/* * linux/fs/ufs/util.h * * Copyright (C) 1998 * Daniel Pirkl <daniel.pirkl@email.cz> * Charles University, Faculty of Mathematics and Physics */ #include <linux/buffer_head.h> #include <linux/fs.h> #include "swab.h" /* * some useful macros */ #define in_range(b,first,len) ((b)>=(first)&&(b)<(first)+(len)) /* * functions used for retyping */ static inline struct ufs_buffer_head *UCPI_UBH(struct ufs_cg_private_info *cpi) { return &cpi->c_ubh; } static inline struct ufs_buffer_head *USPI_UBH(struct ufs_sb_private_info *spi) { return &spi->s_ubh; } /* * macros used for accessing structures */ static inline s32 ufs_get_fs_state(struct super_block *sb, struct ufs_super_block_first *usb1, struct ufs_super_block_third *usb3) { switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) { case UFS_ST_SUN: return fs32_to_cpu(sb, usb3->fs_un2.fs_sun.fs_state); case UFS_ST_SUNx86: return fs32_to_cpu(sb, usb1->fs_u1.fs_sunx86.fs_state); case UFS_ST_44BSD: default: return fs32_to_cpu(sb, usb3->fs_un2.fs_44.fs_state); } } static inline void ufs_set_fs_state(struct super_block *sb, struct ufs_super_block_first *usb1, struct ufs_super_block_third *usb3, s32 value) { switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) { case UFS_ST_SUN: usb3->fs_un2.fs_sun.fs_state = cpu_to_fs32(sb, value); break; case UFS_ST_SUNx86: usb1->fs_u1.fs_sunx86.fs_state = cpu_to_fs32(sb, value); break; case UFS_ST_44BSD: usb3->fs_un2.fs_44.fs_state = cpu_to_fs32(sb, value); break; } } static inline u32 ufs_get_fs_npsect(struct super_block *sb, struct ufs_super_block_first *usb1, struct ufs_super_block_third *usb3) { if ((UFS_SB(sb)->s_flags & UFS_ST_MASK) == UFS_ST_SUNx86) return fs32_to_cpu(sb, usb3->fs_un2.fs_sunx86.fs_npsect); else return fs32_to_cpu(sb, usb1->fs_u1.fs_sun.fs_npsect); } static inline u64 ufs_get_fs_qbmask(struct super_block *sb, struct ufs_super_block_third *usb3) { __fs64 tmp; switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) { case UFS_ST_SUN: ((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sun.fs_qbmask[0]; ((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sun.fs_qbmask[1]; break; case UFS_ST_SUNx86: ((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sunx86.fs_qbmask[0]; ((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sunx86.fs_qbmask[1]; break; case UFS_ST_44BSD: ((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_44.fs_qbmask[0]; ((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_44.fs_qbmask[1]; break; } return fs64_to_cpu(sb, tmp); } static inline u64 ufs_get_fs_qfmask(struct super_block *sb, struct ufs_super_block_third *usb3) { __fs64 tmp; switch (UFS_SB(sb)->s_flags & UFS_ST_MASK) { case UFS_ST_SUN: ((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sun.fs_qfmask[0]; ((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sun.fs_qfmask[1]; break; case UFS_ST_SUNx86: ((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_sunx86.fs_qfmask[0]; ((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_sunx86.fs_qfmask[1]; break; case UFS_ST_44BSD: ((__fs32 *)&tmp)[0] = usb3->fs_un2.fs_44.fs_qfmask[0]; ((__fs32 *)&tmp)[1] = usb3->fs_un2.fs_44.fs_qfmask[1]; break; } return fs64_to_cpu(sb, tmp); } static inline u16 ufs_get_de_namlen(struct super_block *sb, struct ufs_dir_entry *de) { if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) == UFS_DE_OLD) return fs16_to_cpu(sb, de->d_u.d_namlen); else return de->d_u.d_44.d_namlen; /* XXX this seems wrong */ } static inline void ufs_set_de_namlen(struct super_block *sb, struct ufs_dir_entry *de, u16 value) { if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) == UFS_DE_OLD) de->d_u.d_namlen = cpu_to_fs16(sb, value); else de->d_u.d_44.d_namlen = value; /* XXX this seems wrong */ } static inline void ufs_set_de_type(struct super_block *sb, struct ufs_dir_entry *de, int mode) { if ((UFS_SB(sb)->s_flags & UFS_DE_MASK) != UFS_DE_44BSD) return; /* * TODO turn this into a table lookup */ switch (mode & S_IFMT) { case S_IFSOCK: de->d_u.d_44.d_type = DT_SOCK; break; case S_IFLNK: de->d_u.d_44.d_type = DT_LNK; break; case S_IFREG: de->d_u.d_44.d_type = DT_REG; break; case S_IFBLK: de->d_u.d_44.d_type = DT_BLK; break; case S_IFDIR: de->d_u.d_44.d_type = DT_DIR; break; case S_IFCHR: de->d_u.d_44.d_type = DT_CHR; break; case S_IFIFO: de->d_u.d_44.d_type = DT_FIFO; break; default: de->d_u.d_44.d_type = DT_UNKNOWN; } } static inline u32 ufs_get_inode_uid(struct super_block *sb, struct ufs_inode *inode) { switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) { case UFS_UID_EFT: return fs32_to_cpu(sb, inode->ui_u3.ui_sun.ui_uid); case UFS_UID_44BSD: return fs32_to_cpu(sb, inode->ui_u3.ui_44.ui_uid); default: return fs16_to_cpu(sb, inode->ui_u1.oldids.ui_suid); } } static inline void ufs_set_inode_uid(struct super_block *sb, struct ufs_inode *inode, u32 value) { switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) { case UFS_UID_EFT: inode->ui_u3.ui_sun.ui_uid = cpu_to_fs32(sb, value); break; case UFS_UID_44BSD: inode->ui_u3.ui_44.ui_uid = cpu_to_fs32(sb, value); break; } inode->ui_u1.oldids.ui_suid = cpu_to_fs16(sb, value); } static inline u32 ufs_get_inode_gid(struct super_block *sb, struct ufs_inode *inode) { switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) { case UFS_UID_EFT: return fs32_to_cpu(sb, inode->ui_u3.ui_sun.ui_gid); case UFS_UID_44BSD: return fs32_to_cpu(sb, inode->ui_u3.ui_44.ui_gid); default: return fs16_to_cpu(sb, inode->ui_u1.oldids.ui_sgid); } } static inline void ufs_set_inode_gid(struct super_block *sb, struct ufs_inode *inode, u32 value) { switch (UFS_SB(sb)->s_flags & UFS_UID_MASK) { case UFS_UID_EFT: inode->ui_u3.ui_sun.ui_gid = cpu_to_fs32(sb, value); break; case UFS_UID_44BSD: inode->ui_u3.ui_44.ui_gid = cpu_to_fs32(sb, value); break; } inode->ui_u1.oldids.ui_sgid = cpu_to_fs16(sb, value); } extern dev_t ufs_get_inode_dev(struct super_block *, struct ufs_inode_info *); extern void ufs_set_inode_dev(struct super_block *, struct ufs_inode_info *, dev_t); /* * These functions manipulate ufs buffers */ #define ubh_bread(sb,fragment,size) _ubh_bread_(uspi,sb,fragment,size) extern struct ufs_buffer_head * _ubh_bread_(struct ufs_sb_private_info *, struct super_block *, u64 , u64); extern struct ufs_buffer_head * ubh_bread_uspi(struct ufs_sb_private_info *, struct super_block *, u64, u64); extern void ubh_brelse (struct ufs_buffer_head *); extern void ubh_brelse_uspi (struct ufs_sb_private_info *); extern void ubh_mark_buffer_dirty (struct ufs_buffer_head *); extern void ubh_mark_buffer_uptodate (struct ufs_buffer_head *, int); extern void ubh_ll_rw_block(int, struct ufs_buffer_head *); extern void ubh_wait_on_buffer (struct ufs_buffer_head *); extern void ubh_bforget (struct ufs_buffer_head *); extern int ubh_buffer_dirty (struct ufs_buffer_head *); #define ubh_ubhcpymem(mem,ubh,size) _ubh_ubhcpymem_(uspi,mem,ubh,size) extern void _ubh_ubhcpymem_(struct ufs_sb_private_info *, unsigned char *, struct ufs_buffer_head *, unsigned); #define ubh_memcpyubh(ubh,mem,size) _ubh_memcpyubh_(uspi,ubh,mem,size) extern void _ubh_memcpyubh_(struct ufs_sb_private_info *, struct ufs_buffer_head *, unsigned char *, unsigned); /* This functions works with cache pages*/ extern struct page *ufs_get_locked_page(struct address_space *mapping, pgoff_t index); static inline void ufs_put_locked_page(struct page *page) { unlock_page(page); page_cache_release(page); } /* * macros and inline function to get important structures from ufs_sb_private_info */ static inline void *get_usb_offset(struct ufs_sb_private_info *uspi, unsigned int offset) { unsigned int index; index = offset >> uspi->s_fshift; offset &= ~uspi->s_fmask; return uspi->s_ubh.bh[index]->b_data + offset; } #define ubh_get_usb_first(uspi) \ ((struct ufs_super_block_first *)get_usb_offset((uspi), 0)) #define ubh_get_usb_second(uspi) \ ((struct ufs_super_block_second *)get_usb_offset((uspi), UFS_SECTOR_SIZE)) #define ubh_get_usb_third(uspi) \ ((struct ufs_super_block_third *)get_usb_offset((uspi), 2*UFS_SECTOR_SIZE)) #define ubh_get_ucg(ubh) \ ((struct ufs_cylinder_group *)((ubh)->bh[0]->b_data)) /* * Extract byte from ufs_buffer_head * Extract the bits for a block from a map inside ufs_buffer_head */ #define ubh_get_addr8(ubh,begin) \ ((u8*)(ubh)->bh[(begin) >> uspi->s_fshift]->b_data + \ ((begin) & ~uspi->s_fmask)) #define ubh_get_addr16(ubh,begin) \ (((__fs16*)((ubh)->bh[(begin) >> (uspi->s_fshift-1)]->b_data)) + \ ((begin) & ((uspi->fsize>>1) - 1))) #define ubh_get_addr32(ubh,begin) \ (((__fs32*)((ubh)->bh[(begin) >> (uspi->s_fshift-2)]->b_data)) + \ ((begin) & ((uspi->s_fsize>>2) - 1))) #define ubh_get_addr ubh_get_addr8 #define ubh_blkmap(ubh,begin,bit) \ ((*ubh_get_addr(ubh, (begin) + ((bit) >> 3)) >> ((bit) & 7)) & (0xff >> (UFS_MAXFRAG - uspi->s_fpb))) /* * Determine the number of available frags given a * percentage to hold in reserve. */ static inline u64 ufs_freespace(struct ufs_sb_private_info *uspi, int percentreserved) { return ufs_blkstofrags(uspi->cs_total.cs_nbfree) + uspi->cs_total.cs_nffree - (uspi->s_dsize * (percentreserved) / 100); } /* * Macros to access cylinder group array structures */ #define ubh_cg_blktot(ucpi,cylno) \ (*((__fs32*)ubh_get_addr(UCPI_UBH(ucpi), (ucpi)->c_btotoff + ((cylno) << 2)))) #define ubh_cg_blks(ucpi,cylno,rpos) \ (*((__fs16*)ubh_get_addr(UCPI_UBH(ucpi), \ (ucpi)->c_boff + (((cylno) * uspi->s_nrpos + (rpos)) << 1 )))) /* * Bitmap operations * These functions work like classical bitmap operations. * The difference is that we don't have the whole bitmap * in one contiguous chunk of memory, but in several buffers. * The parameters of each function are super_block, ufs_buffer_head and * position of the beginning of the bitmap. */ #define ubh_setbit(ubh,begin,bit) \ (*ubh_get_addr(ubh, (begin) + ((bit) >> 3)) |= (1 << ((bit) & 7))) #define ubh_clrbit(ubh,begin,bit) \ (*ubh_get_addr (ubh, (begin) + ((bit) >> 3)) &= ~(1 << ((bit) & 7))) #define ubh_isset(ubh,begin,bit) \ (*ubh_get_addr (ubh, (begin) + ((bit) >> 3)) & (1 << ((bit) & 7))) #define ubh_isclr(ubh,begin,bit) (!ubh_isset(ubh,begin,bit)) #define ubh_find_first_zero_bit(ubh,begin,size) _ubh_find_next_zero_bit_(uspi,ubh,begin,size,0) #define ubh_find_next_zero_bit(ubh,begin,size,offset) _ubh_find_next_zero_bit_(uspi,ubh,begin,size,offset) static inline unsigned _ubh_find_next_zero_bit_( struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh, unsigned begin, unsigned size, unsigned offset) { unsigned base, count, pos; size -= offset; begin <<= 3; offset += begin; base = offset >> uspi->s_bpfshift; offset &= uspi->s_bpfmask; for (;;) { count = min_t(unsigned int, size + offset, uspi->s_bpf); size -= count - offset; pos = ext2_find_next_zero_bit (ubh->bh[base]->b_data, count, offset); if (pos < count || !size) break; base++; offset = 0; } return (base << uspi->s_bpfshift) + pos - begin; } static inline unsigned find_last_zero_bit (unsigned char * bitmap, unsigned size, unsigned offset) { unsigned bit, i; unsigned char * mapp; unsigned char map; mapp = bitmap + (size >> 3); map = *mapp--; bit = 1 << (size & 7); for (i = size; i > offset; i--) { if ((map & bit) == 0) break; if ((i & 7) != 0) { bit >>= 1; } else { map = *mapp--; bit = 1 << 7; } } return i; } #define ubh_find_last_zero_bit(ubh,begin,size,offset) _ubh_find_last_zero_bit_(uspi,ubh,begin,size,offset) static inline unsigned _ubh_find_last_zero_bit_( struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh, unsigned begin, unsigned start, unsigned end) { unsigned base, count, pos, size; size = start - end; begin <<= 3; start += begin; base = start >> uspi->s_bpfshift; start &= uspi->s_bpfmask; for (;;) { count = min_t(unsigned int, size + (uspi->s_bpf - start), uspi->s_bpf) - (uspi->s_bpf - start); size -= count; pos = find_last_zero_bit (ubh->bh[base]->b_data, start, start - count); if (pos > start - count || !size) break; base--; start = uspi->s_bpf; } return (base << uspi->s_bpfshift) + pos - begin; } #define ubh_isblockclear(ubh,begin,block) (!_ubh_isblockset_(uspi,ubh,begin,block)) #define ubh_isblockset(ubh,begin,block) _ubh_isblockset_(uspi,ubh,begin,block) static inline int _ubh_isblockset_(struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh, unsigned begin, unsigned block) { switch (uspi->s_fpb) { case 8: return (*ubh_get_addr (ubh, begin + block) == 0xff); case 4: return (*ubh_get_addr (ubh, begin + (block >> 1)) == (0x0f << ((block & 0x01) << 2))); case 2: return (*ubh_get_addr (ubh, begin + (block >> 2)) == (0x03 << ((block & 0x03) << 1))); case 1: return (*ubh_get_addr (ubh, begin + (block >> 3)) == (0x01 << (block & 0x07))); } return 0; } #define ubh_clrblock(ubh,begin,block) _ubh_clrblock_(uspi,ubh,begin,block) static inline void _ubh_clrblock_(struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh, unsigned begin, unsigned block) { switch (uspi->s_fpb) { case 8: *ubh_get_addr (ubh, begin + block) = 0x00; return; case 4: *ubh_get_addr (ubh, begin + (block >> 1)) &= ~(0x0f << ((block & 0x01) << 2)); return; case 2: *ubh_get_addr (ubh, begin + (block >> 2)) &= ~(0x03 << ((block & 0x03) << 1)); return; case 1: *ubh_get_addr (ubh, begin + (block >> 3)) &= ~(0x01 << ((block & 0x07))); return; } } #define ubh_setblock(ubh,begin,block) _ubh_setblock_(uspi,ubh,begin,block) static inline void _ubh_setblock_(struct ufs_sb_private_info * uspi, struct ufs_buffer_head * ubh, unsigned begin, unsigned block) { switch (uspi->s_fpb) { case 8: *ubh_get_addr(ubh, begin + block) = 0xff; return; case 4: *ubh_get_addr(ubh, begin + (block >> 1)) |= (0x0f << ((block & 0x01) << 2)); return; case 2: *ubh_get_addr(ubh, begin + (block >> 2)) |= (0x03 << ((block & 0x03) << 1)); return; case 1: *ubh_get_addr(ubh, begin + (block >> 3)) |= (0x01 << ((block & 0x07))); return; } } static inline void ufs_fragacct (struct super_block * sb, unsigned blockmap, __fs32 * fraglist, int cnt) { struct ufs_sb_private_info * uspi; unsigned fragsize, pos; uspi = UFS_SB(sb)->s_uspi; fragsize = 0; for (pos = 0; pos < uspi->s_fpb; pos++) { if (blockmap & (1 << pos)) { fragsize++; } else if (fragsize > 0) { fs32_add(sb, &fraglist[fragsize], cnt); fragsize = 0; } } if (fragsize > 0 && fragsize < uspi->s_fpb) fs32_add(sb, &fraglist[fragsize], cnt); }