayacct_init(); check_bugs(); acpi_subsystem_init(); sfi_init_late(); if (efi_enabled(EFI_RUNTIME_SERVICES)) { efi_late_init(); efi_free_boot_services(); } ftrace_init(); /* Do the rest non-__init'ed, we're now alive */ rest_init(); } /* Call all constructor functions linked into the kernel. */ static void __init do_ctors(void) { #ifdef CONFIG_CONSTRUCTORS ctor_fn_t *fn = (ctor_fn_t *) __ctors_start; for (; fn < (ctor_fn_t *) __ctors_end; fn++) (*fn)(); #endif } bool initcall_debug; core_param(initcall_debug, initcall_debug, bool, 0644); #ifdef CONFIG_KALLSYMS struct blacklist_entry { struct list_head next; char *buf; }; static __initdata_or_module LIST_HEAD(blacklisted_initcalls); static int __init initcall_blacklist(char *str) { char *str_entry; struct blacklist_entry *entry; /* str argument is a comma-separated list of functions */ do { str_entry = strsep(&str, ","); if (str_entry) { pr_debug("blacklisting initcall %s\n", str_entry); entry = alloc_bootmem(sizeof(*entry)); entry->buf = alloc_bootmem(strlen(str_entry) + 1); strcpy(entry->buf, str_entry); list_add(&entry->next, &blacklisted_initcalls); } } while (str_entry); return 0; } static bool __init_or_module initcall_blacklisted(initcall_t fn) { struct blacklist_entry *entry; char *fn_name; fn_name = kasprintf(GFP_KERNEL, "%pf", fn); if (!fn_name) return false; list_for_each_entry(entry, &blacklisted_initcalls, next) { if (!strcmp(fn_name, entry->buf)) { pr_debug("initcall %s blacklisted\n", fn_name); kfree(fn_name); return true; } } kfree(fn_name); return false; } #else static int __init initcall_blacklist(char *str) { pr_warn("initcall_blacklist requires CONFIG_KALLSYMS\n"); return 0; } static bool __init_or_module initcall_blacklisted(initcall_t fn) { return false; } #endif __setup("initcall_blacklist=", initcall_blacklist); static int __init_or_module do_one_initcall_debug(initcall_t fn) { ktime_t calltime, delta, rettime; unsigned long long duration; int ret; printk(KERN_DEBUG "calling %pF @ %i\n", fn, task_pid_nr(current)); calltime = ktime_get(); ret = fn(); rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; printk(KERN_DEBUG "initcall %pF returned %d after %lld usecs\n", fn, ret, duration); return ret; } int __init_or_module do_one_initcall(initcall_t fn) { int count = preempt_count(); int ret; char msgbuf[64]; if (initcall_blacklisted(fn)) return -EPERM; if (initcall_debug) ret = do_one_initcall_debug(fn); else ret = fn(); msgbuf[0] = 0; if (preempt_count() != count) { sprintf(msgbuf, "preemption imbalance "); preempt_count_set(count); } if (irqs_disabled()) { strlcat(msgbuf, "disabled interrupts ", sizeof(msgbuf)); local_irq_enable(); } WARN(msgbuf[0], "initcall %pF returned with %s\n", fn, msgbuf); return ret; } extern initcall_t __initcall_start[]; extern initcall_t __initcall0_start[]; extern initcall_t __initcall1_start[]; extern initcall_t __initcall2_start[]; extern initcall_t __initcall3_start[]; extern initcall_t __initcall4_start[]; extern initcall_t __initcall5_start[]; extern initcall_t __initcall6_start[]; extern initcall_t __initcall7_start[]; extern initcall_t __initcall_end[]; static initcall_t *initcall_levels[] __initdata = { __initcall0_start, __initcall1_start, __initcall2_start, __initcall3_start, __initcall4_start, __initcall5_start, __initcall6_start, __initcall7_start, __initcall_end, }; /* Keep these in sync with initcalls in include/linux/init.h */ static char *initcall_level_names[] __initdata = { "early", "core", "postcore", "arch", "subsys", "fs", "device", "late", }; static void __init do_initcall_level(int level) { initcall_t *fn; strcpy(initcall_command_line, saved_command_line); parse_args(initcall_level_names[level], initcall_command_line, __start___param, __stop___param - __start___param, level, level, NULL, &repair_env_string); for (fn = initcall_levels[level]; fn < initcall_levels[level+1]; fn++) do_one_initcall(*fn); } static void __init do_initcalls(void) { int level; for (level = 0; level < ARRAY_SIZE(initcall_levels) - 1; level++) do_initcall_level(level); } /* * Ok, the machine is now initialized. None of the devices * have been touched yet, but the CPU subsystem is up and * running, and memory and process management works. * * Now we can finally start doing some real work.. */ static void __init do_basic_setup(void) { cpuset_init_smp(); shmem_init(); driver_init(); init_irq_proc(); do_ctors(); usermodehelper_enable(); do_initcalls(); random_int_secret_init(); } static void __init do_pre_smp_initcalls(void) { initcall_t *fn; for (fn = __initcall_start; fn < __initcall0_start; fn++) do_one_initcall(*fn); } /* * This function requests modules which should be loaded by default and is * called twice right after initrd is mounted and right before init is * exec'd. If such modules are on either initrd or rootfs, they will be * loaded before control is passed to userland. */ void __init load_default_modules(void) { load_default_elevator_module(); } static int run_init_process(const char *init_filename) { argv_init[0] = init_filename; return do_execve(getname_kernel(init_filename), (const char __user *const __user *)argv_init, (const char __user *const __user *)envp_init); } static int try_to_run_init_process(const char *init_filename) { int ret; ret = run_init_process(init_filename); if (ret && ret != -ENOENT) { pr_err("Starting init: %s exists but couldn't execute it (error %d)\n", init_filename, ret); } return ret; } static noinline void __init kernel_init_freeable(void); #ifdef CONFIG_DEBUG_RODATA static bool rodata_enabled = true; static int __init set_debug_rodata(char *str) { return strtobool(str, &rodata_enabled); } __setup("rodata=", set_debug_rodata); static void mark_readonly(void) { if (rodata_enabled) mark_rodata_ro(); else pr_info("Kernel memory protection disabled.\n"); } #else static inline void mark_readonly(void) { pr_warn("This architecture does not have kernel memory protection.\n"); } #endif static int __ref kernel_init(void *unused) { int ret; kernel_init_freeable(); /* need to finish all async __init code before freeing the memory */ async_synchronize_full(); free_initmem(); mark_readonly(); system_state = SYSTEM_RUNNING; numa_default_policy(); flush_delayed_fput(); rcu_end_inkernel_boot(); if (ramdisk_execute_command) { ret = run_init_process(ramdisk_execute_command); if (!ret) return 0; pr_err("Failed to execute %s (error %d)\n", ramdisk_execute_command, ret); } /* * We try each of these until one succeeds. * * The Bourne shell can be used instead of init if we are * trying to recover a really broken machine. */ if (execute_command) { ret = run_init_process(execute_command); if (!ret) return 0; panic("Requested init %s failed (error %d).", execute_command, ret); } if (!try_to_run_init_process("/sbin/init") || !try_to_run_init_process("/etc/init") || !try_to_run_init_process("/bin/init") || !try_to_run_init_process("/bin/sh")) return 0; panic("No working init found. Try passing init= option to kernel. " "See Linux Documentation/init.txt for guidance."); } static noinline void __init kernel_init_freeable(void) { /* * Wait until kthreadd is all set-up. */ wait_for_completion(&kthreadd_done); /* Now the scheduler is fully set up and can do blocking allocations */ gfp_allowed_mask = __GFP_BITS_MASK; /* * init can allocate pages on any node */ set_mems_allowed(node_states[N_MEMORY]); /* * init can run on any cpu. */ set_cpus_allowed_ptr(current, cpu_all_mask); cad_pid = task_pid(current); smp_prepare_cpus(setup_max_cpus); do_pre_smp_initcalls(); lockup_detector_init(); smp_init(); sched_init_smp(); page_alloc_init_late(); do_basic_setup(); /* Open the /dev/console on the rootfs, this should never fail */ if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0) pr_err("Warning: unable to open an initial console.\n"); (void) sys_dup(0); (void) sys_dup(0); /* * check if there is an early userspace init. If yes, let it do all * the work */ if (!ramdisk_execute_command) ramdisk_execute_command = "/init"; if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) { ramdisk_execute_command = NULL; prepare_namespace(); } /* * Ok, we have completed the initial bootup, and * we're essentially up and running. Get rid of the * initmem segments and start the user-mode stuff.. * * rootfs is available now, try loading the public keys * and default modules */ integrity_load_keys(); load_default_modules(); }