/* * linux/fs/exec.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * #!-checking implemented by tytso. */ /* * Demand-loading implemented 01.12.91 - no need to read anything but * the header into memory. The inode of the executable is put into * "current->executable", and page faults do the actual loading. Clean. * * Once more I can proudly say that linux stood up to being changed: it * was less than 2 hours work to get demand-loading completely implemented. * * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, * current->executable is only used by the procfs. This allows a dispatch * table to check for several different types of binary formats. We keep * trying until we recognize the file or we run out of supported binary * formats. */ #include <linux/slab.h> #include <linux/file.h> #include <linux/fdtable.h> #include <linux/mm.h> #include <linux/stat.h> #include <linux/fcntl.h> #include <linux/swap.h> #include <linux/string.h> #include <linux/init.h> #include <linux/pagemap.h> #include <linux/perf_event.h> #include <linux/highmem.h> #include <linux/spinlock.h> #include <linux/key.h> #include <linux/personality.h> #include <linux/binfmts.h> #include <linux/utsname.h> #include <linux/pid_namespace.h> #include <linux/module.h> #include <linux/namei.h> #include <linux/proc_fs.h> #include <linux/mount.h> #include <linux/security.h> #include <linux/syscalls.h> #include <linux/tsacct_kern.h> #include <linux/cn_proc.h> #include <linux/audit.h> #include <linux/tracehook.h> #include <linux/kmod.h> #include <linux/fsnotify.h> #include <linux/fs_struct.h> #include <linux/pipe_fs_i.h> #include <linux/oom.h> #include <asm/uaccess.h> #include <asm/mmu_context.h> #include <asm/tlb.h> #include "internal.h" int core_uses_pid; char core_pattern[CORENAME_MAX_SIZE] = "core"; unsigned int core_pipe_limit; int suid_dumpable = 0; struct core_name { char *corename; int used, size; }; static atomic_t call_count = ATOMIC_INIT(1); /* The maximal length of core_pattern is also specified in sysctl.c */ static LIST_HEAD(formats); static DEFINE_RWLOCK(binfmt_lock); int __register_binfmt(struct linux_binfmt * fmt, int insert) { if (!fmt) return -EINVAL; write_lock(&binfmt_lock); insert ? list_add(&fmt->lh, &formats) : list_add_tail(&fmt->lh, &formats); write_unlock(&binfmt_lock); return 0; } EXPORT_SYMBOL(__register_binfmt); void unregister_binfmt(struct linux_binfmt * fmt) { write_lock(&binfmt_lock); list_del(&fmt->lh); write_unlock(&binfmt_lock); } EXPORT_SYMBOL(unregister_binfmt); static inline void put_binfmt(struct linux_binfmt * fmt) { module_put(fmt->module); } /* * Note that a shared library must be both readable and executable due to * security reasons. * * Also note that we take the address to load from from the file itself. */ SYSCALL_DEFINE1(uselib, const char __user *, library) { struct file *file; char *tmp = getname(library); int error = PTR_ERR(tmp); if (IS_ERR(tmp)) goto out; file = do_filp_open(AT_FDCWD, tmp, O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, MAY_READ | MAY_EXEC | MAY_OPEN); putname(tmp); error = PTR_ERR(file); if (IS_ERR(file)) goto out; error = -EINVAL; if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) goto exit; error = -EACCES; if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) goto exit; fsnotify_open(file); error = -ENOEXEC; if(file->f_op) { struct linux_binfmt * fmt; read_lock(&binfmt_lock); list_for_each_entry(fmt, &formats, lh) { if (!fmt->load_shlib) continue; if (!try_module_get(fmt->module)) continue; read_unlock(&binfmt_lock); error = fmt->load_shlib(file); read_lock(&binfmt_lock); put_binfmt(fmt); if (error != -ENOEXEC) break; } read_unlock(&binfmt_lock); } exit: fput(file); out: return error; } #ifdef CONFIG_MMU void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) { struct mm_struct *mm = current->mm; long diff = (long)(pages - bprm->vma_pages); if (!mm || !diff) return; bprm->vma_pages = pages; #ifdef SPLIT_RSS_COUNTING add_mm_counter(mm, MM_ANONPAGES, diff); #else spin_lock(&mm->page_table_lock); add_mm_counter(mm, MM_ANONPAGES, diff); spin_unlock(&mm->page_table_lock); #endif } struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, int write) { struct page *page; int ret; #ifdef CONFIG_STACK_GROWSUP if (write) { ret = expand_stack_downwards(bprm->vma, pos); if (ret < 0) return NULL; } #endif ret = get_user_pages(current, bprm->mm, pos, 1, write, 1, &page, NULL); if (ret <= 0) return NULL; if (write) { unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; struct rlimit *rlim; acct_arg_size(bprm, size / PAGE_SIZE); /* * We've historically supported up to 32 pages (ARG_MAX) * of argument strings even with small stacks */ if (size <= ARG_MAX) return page; /* * Limit to 1/4-th the stack size for the argv+env strings. * This ensures that: * - the remaining binfmt code will not run out of stack space, * - the program will have a reasonable amount of stack left * to work from. */ rlim = current->signal->rlim; if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { put_page(page); return NULL; } } return page; } static void put_arg_page(struct page *page) { put_page(page); } static void free_arg_page(struct linux_binprm *bprm, int i) { } static void free_arg_pages(struct linux_binprm *bprm) { } static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, struct page *page) { flush_cache_page(bprm->vma, pos, page_to_pfn(page)); } static int __bprm_mm_init(struct linux_binprm *bprm) { int err; struct vm_area_struct *vma = NULL; struct mm_struct *mm = bprm->mm; bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); if (!vma) return -ENOMEM; down_write(&mm->mmap_sem); vma->vm_mm = mm; /* * Place the stack at the largest stack address the architecture * supports. Later, we'll move this to an appropriate place. We don't * use STACK_TOP because that can depend on attributes which aren't * configured yet. */ BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); vma->vm_end = STACK_TOP_MAX; vma->vm_start = vma->vm_end - PAGE_SIZE; vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); INIT_LIST_HEAD(&vma->anon_vma_chain); err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); if (err) goto err; err = insert_vm_struct(mm, vma); if (err) goto err; mm->stack_vm = mm->total_vm = 1; up_write(&mm->mmap_sem); bprm->p = vma->vm_end - sizeof(void *); return 0; err: up_write(&mm->mmap_sem); bprm->vma = NULL; kmem_cache_free(vm_area_cachep, vma); return err; } static bool valid_arg_len(struct linux_binprm *bprm, long len) { return len <= MAX_ARG_STRLEN; } #else void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) { } struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, int write) { struct page *page; page = bprm->page[pos / PAGE_SIZE]; if (!page && write) { page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); if (!page) return NULL; bprm->page[pos / PAGE_SIZE] = page; } return page; } static void put_arg_page(struct page *page) { } static void free_arg_page(struct linux_binprm *bprm, int i) { if (bprm->page[i]) { __free_page(bprm->page[i]); bprm->page[i] = NULL; } } static void free_arg_pages(struct linux_binprm *bprm) { int i; for (i = 0; i < MAX_ARG_PAGES; i++) free_arg_page(bprm, i); } static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, struct page *page) { } static int __bprm_mm_init(struct linux_binprm *bprm) { bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); return 0; } static bool valid_arg_len(struct linux_binprm *bprm, long len) { return len <= bprm->p; } #endif /* CONFIG_MMU */ /* * Create a new mm_struct and populate it with a temporary stack * vm_area_struct. We don't have enough context at this point to set the stack * flags, permissions, and offset, so we use temporary values. We'll update * them later in setup_arg_pages(). */ int bprm_mm_init(struct linux_binprm *bprm) { int err; struct mm_struct *mm = NULL; bprm->mm = mm = mm_alloc(); err = -ENOMEM; if (!mm) goto err; err = init_new_context(current, mm); if (err) goto err; err = __bprm_mm_init(bprm); if (err) goto err; return 0; err: if (mm) { bprm->mm = NULL; mmdrop(mm); } return err; } /* * count() counts the number of strings in array ARGV. */ static int count(const char __user * const __user * argv, int max) { int i = 0; if (argv != NULL) { for (;;) { const char __user * p; if (get_user(p, argv)) return -EFAULT; if (!p) break; argv++; if (i++ >= max) return -E2BIG; if (fatal_signal_pending(current)) return -ERESTARTNOHAND; cond_resched(); } } return i; } /* * 'copy_strings()' copies argument/environment strings from the old * processes's memory to the new process's stack. The call to get_user_pages() * ensures the destination page is created and not swapped out. */ static int copy_strings(int argc, const char __user *const __user *argv, struct linux_binprm *bprm) { struct page *kmapped_page = NULL; char *kaddr = NULL; unsigned long kpos = 0; int ret; while (argc-- > 0) { const char __user *str; int len; unsigned long pos; if (get_user(str, argv+argc) || !(len = strnlen_user(str, MAX_ARG_STRLEN))) { ret = -EFAULT; goto out; } if (!valid_arg_len(bprm, len)) { ret = -E2BIG; goto out; } /* We're going to work our way backwords. */ pos = bprm->p; str += len; bprm->p -= len; while (len > 0) { int offset, bytes_to_copy; if (fatal_signal_pending(current)) { ret = -ERESTARTNOHAND; goto out; } cond_resched(); offset = pos % PAGE_SIZE; if (offset == 0) offset = PAGE_SIZE; bytes_to_copy = offset; if (bytes_to_copy > len) bytes_to_copy = len; offset -= bytes_to_copy; pos -= bytes_to_copy; str -= bytes_to_copy; len -= bytes_to_copy; if (!kmapped_page || kpos != (pos & PAGE_MASK)) { struct page *page; page = get_arg_page(bprm, pos, 1); if (!page) { ret = -E2BIG; goto out; } if (kmapped_page) { flush_kernel_dcache_page(kmapped_page); kunmap(kmapped_page); put_arg_page(kmapped_page); } kmapped_page = page; kaddr = kmap(kmapped_page); kpos = pos & PAGE_MASK; flush_arg_page(bprm, kpos, kmapped_page); } if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { ret = -EFAULT; goto out; } } } ret = 0; out: if (kmapped_page) { flush_kernel_dcache_page(kmapped_page); kunmap(kmapped_page); put_arg_page(kmapped_page); } return ret; } /* * Like copy_strings, but get argv and its values from kernel memory. */ int copy_strings_kernel(int argc, const char *const *argv, struct linux_binprm *bprm) { int r; mm_segment_t oldfs = get_fs(); set_fs(KERNEL_DS); r = copy_strings(argc, (const char __user *const __user *)argv, bprm); set_fs(oldfs); return r; } EXPORT_SYMBOL(copy_strings_kernel); #ifdef CONFIG_MMU /* * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once * the binfmt code determines where the new stack should reside, we shift it to * its final location. The process proceeds as follows: * * 1) Use shift to calculate the new vma endpoints. * 2) Extend vma to cover both the old and new ranges. This ensures the * arguments passed to subsequent functions are consistent. * 3) Move vma's page tables to the new range. * 4) Free up any cleared pgd range. * 5) Shrink the vma to cover only the new range. */ static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) { struct mm_struct *mm = vma->vm_mm; unsigned long old_start = vma->vm_start; unsigned long old_end = vma->vm_end; unsigned long length = old_end - old_start; unsigned long new_start = old_start - shift; unsigned long new_end = old_end - shift; struct mmu_gather *tlb; BUG_ON(new_start > new_end); /* * ensure there are no vmas between where we want to go * and where we are */ if (vma != find_vma(mm, new_start)) return -EFAULT; /* * cover the whole range: [new_start, old_end) */ if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) return -ENOMEM; /* * move the page tables downwards, on failure we rely on * process cleanup to remove whatever mess we made. */ if (length != move_page_tables(vma, old_start, vma, new_start, length)) return -ENOMEM; lru_add_drain(); tlb = tlb_gather_mmu(mm, 0); if (new_end > old_start) { /* * when the old and new regions overlap clear from new_end. */ free_pgd_range(tlb, new_end, old_end, new_end, vma->vm_next ? vma->vm_next->vm_start : 0); } else { /* * otherwise, clean from old_start; this is done to not touch * the address space in [new_end, old_start) some architectures * have constraints on va-space that make this illegal (IA64) - * for the others its just a little faster. */ free_pgd_range(tlb, old_start, old_end, new_end, vma->vm_next ? vma->vm_next->vm_start : 0); } tlb_finish_mmu(tlb, new_end, old_end); /* * Shrink the vma to just the new range. Always succeeds. */ vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); return 0; } /* * Finalizes the stack vm_area_struct. The flags and permissions are updated, * the stack is optionally relocated, and some extra space is added. */ int setup_arg_pages(struct linux_binprm *bprm, unsigned long stack_top, int executable_stack) { unsigned long ret; unsigned long stack_shift; struct mm_struct *mm = current->mm; struct vm_area_struct *vma = bprm->vma; struct vm_area_struct *prev = NULL; unsigned long vm_flags; unsigned long stack_base; unsigned long stack_size; unsigned long stack_expand; unsigned long rlim_stack; #ifdef CONFIG_STACK_GROWSUP /* Limit stack size to 1GB */ stack_base = rlimit_max(RLIMIT_STACK); if (stack_base > (1 << 30)) stack_base = 1 << 30; /* Make sure we didn't let the argument array grow too large. */ if (vma->vm_end - vma->vm_start > stack_base) return -ENOMEM; stack_base = PAGE_ALIGN(stack_top - stack_base); stack_shift = vma->vm_start - stack_base; mm->arg_start = bprm->p - stack_shift; bprm->p = vma->vm_end - stack_shift; #else stack_top = arch_align_stack(stack_top); stack_top = PAGE_ALIGN(stack_top); if (unlikely(stack_top < mmap_min_addr) || unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) return -ENOMEM; stack_shift = vma->vm_end - stack_top; bprm->p -= stack_shift; mm->arg_start = bprm->p; #endif if (bprm->loader) bprm->loader -= stack_shift; bprm->exec -= stack_shift; down_write(&mm->mmap_sem); vm_flags = VM_STACK_FLAGS; /* * Adjust stack execute permissions; explicitly enable for * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone * (arch default) otherwise. */ if (unlikely(executable_stack == EXSTACK_ENABLE_X)) vm_flags |= VM_EXEC; else if (executable_stack == EXSTACK_DISABLE_X) vm_flags &= ~VM_EXEC; vm_flags |= mm->def_flags; vm_flags |= VM_STACK_INCOMPLETE_SETUP; ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, vm_flags); if (ret) goto out_unlock; BUG_ON(prev != vma); /* Move stack pages down in memory. */ if (stack_shift) { ret = shift_arg_pages(vma, stack_shift); if (ret) goto out_unlock; } /* mprotect_fixup is overkill to remove the temporary stack flags */ vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ stack_size = vma->vm_end - vma->vm_start; /* * Align this down to a page boundary as expand_stack * will align it up. */ rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; #ifdef CONFIG_STACK_GROWSUP if (stack_size + stack_expand > rlim_stack) stack_base = vma->vm_start + rlim_stack; else stack_base = vma->vm_end + stack_expand; #else if (stack_size + stack_expand > rlim_stack) stack_base = vma->vm_end - rlim_stack; else stack_base = vma->vm_start - stack_expand; #endif current->mm->start_stack = bprm->p; ret = expand_stack(vma, stack_base); if (ret) ret = -EFAULT; out_unlock: up_write(&mm->mmap_sem); return ret; } EXPORT_SYMBOL(setup_arg_pages); #endif /* CONFIG_MMU */ struct file *open_exec(const char *name) { struct file *file; int err; file = do_filp_open(AT_FDCWD, name, O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, MAY_EXEC | MAY_OPEN); if (IS_ERR(file)) goto out; err = -EACCES; if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) goto exit; if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) goto exit; fsnotify_open(file); err = deny_write_access(file); if (err) goto exit; out: return file; exit: fput(file); return ERR_PTR(err); } EXPORT_SYMBOL(open_exec); int kernel_read(struct file *file, loff_t offset, char *addr, unsigned long count) { mm_segment_t old_fs; loff_t pos = offset; int result; old_fs = get_fs(); set_fs(get_ds()); /* The cast to a user pointer is valid due to the set_fs() */ result = vfs_read(file, (void __user *)addr, count, &pos); set_fs(old_fs); return result; } EXPORT_SYMBOL(kernel_read); static int exec_mmap(struct mm_struct *mm) { struct task_struct *tsk; struct mm_struct * old_mm, *active_mm; /* Notify parent that we're no longer interested in the old VM */ tsk = current; old_mm = current->mm; sync_mm_rss(tsk, old_mm); mm_release(tsk, old_mm); if (old_mm) { /* * Make sure that if there is a core dump in progress * for the old mm, we get out and die instead of going * through with the exec. We must hold mmap_sem around * checking core_state and changing tsk->mm. */ down_read(&old_mm->mmap_sem); if (unlikely(old_mm->core_state)) { up_read(&old_mm->mmap_sem); return -EINTR; } } task_lock(tsk); active_mm = tsk->active_mm; tsk->mm = mm; tsk->active_mm = mm; activate_mm(active_mm, mm); if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { atomic_dec(&old_mm->oom_disable_count); atomic_inc(&tsk->mm->oom_disable_count); } task_unlock(tsk); arch_pick_mmap_layout(mm); if (old_mm) { up_read(&old_mm->mmap_sem); BUG_ON(active_mm != old_mm); mm_update_next_owner(old_mm); mmput(old_mm); return 0; } mmdrop(active_mm); return 0; } /* * This function makes sure the current process has its own signal table, * so that flush_signal_handlers can later reset the handlers without * disturbing other processes. (Other processes might share the signal * table via the CLONE_SIGHAND option to clone().) */ static int de_thread(struct task_struct *tsk) { struct signal_struct *sig = tsk->signal; struct sighand_struct *oldsighand = tsk->sighand; spinlock_t *lock = &oldsighand->siglock; if (thread_group_empty(tsk)) goto no_thread_group; /* * Kill all other threads in the thread group. */ spin_lock_irq(lock); if (signal_group_exit(sig)) { /* * Another group action in progress, just * return so that the signal is processed. */ spin_unlock_irq(lock); return -EAGAIN; } sig->group_exit_task = tsk; sig->notify_count = zap_other_threads(tsk); if (!thread_group_leader(tsk)) sig->notify_count--; while (sig->notify_count) { __set_current_state(TASK_UNINTERRUPTIBLE); spin_unlock_irq(lock); schedule(); spin_lock_irq(lock); } spin_unlock_irq(lock); /* * At this point all other threads have exited, all we have to * do is to wait for the thread group leader to become inactive, * and to assume its PID: */ if (!thread_group_leader(tsk)) { struct task_struct *leader = tsk->group_leader; sig->notify_count = -1; /* for exit_notify() */ for (;;) { write_lock_irq(&tasklist_lock); if (likely(leader->exit_state)) break; __set_current_state(TASK_UNINTERRUPTIBLE); write_unlock_irq(&tasklist_lock); schedule(); } /* * The only record we have of the real-time age of a * process, regardless of execs it's done, is start_time. * All the past CPU time is accumulated in signal_struct * from sister threads now dead. But in this non-leader * exec, nothing survives from the original leader thread, * whose birth marks the true age of this process now. * When we take on its identity by switching to its PID, we * also take its birthdate (always earlier than our own). */ tsk->start_time = leader->start_time; BUG_ON(!same_thread_group(leader, tsk)); BUG_ON(has_group_leader_pid(tsk)); /* * An exec() starts a new thread group with the * TGID of the previous thread group. Rehash the * two threads with a switched PID, and release * the former thread group leader: */ /* Become a process group leader with the old leader's pid. * The old leader becomes a thread of the this thread group. * Note: The old leader also uses this pid until release_task * is called. Odd but simple and correct. */ detach_pid(tsk, PIDTYPE_PID); tsk->pid = leader->pid; attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); transfer_pid(leader, tsk, PIDTYPE_PGID); transfer_pid(leader, tsk, PIDTYPE_SID); list_replace_rcu(&leader->tasks, &tsk->tasks); list_replace_init(&leader->sibling, &tsk->sibling); tsk->group_leader = tsk; leader->group_leader = tsk; tsk->exit_signal = SIGCHLD; BUG_ON(leader->exit_state != EXIT_ZOMBIE); leader->exit_state = EXIT_DEAD; write_unlock_irq(&tasklist_lock); release_task(leader); } sig->group_exit_task = NULL; sig->notify_count = 0; no_thread_group: if (current->mm) setmax_mm_hiwater_rss(&sig->maxrss, current->mm); exit_itimers(sig); flush_itimer_signals(); if (atomic_read(&oldsighand->count) != 1) { struct sighand_struct *newsighand; /* * This ->sighand is shared with the CLONE_SIGHAND * but not CLONE_THREAD task, switch to the new one. */ newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); if (!newsighand) return -ENOMEM; atomic_set(&newsighand->count, 1); memcpy(newsighand->action, oldsighand->action, sizeof(newsighand->action)); write_lock_irq(&tasklist_lock); spin_lock(&oldsighand->siglock); rcu_assign_pointer(tsk->sighand, newsighand); spin_unlock(&oldsighand->siglock); write_unlock_irq(&tasklist_lock); __cleanup_sighand(oldsighand); } BUG_ON(!thread_group_leader(tsk)); return 0; } /* * These functions flushes out all traces of the currently running executable * so that a new one can be started */ static void flush_old_files(struct files_struct * files) { long j = -1; struct fdtable *fdt; spin_lock(&files->file_lock); for (;;) { unsigned long set, i; j++; i = j * __NFDBITS; fdt = files_fdtable(files); if (i >= fdt->max_fds) break; set = fdt->close_on_exec->fds_bits[j]; if (!set) continue; fdt->close_on_exec->fds_bits[j] = 0; spin_unlock(&files->file_lock); for ( ; set ; i++,set >>= 1) { if (set & 1) { sys_close(i); } } spin_lock(&files->file_lock); } spin_unlock(&files->file_lock); } char *get_task_comm(char *buf, struct task_struct *tsk) { /* buf must be at least sizeof(tsk->comm) in size */ task_lock(tsk); strncpy(buf, tsk->comm, sizeof(tsk->comm)); task_unlock(tsk); return buf; } void set_task_comm(struct task_struct *tsk, char *buf) { task_lock(tsk); /* * Threads may access current->comm without holding * the task lock, so write the string carefully. * Readers without a lock may see incomplete new * names but are safe from non-terminating string reads. */ memset(tsk->comm, 0, TASK_COMM_LEN); wmb(); strlcpy(tsk->comm, buf, sizeof(tsk->comm)); task_unlock(tsk); perf_event_comm(tsk); } int flush_old_exec(struct linux_binprm * bprm) { int retval; /* * Make sure we have a private signal table and that * we are unassociated from the previous thread group. */ retval = de_thread(current); if (retval) goto out; set_mm_exe_file(bprm->mm, bprm->file); /* * Release all of the old mmap stuff */ acct_arg_size(bprm, 0); retval = exec_mmap(bprm->mm); if (retval) goto out; bprm->mm = NULL; /* We're using it now */ current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); flush_thread(); current->personality &= ~bprm->per_clear; return 0; out: return retval; } EXPORT_SYMBOL(flush_old_exec); void setup_new_exec(struct linux_binprm * bprm) { int i, ch; const char *name; char tcomm[sizeof(current->comm)]; arch_pick_mmap_layout(current->mm); /* This is the point of no return */ current->sas_ss_sp = current->sas_ss_size = 0; if (current_euid() == current_uid() && current_egid() == current_gid()) set_dumpable(current->mm, 1); else set_dumpable(current->mm, suid_dumpable); name = bprm->filename; /* Copies the binary name from after last slash */ for (i=0; (ch = *(name++)) != '\0';) { if (ch == '/') i = 0; /* overwrite what we wrote */ else if (i < (sizeof(tcomm) - 1)) tcomm[i++] = ch; } tcomm[i] = '\0'; set_task_comm(current, tcomm); /* Set the new mm task size. We have to do that late because it may * depend on TIF_32BIT which is only updated in flush_thread() on * some architectures like powerpc */ current->mm->task_size = TASK_SIZE; /* install the new credentials */ if (bprm->cred->uid != current_euid() || bprm->cred->gid != current_egid()) { current->pdeath_signal = 0; } else if (file_permission(bprm->file, MAY_READ) || bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { set_dumpable(current->mm, suid_dumpable); } /* * Flush performance counters when crossing a * security domain: */ if (!get_dumpable(current->mm)) perf_event_exit_task(current); /* An exec changes our domain. We are no longer part of the thread group */ current->self_exec_id++; flush_signal_handlers(current, 0); flush_old_files(current->files); } EXPORT_SYMBOL(setup_new_exec); /* * Prepare credentials and lock ->cred_guard_mutex. * install_exec_creds() commits the new creds and drops the lock. * Or, if exec fails before, free_bprm() should release ->cred and * and unlock. */ int prepare_bprm_creds(struct linux_binprm *bprm) { if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) return -ERESTARTNOINTR; bprm->cred = prepare_exec_creds(); if (likely(bprm->cred)) return 0; mutex_unlock(¤t->signal->cred_guard_mutex); return -ENOMEM; } void free_bprm(struct linux_binprm *bprm) { free_arg_pages(bprm); if (bprm->cred) { mutex_unlock(¤t->signal->cred_guard_mutex); abort_creds(bprm->cred); } kfree(bprm); } /* * install the new credentials for this executable */ void install_exec_creds(struct linux_binprm *bprm) { security_bprm_committing_creds(bprm); commit_creds(bprm->cred); bprm->cred = NULL; /* * cred_guard_mutex must be held at least to this point to prevent * ptrace_attach() from altering our determination of the task's * credentials; any time after this it may be unlocked. */ security_bprm_committed_creds(bprm); mutex_unlock(¤t->signal->cred_guard_mutex); } EXPORT_SYMBOL(install_exec_creds); /* * determine how safe it is to execute the proposed program * - the caller must hold ->cred_guard_mutex to protect against * PTRACE_ATTACH */ int check_unsafe_exec(struct linux_binprm *bprm) { struct task_struct *p = current, *t; unsigned n_fs; int res = 0; bprm->unsafe = tracehook_unsafe_exec(p); n_fs = 1; spin_lock(&p->fs->lock); rcu_read_lock(); for (t = next_thread(p); t != p; t = next_thread(t)) { if (t->fs == p->fs) n_fs++; } rcu_read_unlock(); if (p->fs->users > n_fs) { bprm->unsafe |= LSM_UNSAFE_SHARE; } else { res = -EAGAIN; if (!p->fs->in_exec) { p->fs->in_exec = 1; res = 1; } } spin_unlock(&p->fs->lock); return res; } /* * Fill the binprm structure from the inode. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes * * This may be called multiple times for binary chains (scripts for example). */ int prepare_binprm(struct linux_binprm *bprm) { umode_t mode; struct inode * inode = bprm->file->f_path.dentry->d_inode; int retval; mode = inode->i_mode; if (bprm->file->f_op == NULL) return -EACCES; /* clear any previous set[ug]id data from a previous binary */ bprm->cred->euid = current_euid(); bprm->cred->egid = current_egid(); if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { /* Set-uid? */ if (mode & S_ISUID) { bprm->per_clear |= PER_CLEAR_ON_SETID; bprm->cred->euid = inode->i_uid; } /* Set-gid? */ /* * If setgid is set but no group execute bit then this * is a candidate for mandatory locking, not a setgid * executable. */ if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { bprm->per_clear |= PER_CLEAR_ON_SETID; bprm->cred->egid = inode->i_gid; } } /* fill in binprm security blob */ retval = security_bprm_set_creds(bprm); if (retval) return retval; bprm->cred_prepared = 1; memset(bprm->buf, 0, BINPRM_BUF_SIZE); return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); } EXPORT_SYMBOL(prepare_binprm); /* * Arguments are '\0' separated strings found at the location bprm->p * points to; chop off the first by relocating brpm->p to right after * the first '\0' encountered. */ int remove_arg_zero(struct linux_binprm *bprm) { int ret = 0; unsigned long offset; char *kaddr; struct page *page; if (!bprm->argc) return 0; do { offset = bprm->p & ~PAGE_MASK; page = get_arg_page(bprm, bprm->p, 0); if (!page) { ret = -EFAULT; goto out; } kaddr = kmap_atomic(page, KM_USER0); for (; offset < PAGE_SIZE && kaddr[offset]; offset++, bprm->p++) ; kunmap_atomic(kaddr, KM_USER0); put_arg_page(page); if (offset == PAGE_SIZE) free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); } while (offset == PAGE_SIZE); bprm->p++; bprm->argc--; ret = 0; out: return ret; } EXPORT_SYMBOL(remove_arg_zero); /* * cycle the list of binary formats handler, until one recognizes the image */ int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) { unsigned int depth = bprm->recursion_depth; int try,retval; struct linux_binfmt *fmt; retval = security_bprm_check(bprm); if (retval) return retval; /* kernel module loader fixup */ /* so we don't try to load run modprobe in kernel space. */ set_fs(USER_DS); retval = audit_bprm(bprm); if (retval) return retval; retval = -ENOENT; for (try=0; try<2; try++) { read_lock(&binfmt_lock); list_for_each_entry(fmt, &formats, lh) { int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; if (!fn) continue; if (!try_module_get(fmt->module)) continue; read_unlock(&binfmt_lock); retval = fn(bprm, regs); /* * Restore the depth counter to its starting value * in this call, so we don't have to rely on every * load_binary function to restore it on return. */ bprm->recursion_depth = depth; if (retval >= 0) { if (depth == 0) tracehook_report_exec(fmt, bprm, regs); put_binfmt(fmt); allow_write_access(bprm->file); if (bprm->file) fput(bprm->file); bprm->file = NULL; current->did_exec = 1; proc_exec_connector(current); return retval; } read_lock(&binfmt_lock); put_binfmt(fmt); if (retval != -ENOEXEC || bprm->mm == NULL) break; if (!bprm->file) { read_unlock(&binfmt_lock); return retval; } } read_unlock(&binfmt_lock); if (retval != -ENOEXEC || bprm->mm == NULL) { break; #ifdef CONFIG_MODULES } else { #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && printable(bprm->buf[2]) && printable(bprm->buf[3])) break; /* -ENOEXEC */ request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); #endif } } return retval; } EXPORT_SYMBOL(search_binary_handler); /* * sys_execve() executes a new program. */ int do_execve(const char * filename, const char __user *const __user *argv, const char __user *const __user *envp, struct pt_regs * regs) { struct linux_binprm *bprm; struct file *file; struct files_struct *displaced; bool clear_in_exec; int retval; retval = unshare_files(&displaced); if (retval) goto out_ret; retval = -ENOMEM; bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); if (!bprm) goto out_files; retval = prepare_bprm_creds(bprm); if (retval) goto out_free; retval = check_unsafe_exec(bprm); if (retval < 0) goto out_free; clear_in_exec = retval; current->in_execve = 1; file = open_exec(filename); retval = PTR_ERR(file); if (IS_ERR(file)) goto out_unmark; sched_exec(); bprm->file = file; bprm->filename = filename; bprm->interp = filename; retval = bprm_mm_init(bprm); if (retval) goto out_file; bprm->argc = count(argv, MAX_ARG_STRINGS); if ((retval = bprm->argc) < 0) goto out; bprm->envc = count(envp, MAX_ARG_STRINGS); if ((retval = bprm->envc) < 0) goto out; retval = prepare_binprm(bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm->filename, bprm); if (retval < 0) goto out; bprm->exec = bprm->p; retval = copy_strings(bprm->envc, envp, bprm); if (retval < 0) goto out; retval = copy_strings(bprm->argc, argv, bprm); if (retval < 0) goto out; retval = search_binary_handler(bprm,regs); if (retval < 0) goto out; /* execve succeeded */ current->fs->in_exec = 0; current->in_execve = 0; acct_update_integrals(current); free_bprm(bprm); if (displaced) put_files_struct(displaced); return retval; out: if (bprm->mm) { acct_arg_size(bprm, 0); mmput(bprm->mm); } out_file: if (bprm->file) { allow_write_access(bprm->file); fput(bprm->file); } out_unmark: if (clear_in_exec) current->fs->in_exec = 0; current->in_execve = 0; out_free: free_bprm(bprm); out_files: if (displaced) reset_files_struct(displaced); out_ret: return retval; } void set_binfmt(struct linux_binfmt *new) { struct mm_struct *mm = current->mm; if (mm->binfmt) module_put(mm->binfmt->module); mm->binfmt = new; if (new) __module_get(new->module); } EXPORT_SYMBOL(set_binfmt); static int expand_corename(struct core_name *cn) { char *old_corename = cn->corename; cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); if (!cn->corename) { kfree(old_corename); return -ENOMEM; } return 0; } static int cn_printf(struct core_name *cn, const char *fmt, ...) { char *cur; int need; int ret; va_list arg; va_start(arg, fmt); need = vsnprintf(NULL, 0, fmt, arg); va_end(arg); if (likely(need < cn->size - cn->used - 1)) goto out_printf; ret = expand_corename(cn); if (ret) goto expand_fail; out_printf: cur = cn->corename + cn->used; va_start(arg, fmt); vsnprintf(cur, need + 1, fmt, arg); va_end(arg); cn->used += need; return 0; expand_fail: return ret; } /* format_corename will inspect the pattern parameter, and output a * name into corename, which must have space for at least * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. */ static int format_corename(struct core_name *cn, long signr) { const struct cred *cred = current_cred(); const char *pat_ptr = core_pattern; int ispipe = (*pat_ptr == '|'); int pid_in_pattern = 0; int err = 0; cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); cn->corename = kmalloc(cn->size, GFP_KERNEL); cn->used = 0; if (!cn->corename) return -ENOMEM; /* Repeat as long as we have more pattern to process and more output space */ while (*pat_ptr) { if (*pat_ptr != '%') { if (*pat_ptr == 0) goto out; err = cn_printf(cn, "%c", *pat_ptr++); } else { switch (*++pat_ptr) { /* single % at the end, drop that */ case 0: goto out; /* Double percent, output one percent */ case '%': err = cn_printf(cn, "%c", '%'); break; /* pid */ case 'p': pid_in_pattern = 1; err = cn_printf(cn, "%d", task_tgid_vnr(current)); break; /* uid */ case 'u': err = cn_printf(cn, "%d", cred->uid); break; /* gid */ case 'g': err = cn_printf(cn, "%d", cred->gid); break; /* signal that caused the coredump */ case 's': err = cn_printf(cn, "%ld", signr); break; /* UNIX time of coredump */ case 't': { struct timeval tv; do_gettimeofday(&tv); err = cn_printf(cn, "%lu", tv.tv_sec); break; } /* hostname */ case 'h': down_read(&uts_sem); err = cn_printf(cn, "%s", utsname()->nodename); up_read(&uts_sem); break; /* executable */ case 'e': err = cn_printf(cn, "%s", current->comm); break; /* core limit size */ case 'c': err = cn_printf(cn, "%lu", rlimit(RLIMIT_CORE)); break; default: break; } ++pat_ptr; } if (err) return err; } /* Backward compatibility with core_uses_pid: * * If core_pattern does not include a %p (as is the default) * and core_uses_pid is set, then .%pid will be appended to * the filename. Do not do this for piped commands. */ if (!ispipe && !pid_in_pattern && core_uses_pid) { err = cn_printf(cn, ".%d", task_tgid_vnr(current)); if (err) return err; } out: return ispipe; } static int zap_process(struct task_struct *start, int exit_code) { struct task_struct *t; int nr = 0; start->signal->flags = SIGNAL_GROUP_EXIT; start->signal->group_exit_code = exit_code; start->signal->group_stop_count = 0; t = start; do { if (t != current && t->mm) { sigaddset(&t->pending.signal, SIGKILL); signal_wake_up(t, 1); nr++; } } while_each_thread(start, t); return nr; } static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, struct core_state *core_state, int exit_code) { struct task_struct *g, *p; unsigned long flags; int nr = -EAGAIN; spin_lock_irq(&tsk->sighand->siglock); if (!signal_group_exit(tsk->signal)) { mm->core_state = core_state; nr = zap_process(tsk, exit_code); } spin_unlock_irq(&tsk->sighand->siglock); if (unlikely(nr < 0)) return nr; if (atomic_read(&mm->mm_users) == nr + 1) goto done; /* * We should find and kill all tasks which use this mm, and we should * count them correctly into ->nr_threads. We don't take tasklist * lock, but this is safe wrt: * * fork: * None of sub-threads can fork after zap_process(leader). All * processes which were created before this point should be * visible to zap_threads() because copy_process() adds the new * process to the tail of init_task.tasks list, and lock/unlock * of ->siglock provides a memory barrier. * * do_exit: * The caller holds mm->mmap_sem. This means that the task which * uses this mm can't pass exit_mm(), so it can't exit or clear * its ->mm. * * de_thread: * It does list_replace_rcu(&leader->tasks, ¤t->tasks), * we must see either old or new leader, this does not matter. * However, it can change p->sighand, so lock_task_sighand(p) * must be used. Since p->mm != NULL and we hold ->mmap_sem * it can't fail. * * Note also that "g" can be the old leader with ->mm == NULL * and already unhashed and thus removed from ->thread_group. * This is OK, __unhash_process()->list_del_rcu() does not * clear the ->next pointer, we will find the new leader via * next_thread(). */ rcu_read_lock(); for_each_process(g) { if (g == tsk->group_leader) continue; if (g->flags & PF_KTHREAD) continue; p = g; do { if (p->mm) { if (unlikely(p->mm == mm)) { lock_task_sighand(p, &flags); nr += zap_process(p, exit_code); unlock_task_sighand(p, &flags); } break; } } while_each_thread(g, p); } rcu_read_unlock(); done: atomic_set(&core_state->nr_threads, nr); return nr; } static int coredump_wait(int exit_code, struct core_state *core_state) { struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; struct completion *vfork_done; int core_waiters = -EBUSY; init_completion(&core_state->startup); core_state->dumper.task = tsk; core_state->dumper.next = NULL; down_write(&mm->mmap_sem); if (!mm->core_state) core_waiters = zap_threads(tsk, mm, core_state, exit_code); up_write(&mm->mmap_sem); if (unlikely(core_waiters < 0)) goto fail; /* * Make sure nobody is waiting for us to release the VM, * otherwise we can deadlock when we wait on each other */ vfork_done = tsk->vfork_done; if (vfork_done) { tsk->vfork_done = NULL; complete(vfork_done); } if (core_waiters) wait_for_completion(&core_state->startup); fail: return core_waiters; } static void coredump_finish(struct mm_struct *mm) { struct core_thread *curr, *next; struct task_struct *task; next = mm->core_state->dumper.next; while ((curr = next) != NULL) { next = curr->next; task = curr->task; /* * see exit_mm(), curr->task must not see * ->task == NULL before we read ->next. */ smp_mb(); curr->task = NULL; wake_up_process(task); } mm->core_state = NULL; } /* * set_dumpable converts traditional three-value dumpable to two flags and * stores them into mm->flags. It modifies lower two bits of mm->flags, but * these bits are not changed atomically. So get_dumpable can observe the * intermediate state. To avoid doing unexpected behavior, get get_dumpable * return either old dumpable or new one by paying attention to the order of * modifying the bits. * * dumpable | mm->flags (binary) * old new | initial interim final * ---------+----------------------- * 0 1 | 00 01 01 * 0 2 | 00 10(*) 11 * 1 0 | 01 00 00 * 1 2 | 01 11 11 * 2 0 | 11 10(*) 00 * 2 1 | 11 11 01 * * (*) get_dumpable regards interim value of 10 as 11. */ void set_dumpable(struct mm_struct *mm, int value) { switch (value) { case 0: clear_bit(MMF_DUMPABLE, &mm->flags); smp_wmb(); clear_bit(MMF_DUMP_SECURELY, &mm->flags); break; case 1: set_bit(MMF_DUMPABLE, &mm->flags); smp_wmb(); clear_bit(MMF_DUMP_SECURELY, &mm->flags); break; case 2: set_bit(MMF_DUMP_SECURELY, &mm->flags); smp_wmb(); set_bit(MMF_DUMPABLE, &mm->flags); break; } } static int __get_dumpable(unsigned long mm_flags) { int ret; ret = mm_flags & MMF_DUMPABLE_MASK; return (ret >= 2) ? 2 : ret; } int get_dumpable(struct mm_struct *mm) { return __get_dumpable(mm->flags); } static void wait_for_dump_helpers(struct file *file) { struct pipe_inode_info *pipe; pipe = file->f_path.dentry->d_inode->i_pipe; pipe_lock(pipe); pipe->readers++; pipe->writers--; while ((pipe->readers > 1) && (!signal_pending(current))) { wake_up_interruptible_sync(&pipe->wait); kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); pipe_wait(pipe); } pipe->readers--; pipe->writers++; pipe_unlock(pipe); } /* * uhm_pipe_setup * helper function to customize the process used * to collect the core in userspace. Specifically * it sets up a pipe and installs it as fd 0 (stdin) * for the process. Returns 0 on success, or * PTR_ERR on failure. * Note that it also sets the core limit to 1. This * is a special value that we use to trap recursive * core dumps */ static int umh_pipe_setup(struct subprocess_info *info) { struct file *rp, *wp; struct fdtable *fdt; struct coredump_params *cp = (struct coredump_params *)info->data; struct files_struct *cf = current->files; wp = create_write_pipe(0); if (IS_ERR(wp)) return PTR_ERR(wp); rp = create_read_pipe(wp, 0); if (IS_ERR(rp)) { free_write_pipe(wp); return PTR_ERR(rp); } cp->file = wp; sys_close(0); fd_install(0, rp); spin_lock(&cf->file_lock); fdt = files_fdtable(cf); FD_SET(0, fdt->open_fds); FD_CLR(0, fdt->close_on_exec); spin_unlock(&cf->file_lock); /* and disallow core files too */ current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; return 0; } void do_coredump(long signr, int exit_code, struct pt_regs *regs) { struct core_state core_state; struct core_name cn; struct mm_struct *mm = current->mm; struct linux_binfmt * binfmt; const struct cred *old_cred; struct cred *cred; int retval = 0; int flag = 0; int ispipe; static atomic_t core_dump_count = ATOMIC_INIT(0); struct coredump_params cprm = { .signr = signr, .regs = regs, .limit = rlimit(RLIMIT_CORE), /* * We must use the same mm->flags while dumping core to avoid * inconsistency of bit flags, since this flag is not protected * by any locks. */ .mm_flags = mm->flags, }; audit_core_dumps(signr); binfmt = mm->binfmt; if (!binfmt || !binfmt->core_dump) goto fail; if (!__get_dumpable(cprm.mm_flags)) goto fail; cred = prepare_creds(); if (!cred) goto fail; /* * We cannot trust fsuid as being the "true" uid of the * process nor do we know its entire history. We only know it * was tainted so we dump it as root in mode 2. */ if (__get_dumpable(cprm.mm_flags) == 2) { /* Setuid core dump mode */ flag = O_EXCL; /* Stop rewrite attacks */ cred->fsuid = 0; /* Dump root private */ } retval = coredump_wait(exit_code, &core_state); if (retval < 0) goto fail_creds; old_cred = override_creds(cred); /* * Clear any false indication of pending signals that might * be seen by the filesystem code called to write the core file. */ clear_thread_flag(TIF_SIGPENDING); ispipe = format_corename(&cn, signr); if (ispipe == -ENOMEM) { printk(KERN_WARNING "format_corename failed\n"); printk(KERN_WARNING "Aborting core\n"); goto fail_corename; } if (ispipe) { int dump_count; char **helper_argv; if (cprm.limit == 1) { /* * Normally core limits are irrelevant to pipes, since * we're not writing to the file system, but we use * cprm.limit of 1 here as a speacial value. Any * non-1 limit gets set to RLIM_INFINITY below, but * a limit of 0 skips the dump. This is a consistent * way to catch recursive crashes. We can still crash * if the core_pattern binary sets RLIM_CORE = !1 * but it runs as root, and can do lots of stupid things * Note that we use task_tgid_vnr here to grab the pid * of the process group leader. That way we get the * right pid if a thread in a multi-threaded * core_pattern process dies. */ printk(KERN_WARNING "Process %d(%s) has RLIMIT_CORE set to 1\n", task_tgid_vnr(current), current->comm); printk(KERN_WARNING "Aborting core\n"); goto fail_unlock; } cprm.limit = RLIM_INFINITY; dump_count = atomic_inc_return(&core_dump_count); if (core_pipe_limit && (core_pipe_limit < dump_count)) { printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", task_tgid_vnr(current), current->comm); printk(KERN_WARNING "Skipping core dump\n"); goto fail_dropcount; } helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); if (!helper_argv) { printk(KERN_WARNING "%s failed to allocate memory\n", __func__); goto fail_dropcount; } retval = call_usermodehelper_fns(helper_argv[0], helper_argv, NULL, UMH_WAIT_EXEC, umh_pipe_setup, NULL, &cprm); argv_free(helper_argv); if (retval) { printk(KERN_INFO "Core dump to %s pipe failed\n", cn.corename); goto close_fail; } } else { struct inode *inode; if (cprm.limit < binfmt->min_coredump) goto fail_unlock; cprm.file = filp_open(cn.corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, 0600); if (IS_ERR(cprm.file)) goto fail_unlock; inode = cprm.file->f_path.dentry->d_inode; if (inode->i_nlink > 1) goto close_fail; if (d_unhashed(cprm.file->f_path.dentry)) goto close_fail; /* * AK: actually i see no reason to not allow this for named * pipes etc, but keep the previous behaviour for now. */ if (!S_ISREG(inode->i_mode)) goto close_fail; /* * Dont allow local users get cute and trick others to coredump * into their pre-created files. */ if (inode->i_uid != current_fsuid()) goto close_fail; if (!cprm.file->f_op || !cprm.file->f_op->write) goto close_fail; if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) goto close_fail; } retval = binfmt->core_dump(&cprm); if (retval) current->signal->group_exit_code |= 0x80; if (ispipe && core_pipe_limit) wait_for_dump_helpers(cprm.file); close_fail: if (cprm.file) filp_close(cprm.file, NULL); fail_dropcount: if (ispipe) atomic_dec(&core_dump_count); fail_unlock: kfree(cn.corename); fail_corename: coredump_finish(mm); revert_creds(old_cred); fail_creds: put_cred(cred); fail: return; } /* * Core dumping helper functions. These are the only things you should * do on a core-file: use only these functions to write out all the * necessary info. */ int dump_write(struct file *file, const void *addr, int nr) { return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; } EXPORT_SYMBOL(dump_write); int dump_seek(struct file *file, loff_t off) { int ret = 1; if (file->f_op->llseek && file->f_op->llseek != no_llseek) { if (file->f_op->llseek(file, off, SEEK_CUR) < 0) return 0; } else { char *buf = (char *)get_zeroed_page(GFP_KERNEL); if (!buf) return 0; while (off > 0) { unsigned long n = off; if (n > PAGE_SIZE) n = PAGE_SIZE; if (!dump_write(file, buf, n)) { ret = 0; break; } off -= n; } free_page((unsigned long)buf); } return ret; } EXPORT_SYMBOL(dump_seek);