/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include // for block_sync_page #include #include "crc32c.h" #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "btrfs_inode.h" #include "volumes.h" #include "print-tree.h" #include "async-thread.h" #if 0 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf) { if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) { printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n", (unsigned long long)extent_buffer_blocknr(buf), (unsigned long long)btrfs_header_blocknr(buf)); return 1; } return 0; } #endif static struct extent_io_ops btree_extent_io_ops; static void end_workqueue_fn(struct btrfs_work *work); struct end_io_wq { struct bio *bio; bio_end_io_t *end_io; void *private; struct btrfs_fs_info *info; int error; int metadata; struct list_head list; struct btrfs_work work; }; struct async_submit_bio { struct inode *inode; struct bio *bio; struct list_head list; extent_submit_bio_hook_t *submit_bio_hook; int rw; int mirror_num; struct btrfs_work work; }; struct extent_map *btree_get_extent(struct inode *inode, struct page *page, size_t page_offset, u64 start, u64 len, int create) { struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; struct extent_map *em; int ret; spin_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, start, len); if (em) { em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; spin_unlock(&em_tree->lock); goto out; } spin_unlock(&em_tree->lock); em = alloc_extent_map(GFP_NOFS); if (!em) { em = ERR_PTR(-ENOMEM); goto out; } em->start = 0; em->len = (u64)-1; em->block_start = 0; em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; spin_lock(&em_tree->lock); ret = add_extent_mapping(em_tree, em); if (ret == -EEXIST) { u64 failed_start = em->start; u64 failed_len = em->len; printk("failed to insert %Lu %Lu -> %Lu into tree\n", em->start, em->len, em->block_start); free_extent_map(em); em = lookup_extent_mapping(em_tree, start, len); if (em) { printk("after failing, found %Lu %Lu %Lu\n", em->start, em->len, em->block_start); ret = 0; } else { em = lookup_extent_mapping(em_tree, failed_start, failed_len); if (em) { printk("double failure lookup gives us " "%Lu %Lu -> %Lu\n", em->start, em->len, em->block_start); free_extent_map(em); } ret = -EIO; } } else if (ret) { free_extent_map(em); em = NULL; } spin_unlock(&em_tree->lock); if (ret) em = ERR_PTR(ret); out: return em; } u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len) { return btrfs_crc32c(seed, data, len); } void btrfs_csum_final(u32 crc, char *result) { *(__le32 *)result = ~cpu_to_le32(crc); } static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf, int verify) { char result[BTRFS_CRC32_SIZE]; unsigned long len; unsigned long cur_len; unsigned long offset = BTRFS_CSUM_SIZE; char *map_token = NULL; char *kaddr; unsigned long map_start; unsigned long map_len; int err; u32 crc = ~(u32)0; len = buf->len - offset; while(len > 0) { err = map_private_extent_buffer(buf, offset, 32, &map_token, &kaddr, &map_start, &map_len, KM_USER0); if (err) { printk("failed to map extent buffer! %lu\n", offset); return 1; } cur_len = min(len, map_len - (offset - map_start)); crc = btrfs_csum_data(root, kaddr + offset - map_start, crc, cur_len); len -= cur_len; offset += cur_len; unmap_extent_buffer(buf, map_token, KM_USER0); } btrfs_csum_final(crc, result); if (verify) { int from_this_trans = 0; if (root->fs_info->running_transaction && btrfs_header_generation(buf) == root->fs_info->running_transaction->transid) from_this_trans = 1; /* FIXME, this is not good */ if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) { u32 val; u32 found = 0; memcpy(&found, result, BTRFS_CRC32_SIZE); read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE); printk("btrfs: %s checksum verify failed on %llu " "wanted %X found %X from_this_trans %d " "level %d\n", root->fs_info->sb->s_id, buf->start, val, found, from_this_trans, btrfs_header_level(buf)); return 1; } } else { write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE); } return 0; } static int verify_parent_transid(struct extent_io_tree *io_tree, struct extent_buffer *eb, u64 parent_transid) { int ret; if (!parent_transid || btrfs_header_generation(eb) == parent_transid) return 0; lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); if (extent_buffer_uptodate(io_tree, eb) && btrfs_header_generation(eb) == parent_transid) { ret = 0; goto out; } printk("parent transid verify failed on %llu wanted %llu found %llu\n", (unsigned long long)eb->start, (unsigned long long)parent_transid, (unsigned long long)btrfs_header_generation(eb)); ret = 1; out: clear_extent_buffer_uptodate(io_tree, eb); unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS); return ret; } static int btree_read_extent_buffer_pages(struct btrfs_root *root, struct extent_buffer *eb, u64 start, u64 parent_transid) { struct extent_io_tree *io_tree; int ret; int num_copies = 0; int mirror_num = 0; io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; while (1) { ret = read_extent_buffer_pages(io_tree, eb, start, 1, btree_get_extent, mirror_num); if (!ret && !verify_parent_transid(io_tree, eb, parent_transid)) return ret; num_copies = btrfs_num_copies(&root->fs_info->mapping_tree, eb->start, eb->len); if (num_copies == 1) return ret; mirror_num++; if (mirror_num > num_copies) return ret; } return -EIO; } int csum_dirty_buffer(struct btrfs_root *root, struct page *page) { struct extent_io_tree *tree; u64 start = (u64)page->index << PAGE_CACHE_SHIFT; u64 found_start; int found_level; unsigned long len; struct extent_buffer *eb; int ret; tree = &BTRFS_I(page->mapping->host)->io_tree; if (page->private == EXTENT_PAGE_PRIVATE) goto out; if (!page->private) goto out; len = page->private >> 2; if (len == 0) { WARN_ON(1); } eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE, btrfs_header_generation(eb)); BUG_ON(ret); btrfs_clear_buffer_defrag(eb); found_start = btrfs_header_bytenr(eb); if (found_start != start) { printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n", start, found_start, len); WARN_ON(1); goto err; } if (eb->first_page != page) { printk("bad first page %lu %lu\n", eb->first_page->index, page->index); WARN_ON(1); goto err; } if (!PageUptodate(page)) { printk("csum not up to date page %lu\n", page->index); WARN_ON(1); goto err; } found_level = btrfs_header_level(eb); spin_lock(&root->fs_info->hash_lock); btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); spin_unlock(&root->fs_info->hash_lock); csum_tree_block(root, eb, 0); err: free_extent_buffer(eb); out: return 0; } static int btree_writepage_io_hook(struct page *page, u64 start, u64 end) { struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; csum_dirty_buffer(root, page); return 0; } int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end, struct extent_state *state) { struct extent_io_tree *tree; u64 found_start; int found_level; unsigned long len; struct extent_buffer *eb; struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; int ret = 0; tree = &BTRFS_I(page->mapping->host)->io_tree; if (page->private == EXTENT_PAGE_PRIVATE) goto out; if (!page->private) goto out; len = page->private >> 2; if (len == 0) { WARN_ON(1); } eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS); btrfs_clear_buffer_defrag(eb); found_start = btrfs_header_bytenr(eb); if (found_start != start) { ret = -EIO; goto err; } if (eb->first_page != page) { printk("bad first page %lu %lu\n", eb->first_page->index, page->index); WARN_ON(1); ret = -EIO; goto err; } if (memcmp_extent_buffer(eb, root->fs_info->fsid, (unsigned long)btrfs_header_fsid(eb), BTRFS_FSID_SIZE)) { printk("bad fsid on block %Lu\n", eb->start); ret = -EIO; goto err; } found_level = btrfs_header_level(eb); ret = csum_tree_block(root, eb, 1); if (ret) ret = -EIO; end = min_t(u64, eb->len, PAGE_CACHE_SIZE); end = eb->start + end - 1; release_extent_buffer_tail_pages(eb); err: free_extent_buffer(eb); out: return ret; } #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) static void end_workqueue_bio(struct bio *bio, int err) #else static int end_workqueue_bio(struct bio *bio, unsigned int bytes_done, int err) #endif { struct end_io_wq *end_io_wq = bio->bi_private; struct btrfs_fs_info *fs_info; #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) if (bio->bi_size) return 1; #endif fs_info = end_io_wq->info; end_io_wq->error = err; end_io_wq->work.func = end_workqueue_fn; end_io_wq->work.flags = 0; btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work); #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) return 0; #endif } int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, int metadata) { struct end_io_wq *end_io_wq; end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS); if (!end_io_wq) return -ENOMEM; end_io_wq->private = bio->bi_private; end_io_wq->end_io = bio->bi_end_io; end_io_wq->info = info; end_io_wq->error = 0; end_io_wq->bio = bio; end_io_wq->metadata = metadata; bio->bi_private = end_io_wq; bio->bi_end_io = end_workqueue_bio; return 0; } static void run_one_async_submit(struct btrfs_work *work) { struct btrfs_fs_info *fs_info; struct async_submit_bio *async; async = container_of(work, struct async_submit_bio, work); fs_info = BTRFS_I(async->inode)->root->fs_info; atomic_dec(&fs_info->nr_async_submits); async->submit_bio_hook(async->inode, async->rw, async->bio, async->mirror_num); kfree(async); } int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode, int rw, struct bio *bio, int mirror_num, extent_submit_bio_hook_t *submit_bio_hook) { struct async_submit_bio *async; async = kmalloc(sizeof(*async), GFP_NOFS); if (!async) return -ENOMEM; async->inode = inode; async->rw = rw; async->bio = bio; async->mirror_num = mirror_num; async->submit_bio_hook = submit_bio_hook; async->work.func = run_one_async_submit; async->work.flags = 0; atomic_inc(&fs_info->nr_async_submits); btrfs_queue_worker(&fs_info->workers, &async->work); return 0; } static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, int mirror_num) { struct btrfs_root *root = BTRFS_I(inode)->root; u64 offset; int ret; offset = bio->bi_sector << 9; /* * when we're called for a write, we're already in the async * submission context. Just jump ingo btrfs_map_bio */ if (rw & (1 << BIO_RW)) { return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 0); } /* * called for a read, do the setup so that checksum validation * can happen in the async kernel threads */ ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1); BUG_ON(ret); return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1); } static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, int mirror_num) { /* * kthread helpers are used to submit writes so that checksumming * can happen in parallel across all CPUs */ if (!(rw & (1 << BIO_RW))) { return __btree_submit_bio_hook(inode, rw, bio, mirror_num); } return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, inode, rw, bio, mirror_num, __btree_submit_bio_hook); } static int btree_writepage(struct page *page, struct writeback_control *wbc) { struct extent_io_tree *tree; tree = &BTRFS_I(page->mapping->host)->io_tree; return extent_write_full_page(tree, page, btree_get_extent, wbc); } static int btree_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct extent_io_tree *tree; tree = &BTRFS_I(mapping->host)->io_tree; if (wbc->sync_mode == WB_SYNC_NONE) { u64 num_dirty; u64 start = 0; unsigned long thresh = 96 * 1024 * 1024; if (wbc->for_kupdate) return 0; if (current_is_pdflush()) { thresh = 96 * 1024 * 1024; } else { thresh = 8 * 1024 * 1024; } num_dirty = count_range_bits(tree, &start, (u64)-1, thresh, EXTENT_DIRTY); if (num_dirty < thresh) { return 0; } } return extent_writepages(tree, mapping, btree_get_extent, wbc); } int btree_readpage(struct file *file, struct page *page) { struct extent_io_tree *tree; tree = &BTRFS_I(page->mapping->host)->io_tree; return extent_read_full_page(tree, page, btree_get_extent); } static int btree_releasepage(struct page *page, gfp_t gfp_flags) { struct extent_io_tree *tree; struct extent_map_tree *map; int ret; if (page_count(page) > 3) { /* once for page->private, once for the caller, once * once for the page cache */ return 0; } tree = &BTRFS_I(page->mapping->host)->io_tree; map = &BTRFS_I(page->mapping->host)->extent_tree; ret = try_release_extent_state(map, tree, page, gfp_flags); if (ret == 1) { invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE); ClearPagePrivate(page); set_page_private(page, 0); page_cache_release(page); } return ret; } static void btree_invalidatepage(struct page *page, unsigned long offset) { struct extent_io_tree *tree; tree = &BTRFS_I(page->mapping->host)->io_tree; extent_invalidatepage(tree, page, offset); btree_releasepage(page, GFP_NOFS); if (PagePrivate(page)) { invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE); ClearPagePrivate(page); set_page_private(page, 0); page_cache_release(page); } } #if 0 static int btree_writepage(struct page *page, struct writeback_control *wbc) { struct buffer_head *bh; struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; struct buffer_head *head; if (!page_has_buffers(page)) { create_empty_buffers(page, root->fs_info->sb->s_blocksize, (1 << BH_Dirty)|(1 << BH_Uptodate)); } head = page_buffers(page); bh = head; do { if (buffer_dirty(bh)) csum_tree_block(root, bh, 0); bh = bh->b_this_page; } while (bh != head); return block_write_full_page(page, btree_get_block, wbc); } #endif static struct address_space_operations btree_aops = { .readpage = btree_readpage, .writepage = btree_writepage, .writepages = btree_writepages, .releasepage = btree_releasepage, .invalidatepage = btree_invalidatepage, .sync_page = block_sync_page, }; int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, u64 parent_transid) { struct extent_buffer *buf = NULL; struct inode *btree_inode = root->fs_info->btree_inode; int ret = 0; buf = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!buf) return 0; read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf, 0, 0, btree_get_extent, 0); free_extent_buffer(buf); return ret; } struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { struct inode *btree_inode = root->fs_info->btree_inode; struct extent_buffer *eb; eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr, blocksize, GFP_NOFS); return eb; } struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize) { struct inode *btree_inode = root->fs_info->btree_inode; struct extent_buffer *eb; eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree, bytenr, blocksize, NULL, GFP_NOFS); return eb; } struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize, u64 parent_transid) { struct extent_buffer *buf = NULL; struct inode *btree_inode = root->fs_info->btree_inode; struct extent_io_tree *io_tree; int ret; io_tree = &BTRFS_I(btree_inode)->io_tree; buf = btrfs_find_create_tree_block(root, bytenr, blocksize); if (!buf) return NULL; ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); if (ret == 0) { buf->flags |= EXTENT_UPTODATE; } return buf; } int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf) { struct inode *btree_inode = root->fs_info->btree_inode; if (btrfs_header_generation(buf) == root->fs_info->running_transaction->transid) clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf); return 0; } int wait_on_tree_block_writeback(struct btrfs_root *root, struct extent_buffer *buf) { struct inode *btree_inode = root->fs_info->btree_inode; wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree, buf); return 0; } static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize, u32 stripesize, struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { root->node = NULL; root->inode = NULL; root->commit_root = NULL; root->sectorsize = sectorsize; root->nodesize = nodesize; root->leafsize = leafsize; root->stripesize = stripesize; root->ref_cows = 0; root->track_dirty = 0; root->fs_info = fs_info; root->objectid = objectid; root->last_trans = 0; root->highest_inode = 0; root->last_inode_alloc = 0; root->name = NULL; root->in_sysfs = 0; INIT_LIST_HEAD(&root->dirty_list); memset(&root->root_key, 0, sizeof(root->root_key)); memset(&root->root_item, 0, sizeof(root->root_item)); memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); memset(&root->root_kobj, 0, sizeof(root->root_kobj)); init_completion(&root->kobj_unregister); root->defrag_running = 0; root->defrag_level = 0; root->root_key.objectid = objectid; return 0; } static int find_and_setup_root(struct btrfs_root *tree_root, struct btrfs_fs_info *fs_info, u64 objectid, struct btrfs_root *root) { int ret; u32 blocksize; __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, objectid); ret = btrfs_find_last_root(tree_root, objectid, &root->root_item, &root->root_key); BUG_ON(ret); blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize, 0); BUG_ON(!root->node); return 0; } struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info, struct btrfs_key *location) { struct btrfs_root *root; struct btrfs_root *tree_root = fs_info->tree_root; struct btrfs_path *path; struct extent_buffer *l; u64 highest_inode; u32 blocksize; int ret = 0; root = kzalloc(sizeof(*root), GFP_NOFS); if (!root) return ERR_PTR(-ENOMEM); if (location->offset == (u64)-1) { ret = find_and_setup_root(tree_root, fs_info, location->objectid, root); if (ret) { kfree(root); return ERR_PTR(ret); } goto insert; } __setup_root(tree_root->nodesize, tree_root->leafsize, tree_root->sectorsize, tree_root->stripesize, root, fs_info, location->objectid); path = btrfs_alloc_path(); BUG_ON(!path); ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0); if (ret != 0) { if (ret > 0) ret = -ENOENT; goto out; } l = path->nodes[0]; read_extent_buffer(l, &root->root_item, btrfs_item_ptr_offset(l, path->slots[0]), sizeof(root->root_item)); memcpy(&root->root_key, location, sizeof(*location)); ret = 0; out: btrfs_release_path(root, path); btrfs_free_path(path); if (ret) { kfree(root); return ERR_PTR(ret); } blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item)); root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item), blocksize, 0); BUG_ON(!root->node); insert: root->ref_cows = 1; ret = btrfs_find_highest_inode(root, &highest_inode); if (ret == 0) { root->highest_inode = highest_inode; root->last_inode_alloc = highest_inode; } return root; } struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, u64 root_objectid) { struct btrfs_root *root; if (root_objectid == BTRFS_ROOT_TREE_OBJECTID) return fs_info->tree_root; if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID) return fs_info->extent_root; root = radix_tree_lookup(&fs_info->fs_roots_radix, (unsigned long)root_objectid); return root; } struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info, struct btrfs_key *location) { struct btrfs_root *root; int ret; if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) return fs_info->tree_root; if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) return fs_info->extent_root; if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) return fs_info->chunk_root; if (location->objectid == BTRFS_DEV_TREE_OBJECTID) return fs_info->dev_root; root = radix_tree_lookup(&fs_info->fs_roots_radix, (unsigned long)location->objectid); if (root) return root; root = btrfs_read_fs_root_no_radix(fs_info, location); if (IS_ERR(root)) return root; ret = radix_tree_insert(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid, root); if (ret) { free_extent_buffer(root->node); kfree(root); return ERR_PTR(ret); } ret = btrfs_find_dead_roots(fs_info->tree_root, root->root_key.objectid, root); BUG_ON(ret); return root; } struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_key *location, const char *name, int namelen) { struct btrfs_root *root; int ret; root = btrfs_read_fs_root_no_name(fs_info, location); if (!root) return NULL; if (root->in_sysfs) return root; ret = btrfs_set_root_name(root, name, namelen); if (ret) { free_extent_buffer(root->node); kfree(root); return ERR_PTR(ret); } ret = btrfs_sysfs_add_root(root); if (ret) { free_extent_buffer(root->node); kfree(root->name); kfree(root); return ERR_PTR(ret); } root->in_sysfs = 1; return root; } #if 0 static int add_hasher(struct btrfs_fs_info *info, char *type) { struct btrfs_hasher *hasher; hasher = kmalloc(sizeof(*hasher), GFP_NOFS); if (!hasher) return -ENOMEM; hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC); if (!hasher->hash_tfm) { kfree(hasher); return -EINVAL; } spin_lock(&info->hash_lock); list_add(&hasher->list, &info->hashers); spin_unlock(&info->hash_lock); return 0; } #endif static int btrfs_congested_fn(void *congested_data, int bdi_bits) { struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; int ret = 0; int limit = 256 * info->fs_devices->open_devices; struct list_head *cur; struct btrfs_device *device; struct backing_dev_info *bdi; if ((bdi_bits & (1 << BDI_write_congested)) && atomic_read(&info->nr_async_submits) > limit) { return 1; } list_for_each(cur, &info->fs_devices->devices) { device = list_entry(cur, struct btrfs_device, dev_list); if (!device->bdev) continue; bdi = blk_get_backing_dev_info(device->bdev); if (bdi && bdi_congested(bdi, bdi_bits)) { ret = 1; break; } } return ret; } /* * this unplugs every device on the box, and it is only used when page * is null */ static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page) { struct list_head *cur; struct btrfs_device *device; struct btrfs_fs_info *info; info = (struct btrfs_fs_info *)bdi->unplug_io_data; list_for_each(cur, &info->fs_devices->devices) { device = list_entry(cur, struct btrfs_device, dev_list); bdi = blk_get_backing_dev_info(device->bdev); if (bdi->unplug_io_fn) { bdi->unplug_io_fn(bdi, page); } } } void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page) { struct inode *inode; struct extent_map_tree *em_tree; struct extent_map *em; struct address_space *mapping; u64 offset; /* the generic O_DIRECT read code does this */ if (!page) { __unplug_io_fn(bdi, page); return; } /* * page->mapping may change at any time. Get a consistent copy * and use that for everything below */ smp_mb(); mapping = page->mapping; if (!mapping) return; inode = mapping->host; offset = page_offset(page); em_tree = &BTRFS_I(inode)->extent_tree; spin_lock(&em_tree->lock); em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); spin_unlock(&em_tree->lock); if (!em) return; offset = offset - em->start; btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree, em->block_start + offset, page); free_extent_map(em); } static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) bdi_init(bdi); #endif bdi->ra_pages = default_backing_dev_info.ra_pages; bdi->state = 0; bdi->capabilities = default_backing_dev_info.capabilities; bdi->unplug_io_fn = btrfs_unplug_io_fn; bdi->unplug_io_data = info; bdi->congested_fn = btrfs_congested_fn; bdi->congested_data = info; return 0; } static int bio_ready_for_csum(struct bio *bio) { u64 length = 0; u64 buf_len = 0; u64 start = 0; struct page *page; struct extent_io_tree *io_tree = NULL; struct btrfs_fs_info *info = NULL; struct bio_vec *bvec; int i; int ret; bio_for_each_segment(bvec, bio, i) { page = bvec->bv_page; if (page->private == EXTENT_PAGE_PRIVATE) { length += bvec->bv_len; continue; } if (!page->private) { length += bvec->bv_len; continue; } length = bvec->bv_len; buf_len = page->private >> 2; start = page_offset(page) + bvec->bv_offset; io_tree = &BTRFS_I(page->mapping->host)->io_tree; info = BTRFS_I(page->mapping->host)->root->fs_info; } /* are we fully contained in this bio? */ if (buf_len <= length) return 1; ret = extent_range_uptodate(io_tree, start + length, start + buf_len - 1); if (ret == 1) return ret; return ret; } /* * called by the kthread helper functions to finally call the bio end_io * functions. This is where read checksum verification actually happens */ static void end_workqueue_fn(struct btrfs_work *work) { struct bio *bio; struct end_io_wq *end_io_wq; struct btrfs_fs_info *fs_info; int error; end_io_wq = container_of(work, struct end_io_wq, work); bio = end_io_wq->bio; fs_info = end_io_wq->info; /* metadata bios are special because the whole tree block must * be checksummed at once. This makes sure the entire block is in * ram and up to date before trying to verify things. For * blocksize <= pagesize, it is basically a noop */ if (end_io_wq->metadata && !bio_ready_for_csum(bio)) { btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work); return; } error = end_io_wq->error; bio->bi_private = end_io_wq->private; bio->bi_end_io = end_io_wq->end_io; kfree(end_io_wq); #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23) bio_endio(bio, bio->bi_size, error); #else bio_endio(bio, error); #endif } struct btrfs_root *open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices, char *options) { u32 sectorsize; u32 nodesize; u32 leafsize; u32 blocksize; u32 stripesize; struct buffer_head *bh; struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info), GFP_NOFS); struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root), GFP_NOFS); int ret; int err = -EINVAL; struct btrfs_super_block *disk_super; if (!extent_root || !tree_root || !fs_info) { err = -ENOMEM; goto fail; } INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS); INIT_LIST_HEAD(&fs_info->trans_list); INIT_LIST_HEAD(&fs_info->dead_roots); INIT_LIST_HEAD(&fs_info->hashers); spin_lock_init(&fs_info->hash_lock); spin_lock_init(&fs_info->delalloc_lock); spin_lock_init(&fs_info->new_trans_lock); init_completion(&fs_info->kobj_unregister); fs_info->tree_root = tree_root; fs_info->extent_root = extent_root; fs_info->chunk_root = chunk_root; fs_info->dev_root = dev_root; fs_info->fs_devices = fs_devices; INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); INIT_LIST_HEAD(&fs_info->space_info); btrfs_mapping_init(&fs_info->mapping_tree); atomic_set(&fs_info->nr_async_submits, 0); fs_info->sb = sb; fs_info->max_extent = (u64)-1; fs_info->max_inline = 8192 * 1024; setup_bdi(fs_info, &fs_info->bdi); fs_info->btree_inode = new_inode(sb); fs_info->btree_inode->i_ino = 1; fs_info->btree_inode->i_nlink = 1; fs_info->thread_pool_size = min(num_online_cpus() + 2, 8); sb->s_blocksize = 4096; sb->s_blocksize_bits = blksize_bits(4096); /* * we set the i_size on the btree inode to the max possible int. * the real end of the address space is determined by all of * the devices in the system */ fs_info->btree_inode->i_size = OFFSET_MAX; fs_info->btree_inode->i_mapping->a_ops = &btree_aops; fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi; extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree, GFP_NOFS); BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops; extent_io_tree_init(&fs_info->free_space_cache, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_io_tree_init(&fs_info->block_group_cache, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_io_tree_init(&fs_info->pinned_extents, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_io_tree_init(&fs_info->pending_del, fs_info->btree_inode->i_mapping, GFP_NOFS); extent_io_tree_init(&fs_info->extent_ins, fs_info->btree_inode->i_mapping, GFP_NOFS); fs_info->do_barriers = 1; #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18) INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info); #else INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner); #endif BTRFS_I(fs_info->btree_inode)->root = tree_root; memset(&BTRFS_I(fs_info->btree_inode)->location, 0, sizeof(struct btrfs_key)); insert_inode_hash(fs_info->btree_inode); mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); mutex_init(&fs_info->trans_mutex); mutex_init(&fs_info->fs_mutex); #if 0 ret = add_hasher(fs_info, "crc32c"); if (ret) { printk("btrfs: failed hash setup, modprobe cryptomgr?\n"); err = -ENOMEM; goto fail_iput; } #endif __setup_root(4096, 4096, 4096, 4096, tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); bh = __bread(fs_devices->latest_bdev, BTRFS_SUPER_INFO_OFFSET / 4096, 4096); if (!bh) goto fail_iput; memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy)); brelse(bh); memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE); disk_super = &fs_info->super_copy; if (!btrfs_super_root(disk_super)) goto fail_sb_buffer; err = btrfs_parse_options(tree_root, options); if (err) goto fail_sb_buffer; /* * we need to start all the end_io workers up front because the * queue work function gets called at interrupt time, and so it * cannot dynamically grow. */ btrfs_init_workers(&fs_info->workers, fs_info->thread_pool_size); btrfs_init_workers(&fs_info->endio_workers, fs_info->thread_pool_size); btrfs_start_workers(&fs_info->workers, 1); btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size); err = -EINVAL; if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) { printk("Btrfs: wanted %llu devices, but found %llu\n", (unsigned long long)btrfs_super_num_devices(disk_super), (unsigned long long)fs_devices->open_devices); if (btrfs_test_opt(tree_root, DEGRADED)) printk("continuing in degraded mode\n"); else { goto fail_sb_buffer; } } fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super); nodesize = btrfs_super_nodesize(disk_super); leafsize = btrfs_super_leafsize(disk_super); sectorsize = btrfs_super_sectorsize(disk_super); stripesize = btrfs_super_stripesize(disk_super); tree_root->nodesize = nodesize; tree_root->leafsize = leafsize; tree_root->sectorsize = sectorsize; tree_root->stripesize = stripesize; sb->s_blocksize = sectorsize; sb->s_blocksize_bits = blksize_bits(sectorsize); if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC, sizeof(disk_super->magic))) { printk("btrfs: valid FS not found on %s\n", sb->s_id); goto fail_sb_buffer; } mutex_lock(&fs_info->fs_mutex); ret = btrfs_read_sys_array(tree_root); if (ret) { printk("btrfs: failed to read the system array on %s\n", sb->s_id); goto fail_sys_array; } blocksize = btrfs_level_size(tree_root, btrfs_super_chunk_root_level(disk_super)); __setup_root(nodesize, leafsize, sectorsize, stripesize, chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); chunk_root->node = read_tree_block(chunk_root, btrfs_super_chunk_root(disk_super), blocksize, 0); BUG_ON(!chunk_root->node); read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); ret = btrfs_read_chunk_tree(chunk_root); BUG_ON(ret); btrfs_close_extra_devices(fs_devices); blocksize = btrfs_level_size(tree_root, btrfs_super_root_level(disk_super)); tree_root->node = read_tree_block(tree_root, btrfs_super_root(disk_super), blocksize, 0); if (!tree_root->node) goto fail_sb_buffer; ret = find_and_setup_root(tree_root, fs_info, BTRFS_EXTENT_TREE_OBJECTID, extent_root); if (ret) goto fail_tree_root; extent_root->track_dirty = 1; ret = find_and_setup_root(tree_root, fs_info, BTRFS_DEV_TREE_OBJECTID, dev_root); dev_root->track_dirty = 1; if (ret) goto fail_extent_root; btrfs_read_block_groups(extent_root); fs_info->generation = btrfs_super_generation(disk_super) + 1; fs_info->data_alloc_profile = (u64)-1; fs_info->metadata_alloc_profile = (u64)-1; fs_info->system_alloc_profile = fs_info->metadata_alloc_profile; mutex_unlock(&fs_info->fs_mutex); return tree_root; fail_extent_root: free_extent_buffer(extent_root->node); fail_tree_root: free_extent_buffer(tree_root->node); fail_sys_array: mutex_unlock(&fs_info->fs_mutex); fail_sb_buffer: extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree); btrfs_stop_workers(&fs_info->workers); btrfs_stop_workers(&fs_info->endio_workers); fail_iput: iput(fs_info->btree_inode); fail: btrfs_close_devices(fs_info->fs_devices); btrfs_mapping_tree_free(&fs_info->mapping_tree); kfree(extent_root); kfree(tree_root); #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) bdi_destroy(&fs_info->bdi); #endif kfree(fs_info); return ERR_PTR(err); } static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate) { char b[BDEVNAME_SIZE]; if (uptodate) { set_buffer_uptodate(bh); } else { if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { printk(KERN_WARNING "lost page write due to " "I/O error on %s\n", bdevname(bh->b_bdev, b)); } /* note, we dont' set_buffer_write_io_error because we have * our own ways of dealing with the IO errors */ clear_buffer_uptodate(bh); } unlock_buffer(bh); put_bh(bh); } int write_all_supers(struct btrfs_root *root) { struct list_head *cur; struct list_head *head = &root->fs_info->fs_devices->devices; struct btrfs_device *dev; struct btrfs_super_block *sb; struct btrfs_dev_item *dev_item; struct buffer_head *bh; int ret; int do_barriers; int max_errors; int total_errors = 0; u32 crc; u64 flags; max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1; do_barriers = !btrfs_test_opt(root, NOBARRIER); sb = &root->fs_info->super_for_commit; dev_item = &sb->dev_item; list_for_each(cur, head) { dev = list_entry(cur, struct btrfs_device, dev_list); if (!dev->bdev) { total_errors++; continue; } if (!dev->in_fs_metadata) continue; btrfs_set_stack_device_type(dev_item, dev->type); btrfs_set_stack_device_id(dev_item, dev->devid); btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); btrfs_set_stack_device_io_align(dev_item, dev->io_align); btrfs_set_stack_device_io_width(dev_item, dev->io_width); btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); flags = btrfs_super_flags(sb); btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN); crc = ~(u32)0; crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); btrfs_csum_final(crc, sb->csum); bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096, BTRFS_SUPER_INFO_SIZE); memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE); dev->pending_io = bh; get_bh(bh); set_buffer_uptodate(bh); lock_buffer(bh); bh->b_end_io = btrfs_end_buffer_write_sync; if (do_barriers && dev->barriers) { ret = submit_bh(WRITE_BARRIER, bh); if (ret == -EOPNOTSUPP) { printk("btrfs: disabling barriers on dev %s\n", dev->name); set_buffer_uptodate(bh); dev->barriers = 0; get_bh(bh); lock_buffer(bh); ret = submit_bh(WRITE, bh); } } else { ret = submit_bh(WRITE, bh); } if (ret) total_errors++; } if (total_errors > max_errors) { printk("btrfs: %d errors while writing supers\n", total_errors); BUG(); } total_errors = 0; list_for_each(cur, head) { dev = list_entry(cur, struct btrfs_device, dev_list); if (!dev->bdev) continue; if (!dev->in_fs_metadata) continue; BUG_ON(!dev->pending_io); bh = dev->pending_io; wait_on_buffer(bh); if (!buffer_uptodate(dev->pending_io)) { if (do_barriers && dev->barriers) { printk("btrfs: disabling barriers on dev %s\n", dev->name); set_buffer_uptodate(bh); get_bh(bh); lock_buffer(bh); dev->barriers = 0; ret = submit_bh(WRITE, bh); BUG_ON(ret); wait_on_buffer(bh); if (!buffer_uptodate(bh)) total_errors++; } else { total_errors++; } } dev->pending_io = NULL; brelse(bh); } if (total_errors > max_errors) { printk("btrfs: %d errors while writing supers\n", total_errors); BUG(); } return 0; } int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root *root) { int ret; ret = write_all_supers(root); return ret; } int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root) { radix_tree_delete(&fs_info->fs_roots_radix, (unsigned long)root->root_key.objectid); if (root->in_sysfs) btrfs_sysfs_del_root(root); if (root->inode) iput(root->inode); if (root->node) free_extent_buffer(root->node); if (root->commit_root) free_extent_buffer(root->commit_root); if (root->name) kfree(root->name); kfree(root); return 0; } static int del_fs_roots(struct btrfs_fs_info *fs_info) { int ret; struct btrfs_root *gang[8]; int i; while(1) { ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, (void **)gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) btrfs_free_fs_root(fs_info, gang[i]); } return 0; } int close_ctree(struct btrfs_root *root) { int ret; struct btrfs_trans_handle *trans; struct btrfs_fs_info *fs_info = root->fs_info; fs_info->closing = 1; btrfs_transaction_flush_work(root); mutex_lock(&fs_info->fs_mutex); btrfs_defrag_dirty_roots(root->fs_info); trans = btrfs_start_transaction(root, 1); ret = btrfs_commit_transaction(trans, root); /* run commit again to drop the original snapshot */ trans = btrfs_start_transaction(root, 1); btrfs_commit_transaction(trans, root); ret = btrfs_write_and_wait_transaction(NULL, root); BUG_ON(ret); write_ctree_super(NULL, root); mutex_unlock(&fs_info->fs_mutex); btrfs_transaction_flush_work(root); if (fs_info->delalloc_bytes) { printk("btrfs: at unmount delalloc count %Lu\n", fs_info->delalloc_bytes); } if (fs_info->extent_root->node) free_extent_buffer(fs_info->extent_root->node); if (fs_info->tree_root->node) free_extent_buffer(fs_info->tree_root->node); if (root->fs_info->chunk_root->node); free_extent_buffer(root->fs_info->chunk_root->node); if (root->fs_info->dev_root->node); free_extent_buffer(root->fs_info->dev_root->node); btrfs_free_block_groups(root->fs_info); del_fs_roots(fs_info); filemap_write_and_wait(fs_info->btree_inode->i_mapping); extent_io_tree_empty_lru(&fs_info->free_space_cache); extent_io_tree_empty_lru(&fs_info->block_group_cache); extent_io_tree_empty_lru(&fs_info->pinned_extents); extent_io_tree_empty_lru(&fs_info->pending_del); extent_io_tree_empty_lru(&fs_info->extent_ins); extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree); truncate_inode_pages(fs_info->btree_inode->i_mapping, 0); btrfs_stop_workers(&fs_info->workers); btrfs_stop_workers(&fs_info->endio_workers); iput(fs_info->btree_inode); #if 0 while(!list_empty(&fs_info->hashers)) { struct btrfs_hasher *hasher; hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher, hashers); list_del(&hasher->hashers); crypto_free_hash(&fs_info->hash_tfm); kfree(hasher); } #endif btrfs_close_devices(fs_info->fs_devices); btrfs_mapping_tree_free(&fs_info->mapping_tree); #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23) bdi_destroy(&fs_info->bdi); #endif kfree(fs_info->extent_root); kfree(fs_info->tree_root); kfree(fs_info->chunk_root); kfree(fs_info->dev_root); return 0; } int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid) { int ret; struct inode *btree_inode = buf->first_page->mapping->host; ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); if (!ret) return ret; ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf, parent_transid); return !ret; } int btrfs_set_buffer_uptodate(struct extent_buffer *buf) { struct inode *btree_inode = buf->first_page->mapping->host; return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf); } void btrfs_mark_buffer_dirty(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; u64 transid = btrfs_header_generation(buf); struct inode *btree_inode = root->fs_info->btree_inode; if (transid != root->fs_info->generation) { printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n", (unsigned long long)buf->start, transid, root->fs_info->generation); WARN_ON(1); } set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf); } void btrfs_throttle(struct btrfs_root *root) { struct backing_dev_info *bdi; bdi = &root->fs_info->bdi; if (root->fs_info->throttles && bdi_write_congested(bdi)) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18) congestion_wait(WRITE, HZ/20); #else blk_congestion_wait(WRITE, HZ/20); #endif } } void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr) { /* * looks as though older kernels can get into trouble with * this code, they end up stuck in balance_dirty_pages forever */ struct extent_io_tree *tree; u64 num_dirty; u64 start = 0; unsigned long thresh = 16 * 1024 * 1024; tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree; if (current_is_pdflush()) return; num_dirty = count_range_bits(tree, &start, (u64)-1, thresh, EXTENT_DIRTY); if (num_dirty > thresh) { balance_dirty_pages_ratelimited_nr( root->fs_info->btree_inode->i_mapping, 1); } return; } void btrfs_set_buffer_defrag(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS); } void btrfs_set_buffer_defrag_done(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG_DONE, GFP_NOFS); } int btrfs_buffer_defrag(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return test_range_bit(&BTRFS_I(btree_inode)->io_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0); } int btrfs_buffer_defrag_done(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return test_range_bit(&BTRFS_I(btree_inode)->io_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG_DONE, 0); } int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG_DONE, GFP_NOFS); } int btrfs_clear_buffer_defrag(struct extent_buffer *buf) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; struct inode *btree_inode = root->fs_info->btree_inode; return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS); } int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid) { struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root; int ret; ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid); if (ret == 0) { buf->flags |= EXTENT_UPTODATE; } return ret; } static struct extent_io_ops btree_extent_io_ops = { .writepage_io_hook = btree_writepage_io_hook, .readpage_end_io_hook = btree_readpage_end_io_hook, .submit_bio_hook = btree_submit_bio_hook, /* note we're sharing with inode.c for the merge bio hook */ .merge_bio_hook = btrfs_merge_bio_hook, };