// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2007 Oracle. All rights reserved. * Copyright (C) 2022 Christoph Hellwig. */ #include #include "bio.h" #include "ctree.h" #include "volumes.h" #include "raid56.h" #include "async-thread.h" #include "check-integrity.h" #include "dev-replace.h" #include "rcu-string.h" #include "zoned.h" static struct bio_set btrfs_bioset; /* * Initialize a btrfs_bio structure. This skips the embedded bio itself as it * is already initialized by the block layer. */ static inline void btrfs_bio_init(struct btrfs_bio *bbio, btrfs_bio_end_io_t end_io, void *private) { memset(bbio, 0, offsetof(struct btrfs_bio, bio)); bbio->end_io = end_io; bbio->private = private; } /* * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for * btrfs, and is used for all I/O submitted through btrfs_submit_bio. * * Just like the underlying bio_alloc_bioset it will not fail as it is backed by * a mempool. */ struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, btrfs_bio_end_io_t end_io, void *private) { struct bio *bio; bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); btrfs_bio_init(btrfs_bio(bio), end_io, private); return bio; } struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size, btrfs_bio_end_io_t end_io, void *private) { struct bio *bio; struct btrfs_bio *bbio; ASSERT(offset <= UINT_MAX && size <= UINT_MAX); bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset); bbio = btrfs_bio(bio); btrfs_bio_init(bbio, end_io, private); bio_trim(bio, offset >> 9, size >> 9); bbio->iter = bio->bi_iter; return bio; } static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) { if (!dev || !dev->bdev) return; if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) return; if (btrfs_op(bio) == BTRFS_MAP_WRITE) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); if (!(bio->bi_opf & REQ_RAHEAD)) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); if (bio->bi_opf & REQ_PREFLUSH) btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); } static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, struct bio *bio) { if (bio->bi_opf & REQ_META) return fs_info->endio_meta_workers; return fs_info->endio_workers; } static void btrfs_end_bio_work(struct work_struct *work) { struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work); bbio->end_io(bbio); } static void btrfs_simple_end_io(struct bio *bio) { struct btrfs_fs_info *fs_info = bio->bi_private; struct btrfs_bio *bbio = btrfs_bio(bio); btrfs_bio_counter_dec(fs_info); if (bio->bi_status) btrfs_log_dev_io_error(bio, bbio->device); if (bio_op(bio) == REQ_OP_READ) { INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); } else { bbio->end_io(bbio); } } static void btrfs_raid56_end_io(struct bio *bio) { struct btrfs_io_context *bioc = bio->bi_private; struct btrfs_bio *bbio = btrfs_bio(bio); btrfs_bio_counter_dec(bioc->fs_info); bbio->mirror_num = bioc->mirror_num; bbio->end_io(bbio); btrfs_put_bioc(bioc); } static void btrfs_orig_write_end_io(struct bio *bio) { struct btrfs_io_stripe *stripe = bio->bi_private; struct btrfs_io_context *bioc = stripe->bioc; struct btrfs_bio *bbio = btrfs_bio(bio); btrfs_bio_counter_dec(bioc->fs_info); if (bio->bi_status) { atomic_inc(&bioc->error); btrfs_log_dev_io_error(bio, stripe->dev); } /* * Only send an error to the higher layers if it is beyond the tolerance * threshold. */ if (atomic_read(&bioc->error) > bioc->max_errors) bio->bi_status = BLK_STS_IOERR; else bio->bi_status = BLK_STS_OK; bbio->end_io(bbio); btrfs_put_bioc(bioc); } static void btrfs_clone_write_end_io(struct bio *bio) { struct btrfs_io_stripe *stripe = bio->bi_private; if (bio->bi_status) { atomic_inc(&stripe->bioc->error); btrfs_log_dev_io_error(bio, stripe->dev); } /* Pass on control to the original bio this one was cloned from */ bio_endio(stripe->bioc->orig_bio); bio_put(bio); } static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) { if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || (btrfs_op(bio) == BTRFS_MAP_WRITE && !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { bio_io_error(bio); return; } bio_set_dev(bio, dev->bdev); /* * For zone append writing, bi_sector must point the beginning of the * zone */ if (bio_op(bio) == REQ_OP_ZONE_APPEND) { u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; if (btrfs_dev_is_sequential(dev, physical)) { u64 zone_start = round_down(physical, dev->fs_info->zone_size); bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; } else { bio->bi_opf &= ~REQ_OP_ZONE_APPEND; bio->bi_opf |= REQ_OP_WRITE; } } btrfs_debug_in_rcu(dev->fs_info, "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev), dev->devid, bio->bi_iter.bi_size); btrfsic_check_bio(bio); submit_bio(bio); } static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) { struct bio *orig_bio = bioc->orig_bio, *bio; ASSERT(bio_op(orig_bio) != REQ_OP_READ); /* Reuse the bio embedded into the btrfs_bio for the last mirror */ if (dev_nr == bioc->num_stripes - 1) { bio = orig_bio; bio->bi_end_io = btrfs_orig_write_end_io; } else { bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); bio_inc_remaining(orig_bio); bio->bi_end_io = btrfs_clone_write_end_io; } bio->bi_private = &bioc->stripes[dev_nr]; bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; bioc->stripes[dev_nr].bioc = bioc; btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); } void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num) { u64 logical = bio->bi_iter.bi_sector << 9; u64 length = bio->bi_iter.bi_size; u64 map_length = length; struct btrfs_io_context *bioc = NULL; struct btrfs_io_stripe smap; int ret; btrfs_bio_counter_inc_blocked(fs_info); ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, &bioc, &smap, &mirror_num, 1); if (ret) { btrfs_bio_counter_dec(fs_info); btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); return; } if (map_length < length) { btrfs_crit(fs_info, "mapping failed logical %llu bio len %llu len %llu", logical, length, map_length); BUG(); } if (!bioc) { /* Single mirror read/write fast path */ btrfs_bio(bio)->mirror_num = mirror_num; btrfs_bio(bio)->device = smap.dev; bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; bio->bi_private = fs_info; bio->bi_end_io = btrfs_simple_end_io; btrfs_submit_dev_bio(smap.dev, bio); } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { /* Parity RAID write or read recovery */ bio->bi_private = bioc; bio->bi_end_io = btrfs_raid56_end_io; if (bio_op(bio) == REQ_OP_READ) raid56_parity_recover(bio, bioc, mirror_num); else raid56_parity_write(bio, bioc); } else { /* Write to multiple mirrors */ int total_devs = bioc->num_stripes; int dev_nr; bioc->orig_bio = bio; for (dev_nr = 0; dev_nr < total_devs; dev_nr++) btrfs_submit_mirrored_bio(bioc, dev_nr); } } /* * Submit a repair write. * * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a * RAID setup. Here we only want to write the one bad copy, so we do the * mapping ourselves and submit the bio directly. * * The I/O is issued sychronously to block the repair read completion from * freeing the bio. */ int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start, u64 length, u64 logical, struct page *page, unsigned int pg_offset, int mirror_num) { struct btrfs_device *dev; struct bio_vec bvec; struct bio bio; u64 map_length = 0; u64 sector; struct btrfs_io_context *bioc = NULL; int ret = 0; ASSERT(!(fs_info->sb->s_flags & SB_RDONLY)); BUG_ON(!mirror_num); if (btrfs_repair_one_zone(fs_info, logical)) return 0; map_length = length; /* * Avoid races with device replace and make sure our bioc has devices * associated to its stripes that don't go away while we are doing the * read repair operation. */ btrfs_bio_counter_inc_blocked(fs_info); if (btrfs_is_parity_mirror(fs_info, logical, length)) { /* * Note that we don't use BTRFS_MAP_WRITE because it's supposed * to update all raid stripes, but here we just want to correct * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad * stripe's dev and sector. */ ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical, &map_length, &bioc, 0); if (ret) goto out_counter_dec; ASSERT(bioc->mirror_num == 1); } else { ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, &bioc, mirror_num); if (ret) goto out_counter_dec; /* * This happens when dev-replace is also running, and the * mirror_num indicates the dev-replace target. * * In this case, we don't need to do anything, as the read * error just means the replace progress hasn't reached our * read range, and later replace routine would handle it well. */ if (mirror_num != bioc->mirror_num) goto out_counter_dec; } sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9; dev = bioc->stripes[bioc->mirror_num - 1].dev; btrfs_put_bioc(bioc); if (!dev || !dev->bdev || !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { ret = -EIO; goto out_counter_dec; } bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC); bio.bi_iter.bi_sector = sector; __bio_add_page(&bio, page, length, pg_offset); btrfsic_check_bio(&bio); ret = submit_bio_wait(&bio); if (ret) { /* try to remap that extent elsewhere? */ btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); goto out_bio_uninit; } btrfs_info_rl_in_rcu(fs_info, "read error corrected: ino %llu off %llu (dev %s sector %llu)", ino, start, btrfs_dev_name(dev), sector); ret = 0; out_bio_uninit: bio_uninit(&bio); out_counter_dec: btrfs_bio_counter_dec(fs_info); return ret; } int __init btrfs_bioset_init(void) { if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, offsetof(struct btrfs_bio, bio), BIOSET_NEED_BVECS)) return -ENOMEM; return 0; } void __cold btrfs_bioset_exit(void) { bioset_exit(&btrfs_bioset); }