/* * JFFS2 -- Journalling Flash File System, Version 2. * * Copyright © 2001-2007 Red Hat, Inc. * * Created by David Woodhouse * * For licensing information, see the file 'LICENCE' in this directory. * */ #include #include #include #include #include #include #include #include "nodelist.h" #include "summary.h" #include "debug.h" #define DEFAULT_EMPTY_SCAN_SIZE 256 #define noisy_printk(noise, args...) do { \ if (*(noise)) { \ printk(KERN_NOTICE args); \ (*(noise))--; \ if (!(*(noise))) { \ printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \ } \ } \ } while(0) static uint32_t pseudo_random; static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s); /* These helper functions _must_ increase ofs and also do the dirty/used space accounting. * Returning an error will abort the mount - bad checksums etc. should just mark the space * as dirty. */ static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct jffs2_raw_inode *ri, uint32_t ofs, struct jffs2_summary *s); static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct jffs2_raw_dirent *rd, uint32_t ofs, struct jffs2_summary *s); static inline int min_free(struct jffs2_sb_info *c) { uint32_t min = 2 * sizeof(struct jffs2_raw_inode); #ifdef CONFIG_JFFS2_FS_WRITEBUFFER if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize) return c->wbuf_pagesize; #endif return min; } static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) { if (sector_size < DEFAULT_EMPTY_SCAN_SIZE) return sector_size; else return DEFAULT_EMPTY_SCAN_SIZE; } static int file_dirty(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) { int ret; if ((ret = jffs2_prealloc_raw_node_refs(c, jeb, 1))) return ret; if ((ret = jffs2_scan_dirty_space(c, jeb, jeb->free_size))) return ret; /* Turned wasted size into dirty, since we apparently think it's recoverable now. */ jeb->dirty_size += jeb->wasted_size; c->dirty_size += jeb->wasted_size; c->wasted_size -= jeb->wasted_size; jeb->wasted_size = 0; if (VERYDIRTY(c, jeb->dirty_size)) { list_add(&jeb->list, &c->very_dirty_list); } else { list_add(&jeb->list, &c->dirty_list); } return 0; } int jffs2_scan_medium(struct jffs2_sb_info *c) { int i, ret; uint32_t empty_blocks = 0, bad_blocks = 0; unsigned char *flashbuf = NULL; uint32_t buf_size = 0; struct jffs2_summary *s = NULL; /* summary info collected by the scan process */ #ifndef __ECOS size_t pointlen, try_size; ret = mtd_point(c->mtd, 0, c->mtd->size, &pointlen, (void **)&flashbuf, NULL); if (!ret && pointlen < c->mtd->size) { /* Don't muck about if it won't let us point to the whole flash */ D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen)); mtd_unpoint(c->mtd, 0, pointlen); flashbuf = NULL; } if (ret && ret != -EOPNOTSUPP) D1(printk(KERN_DEBUG "MTD point failed %d\n", ret)); #endif if (!flashbuf) { /* For NAND it's quicker to read a whole eraseblock at a time, apparently */ if (jffs2_cleanmarker_oob(c)) try_size = c->sector_size; else try_size = PAGE_SIZE; D1(printk(KERN_DEBUG "Trying to allocate readbuf of %zu " "bytes\n", try_size)); flashbuf = mtd_kmalloc_up_to(c->mtd, &try_size); if (!flashbuf) return -ENOMEM; D1(printk(KERN_DEBUG "Allocated readbuf of %zu bytes\n", try_size)); buf_size = (uint32_t)try_size; } if (jffs2_sum_active()) { s = kzalloc(sizeof(struct jffs2_summary), GFP_KERNEL); if (!s) { JFFS2_WARNING("Can't allocate memory for summary\n"); ret = -ENOMEM; goto out; } } for (i=0; inr_blocks; i++) { struct jffs2_eraseblock *jeb = &c->blocks[i]; cond_resched(); /* reset summary info for next eraseblock scan */ jffs2_sum_reset_collected(s); ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), buf_size, s); if (ret < 0) goto out; jffs2_dbg_acct_paranoia_check_nolock(c, jeb); /* Now decide which list to put it on */ switch(ret) { case BLK_STATE_ALLFF: /* * Empty block. Since we can't be sure it * was entirely erased, we just queue it for erase * again. It will be marked as such when the erase * is complete. Meanwhile we still count it as empty * for later checks. */ empty_blocks++; list_add(&jeb->list, &c->erase_pending_list); c->nr_erasing_blocks++; break; case BLK_STATE_CLEANMARKER: /* Only a CLEANMARKER node is valid */ if (!jeb->dirty_size) { /* It's actually free */ list_add(&jeb->list, &c->free_list); c->nr_free_blocks++; } else { /* Dirt */ D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset)); list_add(&jeb->list, &c->erase_pending_list); c->nr_erasing_blocks++; } break; case BLK_STATE_CLEAN: /* Full (or almost full) of clean data. Clean list */ list_add(&jeb->list, &c->clean_list); break; case BLK_STATE_PARTDIRTY: /* Some data, but not full. Dirty list. */ /* We want to remember the block with most free space and stick it in the 'nextblock' position to start writing to it. */ if (jeb->free_size > min_free(c) && (!c->nextblock || c->nextblock->free_size < jeb->free_size)) { /* Better candidate for the next writes to go to */ if (c->nextblock) { ret = file_dirty(c, c->nextblock); if (ret) goto out; /* deleting summary information of the old nextblock */ jffs2_sum_reset_collected(c->summary); } /* update collected summary information for the current nextblock */ jffs2_sum_move_collected(c, s); D1(printk(KERN_DEBUG "jffs2_scan_medium(): new nextblock = 0x%08x\n", jeb->offset)); c->nextblock = jeb; } else { ret = file_dirty(c, jeb); if (ret) goto out; } break; case BLK_STATE_ALLDIRTY: /* Nothing valid - not even a clean marker. Needs erasing. */ /* For now we just put it on the erasing list. We'll start the erases later */ D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset)); list_add(&jeb->list, &c->erase_pending_list); c->nr_erasing_blocks++; break; case BLK_STATE_BADBLOCK: D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset)); list_add(&jeb->list, &c->bad_list); c->bad_size += c->sector_size; c->free_size -= c->sector_size; bad_blocks++; break; default: printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n"); BUG(); } } /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */ if (c->nextblock && (c->nextblock->dirty_size)) { c->nextblock->wasted_size += c->nextblock->dirty_size; c->wasted_size += c->nextblock->dirty_size; c->dirty_size -= c->nextblock->dirty_size; c->nextblock->dirty_size = 0; } #ifdef CONFIG_JFFS2_FS_WRITEBUFFER if (!jffs2_can_mark_obsolete(c) && c->wbuf_pagesize && c->nextblock && (c->nextblock->free_size % c->wbuf_pagesize)) { /* If we're going to start writing into a block which already contains data, and the end of the data isn't page-aligned, skip a little and align it. */ uint32_t skip = c->nextblock->free_size % c->wbuf_pagesize; D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n", skip)); jffs2_prealloc_raw_node_refs(c, c->nextblock, 1); jffs2_scan_dirty_space(c, c->nextblock, skip); } #endif if (c->nr_erasing_blocks) { if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) { printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n"); printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks); ret = -EIO; goto out; } spin_lock(&c->erase_completion_lock); jffs2_garbage_collect_trigger(c); spin_unlock(&c->erase_completion_lock); } ret = 0; out: if (buf_size) kfree(flashbuf); #ifndef __ECOS else mtd_unpoint(c->mtd, 0, c->mtd->size); #endif kfree(s); return ret; } static int jffs2_fill_scan_buf(struct jffs2_sb_info *c, void *buf, uint32_t ofs, uint32_t len) { int ret; size_t retlen; ret = jffs2_flash_read(c, ofs, len, &retlen, buf); if (ret) { D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret)); return ret; } if (retlen < len) { D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen)); return -EIO; } return 0; } int jffs2_scan_classify_jeb(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) { if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size && (!jeb->first_node || !ref_next(jeb->first_node)) ) return BLK_STATE_CLEANMARKER; /* move blocks with max 4 byte dirty space to cleanlist */ else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) { c->dirty_size -= jeb->dirty_size; c->wasted_size += jeb->dirty_size; jeb->wasted_size += jeb->dirty_size; jeb->dirty_size = 0; return BLK_STATE_CLEAN; } else if (jeb->used_size || jeb->unchecked_size) return BLK_STATE_PARTDIRTY; else return BLK_STATE_ALLDIRTY; } #ifdef CONFIG_JFFS2_FS_XATTR static int jffs2_scan_xattr_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct jffs2_raw_xattr *rx, uint32_t ofs, struct jffs2_summary *s) { struct jffs2_xattr_datum *xd; uint32_t xid, version, totlen, crc; int err; crc = crc32(0, rx, sizeof(struct jffs2_raw_xattr) - 4); if (crc != je32_to_cpu(rx->node_crc)) { JFFS2_WARNING("node CRC failed at %#08x, read=%#08x, calc=%#08x\n", ofs, je32_to_cpu(rx->node_crc), crc); if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rx->totlen)))) return err; return 0; } xid = je32_to_cpu(rx->xid); version = je32_to_cpu(rx->version); totlen = PAD(sizeof(struct jffs2_raw_xattr) + rx->name_len + 1 + je16_to_cpu(rx->value_len)); if (totlen != je32_to_cpu(rx->totlen)) { JFFS2_WARNING("node length mismatch at %#08x, read=%u, calc=%u\n", ofs, je32_to_cpu(rx->totlen), totlen); if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rx->totlen)))) return err; return 0; } xd = jffs2_setup_xattr_datum(c, xid, version); if (IS_ERR(xd)) return PTR_ERR(xd); if (xd->version > version) { struct jffs2_raw_node_ref *raw = jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, totlen, NULL); raw->next_in_ino = xd->node->next_in_ino; xd->node->next_in_ino = raw; } else { xd->version = version; xd->xprefix = rx->xprefix; xd->name_len = rx->name_len; xd->value_len = je16_to_cpu(rx->value_len); xd->data_crc = je32_to_cpu(rx->data_crc); jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, totlen, (void *)xd); } if (jffs2_sum_active()) jffs2_sum_add_xattr_mem(s, rx, ofs - jeb->offset); dbg_xattr("scanning xdatum at %#08x (xid=%u, version=%u)\n", ofs, xd->xid, xd->version); return 0; } static int jffs2_scan_xref_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct jffs2_raw_xref *rr, uint32_t ofs, struct jffs2_summary *s) { struct jffs2_xattr_ref *ref; uint32_t crc; int err; crc = crc32(0, rr, sizeof(*rr) - 4); if (crc != je32_to_cpu(rr->node_crc)) { JFFS2_WARNING("node CRC failed at %#08x, read=%#08x, calc=%#08x\n", ofs, je32_to_cpu(rr->node_crc), crc); if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rr->totlen))))) return err; return 0; } if (PAD(sizeof(struct jffs2_raw_xref)) != je32_to_cpu(rr->totlen)) { JFFS2_WARNING("node length mismatch at %#08x, read=%u, calc=%zd\n", ofs, je32_to_cpu(rr->totlen), PAD(sizeof(struct jffs2_raw_xref))); if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rr->totlen)))) return err; return 0; } ref = jffs2_alloc_xattr_ref(); if (!ref) return -ENOMEM; /* BEFORE jffs2_build_xattr_subsystem() called, * and AFTER xattr_ref is marked as a dead xref, * ref->xid is used to store 32bit xid, xd is not used * ref->ino is used to store 32bit inode-number, ic is not used * Thoes variables are declared as union, thus using those * are exclusive. In a similar way, ref->next is temporarily * used to chain all xattr_ref object. It's re-chained to * jffs2_inode_cache in jffs2_build_xattr_subsystem() correctly. */ ref->ino = je32_to_cpu(rr->ino); ref->xid = je32_to_cpu(rr->xid); ref->xseqno = je32_to_cpu(rr->xseqno); if (ref->xseqno > c->highest_xseqno) c->highest_xseqno = (ref->xseqno & ~XREF_DELETE_MARKER); ref->next = c->xref_temp; c->xref_temp = ref; jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(rr->totlen)), (void *)ref); if (jffs2_sum_active()) jffs2_sum_add_xref_mem(s, rr, ofs - jeb->offset); dbg_xattr("scan xref at %#08x (xid=%u, ino=%u)\n", ofs, ref->xid, ref->ino); return 0; } #endif /* Called with 'buf_size == 0' if buf is in fact a pointer _directly_ into the flash, XIP-style */ static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s) { struct jffs2_unknown_node *node; struct jffs2_unknown_node crcnode; uint32_t ofs, prevofs, max_ofs; uint32_t hdr_crc, buf_ofs, buf_len; int err; int noise = 0; #ifdef CONFIG_JFFS2_FS_WRITEBUFFER int cleanmarkerfound = 0; #endif ofs = jeb->offset; prevofs = jeb->offset - 1; D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs)); #ifdef CONFIG_JFFS2_FS_WRITEBUFFER if (jffs2_cleanmarker_oob(c)) { int ret; if (mtd_block_isbad(c->mtd, jeb->offset)) return BLK_STATE_BADBLOCK; ret = jffs2_check_nand_cleanmarker(c, jeb); D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret)); /* Even if it's not found, we still scan to see if the block is empty. We use this information to decide whether to erase it or not. */ switch (ret) { case 0: cleanmarkerfound = 1; break; case 1: break; default: return ret; } } #endif if (jffs2_sum_active()) { struct jffs2_sum_marker *sm; void *sumptr = NULL; uint32_t sumlen; if (!buf_size) { /* XIP case. Just look, point at the summary if it's there */ sm = (void *)buf + c->sector_size - sizeof(*sm); if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC) { sumptr = buf + je32_to_cpu(sm->offset); sumlen = c->sector_size - je32_to_cpu(sm->offset); } } else { /* If NAND flash, read a whole page of it. Else just the end */ if (c->wbuf_pagesize) buf_len = c->wbuf_pagesize; else buf_len = sizeof(*sm); /* Read as much as we want into the _end_ of the preallocated buffer */ err = jffs2_fill_scan_buf(c, buf + buf_size - buf_len, jeb->offset + c->sector_size - buf_len, buf_len); if (err) return err; sm = (void *)buf + buf_size - sizeof(*sm); if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC) { sumlen = c->sector_size - je32_to_cpu(sm->offset); sumptr = buf + buf_size - sumlen; /* Now, make sure the summary itself is available */ if (sumlen > buf_size) { /* Need to kmalloc for this. */ sumptr = kmalloc(sumlen, GFP_KERNEL); if (!sumptr) return -ENOMEM; memcpy(sumptr + sumlen - buf_len, buf + buf_size - buf_len, buf_len); } if (buf_len < sumlen) { /* Need to read more so that the entire summary node is present */ err = jffs2_fill_scan_buf(c, sumptr, jeb->offset + c->sector_size - sumlen, sumlen - buf_len); if (err) return err; } } } if (sumptr) { err = jffs2_sum_scan_sumnode(c, jeb, sumptr, sumlen, &pseudo_random); if (buf_size && sumlen > buf_size) kfree(sumptr); /* If it returns with a real error, bail. If it returns positive, that's a block classification (i.e. BLK_STATE_xxx) so return that too. If it returns zero, fall through to full scan. */ if (err) return err; } } buf_ofs = jeb->offset; if (!buf_size) { /* This is the XIP case -- we're reading _directly_ from the flash chip */ buf_len = c->sector_size; } else { buf_len = EMPTY_SCAN_SIZE(c->sector_size); err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len); if (err) return err; } /* We temporarily use 'ofs' as a pointer into the buffer/jeb */ ofs = 0; max_ofs = EMPTY_SCAN_SIZE(c->sector_size); /* Scan only EMPTY_SCAN_SIZE of 0xFF before declaring it's empty */ while(ofs < max_ofs && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF) ofs += 4; if (ofs == max_ofs) { #ifdef CONFIG_JFFS2_FS_WRITEBUFFER if (jffs2_cleanmarker_oob(c)) { /* scan oob, take care of cleanmarker */ int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound); D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret)); switch (ret) { case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF; case 1: return BLK_STATE_ALLDIRTY; default: return ret; } } #endif D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset)); if (c->cleanmarker_size == 0) return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */ else return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */ } if (ofs) { D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset, jeb->offset + ofs)); if ((err = jffs2_prealloc_raw_node_refs(c, jeb, 1))) return err; if ((err = jffs2_scan_dirty_space(c, jeb, ofs))) return err; } /* Now ofs is a complete physical flash offset as it always was... */ ofs += jeb->offset; noise = 10; dbg_summary("no summary found in jeb 0x%08x. Apply original scan.\n",jeb->offset); scan_more: while(ofs < jeb->offset + c->sector_size) { jffs2_dbg_acct_paranoia_check_nolock(c, jeb); /* Make sure there are node refs available for use */ err = jffs2_prealloc_raw_node_refs(c, jeb, 2); if (err) return err; cond_resched(); if (ofs & 3) { printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs); ofs = PAD(ofs); continue; } if (ofs == prevofs) { printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs); if ((err = jffs2_scan_dirty_space(c, jeb, 4))) return err; ofs += 4; continue; } prevofs = ofs; if (jeb->offset + c->sector_size < ofs + sizeof(*node)) { D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node), jeb->offset, c->sector_size, ofs, sizeof(*node))); if ((err = jffs2_scan_dirty_space(c, jeb, (jeb->offset + c->sector_size)-ofs))) return err; break; } if (buf_ofs + buf_len < ofs + sizeof(*node)) { buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n", sizeof(struct jffs2_unknown_node), buf_len, ofs)); err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); if (err) return err; buf_ofs = ofs; } node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs]; if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) { uint32_t inbuf_ofs; uint32_t empty_start, scan_end; empty_start = ofs; ofs += 4; scan_end = min_t(uint32_t, EMPTY_SCAN_SIZE(c->sector_size)/8, buf_len); D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs)); more_empty: inbuf_ofs = ofs - buf_ofs; while (inbuf_ofs < scan_end) { if (unlikely(*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff)) { printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n", empty_start, ofs); if ((err = jffs2_scan_dirty_space(c, jeb, ofs-empty_start))) return err; goto scan_more; } inbuf_ofs+=4; ofs += 4; } /* Ran off end. */ D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs)); /* If we're only checking the beginning of a block with a cleanmarker, bail now */ if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) && c->cleanmarker_size && !jeb->dirty_size && !ref_next(jeb->first_node)) { D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size))); return BLK_STATE_CLEANMARKER; } if (!buf_size && (scan_end != buf_len)) {/* XIP/point case */ scan_end = buf_len; goto more_empty; } /* See how much more there is to read in this eraseblock... */ buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); if (!buf_len) { /* No more to read. Break out of main loop without marking this range of empty space as dirty (because it's not) */ D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n", empty_start)); break; } /* point never reaches here */ scan_end = buf_len; D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs)); err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); if (err) return err; buf_ofs = ofs; goto more_empty; } if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) { printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs); if ((err = jffs2_scan_dirty_space(c, jeb, 4))) return err; ofs += 4; continue; } if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) { D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs)); if ((err = jffs2_scan_dirty_space(c, jeb, 4))) return err; ofs += 4; continue; } if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) { printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs); printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n"); if ((err = jffs2_scan_dirty_space(c, jeb, 4))) return err; ofs += 4; continue; } if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) { /* OK. We're out of possibilities. Whinge and move on */ noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", JFFS2_MAGIC_BITMASK, ofs, je16_to_cpu(node->magic)); if ((err = jffs2_scan_dirty_space(c, jeb, 4))) return err; ofs += 4; continue; } /* We seem to have a node of sorts. Check the CRC */ crcnode.magic = node->magic; crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE); crcnode.totlen = node->totlen; hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4); if (hdr_crc != je32_to_cpu(node->hdr_crc)) { noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n", ofs, je16_to_cpu(node->magic), je16_to_cpu(node->nodetype), je32_to_cpu(node->totlen), je32_to_cpu(node->hdr_crc), hdr_crc); if ((err = jffs2_scan_dirty_space(c, jeb, 4))) return err; ofs += 4; continue; } if (ofs + je32_to_cpu(node->totlen) > jeb->offset + c->sector_size) { /* Eep. Node goes over the end of the erase block. */ printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n", ofs, je32_to_cpu(node->totlen)); printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n"); if ((err = jffs2_scan_dirty_space(c, jeb, 4))) return err; ofs += 4; continue; } if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) { /* Wheee. This is an obsoleted node */ D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs)); if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) return err; ofs += PAD(je32_to_cpu(node->totlen)); continue; } switch(je16_to_cpu(node->nodetype)) { case JFFS2_NODETYPE_INODE: if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) { buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n", sizeof(struct jffs2_raw_inode), buf_len, ofs)); err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); if (err) return err; buf_ofs = ofs; node = (void *)buf; } err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs, s); if (err) return err; ofs += PAD(je32_to_cpu(node->totlen)); break; case JFFS2_NODETYPE_DIRENT: if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n", je32_to_cpu(node->totlen), buf_len, ofs)); err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); if (err) return err; buf_ofs = ofs; node = (void *)buf; } err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs, s); if (err) return err; ofs += PAD(je32_to_cpu(node->totlen)); break; #ifdef CONFIG_JFFS2_FS_XATTR case JFFS2_NODETYPE_XATTR: if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); D1(printk(KERN_DEBUG "Fewer than %d bytes (xattr node)" " left to end of buf. Reading 0x%x at 0x%08x\n", je32_to_cpu(node->totlen), buf_len, ofs)); err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); if (err) return err; buf_ofs = ofs; node = (void *)buf; } err = jffs2_scan_xattr_node(c, jeb, (void *)node, ofs, s); if (err) return err; ofs += PAD(je32_to_cpu(node->totlen)); break; case JFFS2_NODETYPE_XREF: if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); D1(printk(KERN_DEBUG "Fewer than %d bytes (xref node)" " left to end of buf. Reading 0x%x at 0x%08x\n", je32_to_cpu(node->totlen), buf_len, ofs)); err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); if (err) return err; buf_ofs = ofs; node = (void *)buf; } err = jffs2_scan_xref_node(c, jeb, (void *)node, ofs, s); if (err) return err; ofs += PAD(je32_to_cpu(node->totlen)); break; #endif /* CONFIG_JFFS2_FS_XATTR */ case JFFS2_NODETYPE_CLEANMARKER: D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs)); if (je32_to_cpu(node->totlen) != c->cleanmarker_size) { printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", ofs, je32_to_cpu(node->totlen), c->cleanmarker_size); if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node))))) return err; ofs += PAD(sizeof(struct jffs2_unknown_node)); } else if (jeb->first_node) { printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset); if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node))))) return err; ofs += PAD(sizeof(struct jffs2_unknown_node)); } else { jffs2_link_node_ref(c, jeb, ofs | REF_NORMAL, c->cleanmarker_size, NULL); ofs += PAD(c->cleanmarker_size); } break; case JFFS2_NODETYPE_PADDING: if (jffs2_sum_active()) jffs2_sum_add_padding_mem(s, je32_to_cpu(node->totlen)); if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) return err; ofs += PAD(je32_to_cpu(node->totlen)); break; default: switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) { case JFFS2_FEATURE_ROCOMPAT: printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); c->flags |= JFFS2_SB_FLAG_RO; if (!(jffs2_is_readonly(c))) return -EROFS; if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) return err; ofs += PAD(je32_to_cpu(node->totlen)); break; case JFFS2_FEATURE_INCOMPAT: printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); return -EINVAL; case JFFS2_FEATURE_RWCOMPAT_DELETE: D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) return err; ofs += PAD(je32_to_cpu(node->totlen)); break; case JFFS2_FEATURE_RWCOMPAT_COPY: { D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(node->totlen)), NULL); /* We can't summarise nodes we don't grok */ jffs2_sum_disable_collecting(s); ofs += PAD(je32_to_cpu(node->totlen)); break; } } } } if (jffs2_sum_active()) { if (PAD(s->sum_size + JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size) { dbg_summary("There is not enough space for " "summary information, disabling for this jeb!\n"); jffs2_sum_disable_collecting(s); } } D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x, wasted 0x%08x\n", jeb->offset,jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size, jeb->wasted_size)); /* mark_node_obsolete can add to wasted !! */ if (jeb->wasted_size) { jeb->dirty_size += jeb->wasted_size; c->dirty_size += jeb->wasted_size; c->wasted_size -= jeb->wasted_size; jeb->wasted_size = 0; } return jffs2_scan_classify_jeb(c, jeb); } struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino) { struct jffs2_inode_cache *ic; ic = jffs2_get_ino_cache(c, ino); if (ic) return ic; if (ino > c->highest_ino) c->highest_ino = ino; ic = jffs2_alloc_inode_cache(); if (!ic) { printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n"); return NULL; } memset(ic, 0, sizeof(*ic)); ic->ino = ino; ic->nodes = (void *)ic; jffs2_add_ino_cache(c, ic); if (ino == 1) ic->pino_nlink = 1; return ic; } static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct jffs2_raw_inode *ri, uint32_t ofs, struct jffs2_summary *s) { struct jffs2_inode_cache *ic; uint32_t crc, ino = je32_to_cpu(ri->ino); D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs)); /* We do very little here now. Just check the ino# to which we should attribute this node; we can do all the CRC checking etc. later. There's a tradeoff here -- we used to scan the flash once only, reading everything we want from it into memory, then building all our in-core data structures and freeing the extra information. Now we allow the first part of the mount to complete a lot quicker, but we have to go _back_ to the flash in order to finish the CRC checking, etc. Which means that the _full_ amount of time to get to proper write mode with GC operational may actually be _longer_ than before. Sucks to be me. */ /* Check the node CRC in any case. */ crc = crc32(0, ri, sizeof(*ri)-8); if (crc != je32_to_cpu(ri->node_crc)) { printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on " "node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", ofs, je32_to_cpu(ri->node_crc), crc); /* * We believe totlen because the CRC on the node * _header_ was OK, just the node itself failed. */ return jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(ri->totlen))); } ic = jffs2_get_ino_cache(c, ino); if (!ic) { ic = jffs2_scan_make_ino_cache(c, ino); if (!ic) return -ENOMEM; } /* Wheee. It worked */ jffs2_link_node_ref(c, jeb, ofs | REF_UNCHECKED, PAD(je32_to_cpu(ri->totlen)), ic); D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", je32_to_cpu(ri->ino), je32_to_cpu(ri->version), je32_to_cpu(ri->offset), je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize))); pseudo_random += je32_to_cpu(ri->version); if (jffs2_sum_active()) { jffs2_sum_add_inode_mem(s, ri, ofs - jeb->offset); } return 0; } static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, struct jffs2_raw_dirent *rd, uint32_t ofs, struct jffs2_summary *s) { struct jffs2_full_dirent *fd; struct jffs2_inode_cache *ic; uint32_t checkedlen; uint32_t crc; int err; D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs)); /* We don't get here unless the node is still valid, so we don't have to mask in the ACCURATE bit any more. */ crc = crc32(0, rd, sizeof(*rd)-8); if (crc != je32_to_cpu(rd->node_crc)) { printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", ofs, je32_to_cpu(rd->node_crc), crc); /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen))))) return err; return 0; } pseudo_random += je32_to_cpu(rd->version); /* Should never happen. Did. (OLPC trac #4184)*/ checkedlen = strnlen(rd->name, rd->nsize); if (checkedlen < rd->nsize) { printk(KERN_ERR "Dirent at %08x has zeroes in name. Truncating to %d chars\n", ofs, checkedlen); } fd = jffs2_alloc_full_dirent(checkedlen+1); if (!fd) { return -ENOMEM; } memcpy(&fd->name, rd->name, checkedlen); fd->name[checkedlen] = 0; crc = crc32(0, fd->name, rd->nsize); if (crc != je32_to_cpu(rd->name_crc)) { printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", ofs, je32_to_cpu(rd->name_crc), crc); D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino))); jffs2_free_full_dirent(fd); /* FIXME: Why do we believe totlen? */ /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */ if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen))))) return err; return 0; } ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino)); if (!ic) { jffs2_free_full_dirent(fd); return -ENOMEM; } fd->raw = jffs2_link_node_ref(c, jeb, ofs | dirent_node_state(rd), PAD(je32_to_cpu(rd->totlen)), ic); fd->next = NULL; fd->version = je32_to_cpu(rd->version); fd->ino = je32_to_cpu(rd->ino); fd->nhash = full_name_hash(fd->name, checkedlen); fd->type = rd->type; jffs2_add_fd_to_list(c, fd, &ic->scan_dents); if (jffs2_sum_active()) { jffs2_sum_add_dirent_mem(s, rd, ofs - jeb->offset); } return 0; } static int count_list(struct list_head *l) { uint32_t count = 0; struct list_head *tmp; list_for_each(tmp, l) { count++; } return count; } /* Note: This breaks if list_empty(head). I don't care. You might, if you copy this code and use it elsewhere :) */ static void rotate_list(struct list_head *head, uint32_t count) { struct list_head *n = head->next; list_del(head); while(count--) { n = n->next; } list_add(head, n); } void jffs2_rotate_lists(struct jffs2_sb_info *c) { uint32_t x; uint32_t rotateby; x = count_list(&c->clean_list); if (x) { rotateby = pseudo_random % x; rotate_list((&c->clean_list), rotateby); } x = count_list(&c->very_dirty_list); if (x) { rotateby = pseudo_random % x; rotate_list((&c->very_dirty_list), rotateby); } x = count_list(&c->dirty_list); if (x) { rotateby = pseudo_random % x; rotate_list((&c->dirty_list), rotateby); } x = count_list(&c->erasable_list); if (x) { rotateby = pseudo_random % x; rotate_list((&c->erasable_list), rotateby); } if (c->nr_erasing_blocks) { rotateby = pseudo_random % c->nr_erasing_blocks; rotate_list((&c->erase_pending_list), rotateby); } if (c->nr_free_blocks) { rotateby = pseudo_random % c->nr_free_blocks; rotate_list((&c->free_list), rotateby); } }