// SPDX-License-Identifier: GPL-2.0 /* * Key setup facility for FS encryption support. * * Copyright (C) 2015, Google, Inc. * * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. * Heavily modified since then. */ #include #include #include "fscrypt_private.h" static struct fscrypt_mode available_modes[] = { [FSCRYPT_MODE_AES_256_XTS] = { .friendly_name = "AES-256-XTS", .cipher_str = "xts(aes)", .keysize = 64, .ivsize = 16, }, [FSCRYPT_MODE_AES_256_CTS] = { .friendly_name = "AES-256-CTS-CBC", .cipher_str = "cts(cbc(aes))", .keysize = 32, .ivsize = 16, }, [FSCRYPT_MODE_AES_128_CBC] = { .friendly_name = "AES-128-CBC-ESSIV", .cipher_str = "essiv(cbc(aes),sha256)", .keysize = 16, .ivsize = 16, }, [FSCRYPT_MODE_AES_128_CTS] = { .friendly_name = "AES-128-CTS-CBC", .cipher_str = "cts(cbc(aes))", .keysize = 16, .ivsize = 16, }, [FSCRYPT_MODE_ADIANTUM] = { .friendly_name = "Adiantum", .cipher_str = "adiantum(xchacha12,aes)", .keysize = 32, .ivsize = 32, }, }; static struct fscrypt_mode * select_encryption_mode(const union fscrypt_policy *policy, const struct inode *inode) { if (S_ISREG(inode->i_mode)) return &available_modes[fscrypt_policy_contents_mode(policy)]; if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) return &available_modes[fscrypt_policy_fnames_mode(policy)]; WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", inode->i_ino, (inode->i_mode & S_IFMT)); return ERR_PTR(-EINVAL); } /* Create a symmetric cipher object for the given encryption mode and key */ struct crypto_skcipher *fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, const struct inode *inode) { struct crypto_skcipher *tfm; int err; tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); if (IS_ERR(tfm)) { if (PTR_ERR(tfm) == -ENOENT) { fscrypt_warn(inode, "Missing crypto API support for %s (API name: \"%s\")", mode->friendly_name, mode->cipher_str); return ERR_PTR(-ENOPKG); } fscrypt_err(inode, "Error allocating '%s' transform: %ld", mode->cipher_str, PTR_ERR(tfm)); return tfm; } if (unlikely(!mode->logged_impl_name)) { /* * fscrypt performance can vary greatly depending on which * crypto algorithm implementation is used. Help people debug * performance problems by logging the ->cra_driver_name the * first time a mode is used. Note that multiple threads can * race here, but it doesn't really matter. */ mode->logged_impl_name = true; pr_info("fscrypt: %s using implementation \"%s\"\n", mode->friendly_name, crypto_skcipher_alg(tfm)->base.cra_driver_name); } crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); if (err) goto err_free_tfm; return tfm; err_free_tfm: crypto_free_skcipher(tfm); return ERR_PTR(err); } /* Given the per-file key, set up the file's crypto transform object */ int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key) { struct crypto_skcipher *tfm; tfm = fscrypt_allocate_skcipher(ci->ci_mode, derived_key, ci->ci_inode); if (IS_ERR(tfm)) return PTR_ERR(tfm); ci->ci_ctfm = tfm; return 0; } static int setup_per_mode_key(struct fscrypt_info *ci, struct fscrypt_master_key *mk) { struct fscrypt_mode *mode = ci->ci_mode; u8 mode_num = mode - available_modes; struct crypto_skcipher *tfm, *prev_tfm; u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; int err; if (WARN_ON(mode_num >= ARRAY_SIZE(mk->mk_mode_keys))) return -EINVAL; /* pairs with cmpxchg() below */ tfm = READ_ONCE(mk->mk_mode_keys[mode_num]); if (likely(tfm != NULL)) goto done; BUILD_BUG_ON(sizeof(mode_num) != 1); err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_PER_MODE_KEY, &mode_num, sizeof(mode_num), mode_key, mode->keysize); if (err) return err; tfm = fscrypt_allocate_skcipher(mode, mode_key, ci->ci_inode); memzero_explicit(mode_key, mode->keysize); if (IS_ERR(tfm)) return PTR_ERR(tfm); /* pairs with READ_ONCE() above */ prev_tfm = cmpxchg(&mk->mk_mode_keys[mode_num], NULL, tfm); if (prev_tfm != NULL) { crypto_free_skcipher(tfm); tfm = prev_tfm; } done: ci->ci_ctfm = tfm; return 0; } static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, struct fscrypt_master_key *mk) { u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; int err; if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { /* * DIRECT_KEY: instead of deriving per-file keys, the per-file * nonce will be included in all the IVs. But unlike v1 * policies, for v2 policies in this case we don't encrypt with * the master key directly but rather derive a per-mode key. * This ensures that the master key is consistently used only * for HKDF, avoiding key reuse issues. */ if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) { fscrypt_warn(ci->ci_inode, "Direct key flag not allowed with %s", ci->ci_mode->friendly_name); return -EINVAL; } return setup_per_mode_key(ci, mk); } err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, HKDF_CONTEXT_PER_FILE_KEY, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE, derived_key, ci->ci_mode->keysize); if (err) return err; err = fscrypt_set_derived_key(ci, derived_key); memzero_explicit(derived_key, ci->ci_mode->keysize); return err; } /* * Find the master key, then set up the inode's actual encryption key. * * If the master key is found in the filesystem-level keyring, then the * corresponding 'struct key' is returned in *master_key_ret with * ->mk_secret_sem read-locked. This is needed to ensure that only one task * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race * to create an fscrypt_info for the same inode), and to synchronize the master * key being removed with a new inode starting to use it. */ static int setup_file_encryption_key(struct fscrypt_info *ci, struct key **master_key_ret) { struct key *key; struct fscrypt_master_key *mk = NULL; struct fscrypt_key_specifier mk_spec; int err; switch (ci->ci_policy.version) { case FSCRYPT_POLICY_V1: mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; memcpy(mk_spec.u.descriptor, ci->ci_policy.v1.master_key_descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE); break; case FSCRYPT_POLICY_V2: mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; memcpy(mk_spec.u.identifier, ci->ci_policy.v2.master_key_identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); break; default: WARN_ON(1); return -EINVAL; } key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); if (IS_ERR(key)) { if (key != ERR_PTR(-ENOKEY) || ci->ci_policy.version != FSCRYPT_POLICY_V1) return PTR_ERR(key); /* * As a legacy fallback for v1 policies, search for the key in * the current task's subscribed keyrings too. Don't move this * to before the search of ->s_master_keys, since users * shouldn't be able to override filesystem-level keys. */ return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); } mk = key->payload.data[0]; down_read(&mk->mk_secret_sem); /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ if (!is_master_key_secret_present(&mk->mk_secret)) { err = -ENOKEY; goto out_release_key; } /* * Require that the master key be at least as long as the derived key. * Otherwise, the derived key cannot possibly contain as much entropy as * that required by the encryption mode it will be used for. For v1 * policies it's also required for the KDF to work at all. */ if (mk->mk_secret.size < ci->ci_mode->keysize) { fscrypt_warn(NULL, "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", master_key_spec_type(&mk_spec), master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u, mk->mk_secret.size, ci->ci_mode->keysize); err = -ENOKEY; goto out_release_key; } switch (ci->ci_policy.version) { case FSCRYPT_POLICY_V1: err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); break; case FSCRYPT_POLICY_V2: err = fscrypt_setup_v2_file_key(ci, mk); break; default: WARN_ON(1); err = -EINVAL; break; } if (err) goto out_release_key; *master_key_ret = key; return 0; out_release_key: up_read(&mk->mk_secret_sem); key_put(key); return err; } static void put_crypt_info(struct fscrypt_info *ci) { struct key *key; if (!ci) return; if (ci->ci_direct_key) fscrypt_put_direct_key(ci->ci_direct_key); else if (ci->ci_ctfm != NULL && !fscrypt_is_direct_key_policy(&ci->ci_policy)) crypto_free_skcipher(ci->ci_ctfm); key = ci->ci_master_key; if (key) { struct fscrypt_master_key *mk = key->payload.data[0]; /* * Remove this inode from the list of inodes that were unlocked * with the master key. * * In addition, if we're removing the last inode from a key that * already had its secret removed, invalidate the key so that it * gets removed from ->s_master_keys. */ spin_lock(&mk->mk_decrypted_inodes_lock); list_del(&ci->ci_master_key_link); spin_unlock(&mk->mk_decrypted_inodes_lock); if (refcount_dec_and_test(&mk->mk_refcount)) key_invalidate(key); key_put(key); } memzero_explicit(ci, sizeof(*ci)); kmem_cache_free(fscrypt_info_cachep, ci); } int fscrypt_get_encryption_info(struct inode *inode) { struct fscrypt_info *crypt_info; union fscrypt_context ctx; struct fscrypt_mode *mode; struct key *master_key = NULL; int res; if (fscrypt_has_encryption_key(inode)) return 0; res = fscrypt_initialize(inode->i_sb->s_cop->flags); if (res) return res; res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); if (res < 0) { if (!fscrypt_dummy_context_enabled(inode) || IS_ENCRYPTED(inode)) { fscrypt_warn(inode, "Error %d getting encryption context", res); return res; } /* Fake up a context for an unencrypted directory */ memset(&ctx, 0, sizeof(ctx)); ctx.version = FSCRYPT_CONTEXT_V1; ctx.v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS; ctx.v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS; memset(ctx.v1.master_key_descriptor, 0x42, FSCRYPT_KEY_DESCRIPTOR_SIZE); res = sizeof(ctx.v1); } crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS); if (!crypt_info) return -ENOMEM; crypt_info->ci_inode = inode; res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res); if (res) { fscrypt_warn(inode, "Unrecognized or corrupt encryption context"); goto out; } switch (ctx.version) { case FSCRYPT_CONTEXT_V1: memcpy(crypt_info->ci_nonce, ctx.v1.nonce, FS_KEY_DERIVATION_NONCE_SIZE); break; case FSCRYPT_CONTEXT_V2: memcpy(crypt_info->ci_nonce, ctx.v2.nonce, FS_KEY_DERIVATION_NONCE_SIZE); break; default: WARN_ON(1); res = -EINVAL; goto out; } if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) { res = -EINVAL; goto out; } mode = select_encryption_mode(&crypt_info->ci_policy, inode); if (IS_ERR(mode)) { res = PTR_ERR(mode); goto out; } WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); crypt_info->ci_mode = mode; res = setup_file_encryption_key(crypt_info, &master_key); if (res) goto out; if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { if (master_key) { struct fscrypt_master_key *mk = master_key->payload.data[0]; refcount_inc(&mk->mk_refcount); crypt_info->ci_master_key = key_get(master_key); spin_lock(&mk->mk_decrypted_inodes_lock); list_add(&crypt_info->ci_master_key_link, &mk->mk_decrypted_inodes); spin_unlock(&mk->mk_decrypted_inodes_lock); } crypt_info = NULL; } res = 0; out: if (master_key) { struct fscrypt_master_key *mk = master_key->payload.data[0]; up_read(&mk->mk_secret_sem); key_put(master_key); } if (res == -ENOKEY) res = 0; put_crypt_info(crypt_info); return res; } EXPORT_SYMBOL(fscrypt_get_encryption_info); /** * fscrypt_put_encryption_info - free most of an inode's fscrypt data * * Free the inode's fscrypt_info. Filesystems must call this when the inode is * being evicted. An RCU grace period need not have elapsed yet. */ void fscrypt_put_encryption_info(struct inode *inode) { put_crypt_info(inode->i_crypt_info); inode->i_crypt_info = NULL; } EXPORT_SYMBOL(fscrypt_put_encryption_info); /** * fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay * * Free the inode's cached decrypted symlink target, if any. Filesystems must * call this after an RCU grace period, just before they free the inode. */ void fscrypt_free_inode(struct inode *inode) { if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { kfree(inode->i_link); inode->i_link = NULL; } } EXPORT_SYMBOL(fscrypt_free_inode); /** * fscrypt_drop_inode - check whether the inode's master key has been removed * * Filesystems supporting fscrypt must call this from their ->drop_inode() * method so that encrypted inodes are evicted as soon as they're no longer in * use and their master key has been removed. * * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 */ int fscrypt_drop_inode(struct inode *inode) { const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info); const struct fscrypt_master_key *mk; /* * If ci is NULL, then the inode doesn't have an encryption key set up * so it's irrelevant. If ci_master_key is NULL, then the master key * was provided via the legacy mechanism of the process-subscribed * keyrings, so we don't know whether it's been removed or not. */ if (!ci || !ci->ci_master_key) return 0; mk = ci->ci_master_key->payload.data[0]; /* * Note: since we aren't holding ->mk_secret_sem, the result here can * immediately become outdated. But there's no correctness problem with * unnecessarily evicting. Nor is there a correctness problem with not * evicting while iput() is racing with the key being removed, since * then the thread removing the key will either evict the inode itself * or will correctly detect that it wasn't evicted due to the race. */ return !is_master_key_secret_present(&mk->mk_secret); } EXPORT_SYMBOL_GPL(fscrypt_drop_inode);