/* Maintain an RxRPC server socket to do AFS communications through * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include "internal.h" #include "afs_cm.h" #include "protocol_yfs.h" struct workqueue_struct *afs_async_calls; static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *); static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); static void afs_process_async_call(struct work_struct *); static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); static int afs_deliver_cm_op_id(struct afs_call *); /* asynchronous incoming call initial processing */ static const struct afs_call_type afs_RXCMxxxx = { .name = "CB.xxxx", .deliver = afs_deliver_cm_op_id, }; /* * open an RxRPC socket and bind it to be a server for callback notifications * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT */ int afs_open_socket(struct afs_net *net) { struct sockaddr_rxrpc srx; struct socket *socket; unsigned int min_level; int ret; _enter(""); ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); if (ret < 0) goto error_1; socket->sk->sk_allocation = GFP_NOFS; /* bind the callback manager's address to make this a server socket */ memset(&srx, 0, sizeof(srx)); srx.srx_family = AF_RXRPC; srx.srx_service = CM_SERVICE; srx.transport_type = SOCK_DGRAM; srx.transport_len = sizeof(srx.transport.sin6); srx.transport.sin6.sin6_family = AF_INET6; srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); min_level = RXRPC_SECURITY_ENCRYPT; ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, (void *)&min_level, sizeof(min_level)); if (ret < 0) goto error_2; ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); if (ret == -EADDRINUSE) { srx.transport.sin6.sin6_port = 0; ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); } if (ret < 0) goto error_2; srx.srx_service = YFS_CM_SERVICE; ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); if (ret < 0) goto error_2; /* Ideally, we'd turn on service upgrade here, but we can't because * OpenAFS is buggy and leaks the userStatus field from packet to * packet and between FS packets and CB packets - so if we try to do an * upgrade on an FS packet, OpenAFS will leak that into the CB packet * it sends back to us. */ rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, afs_rx_discard_new_call); ret = kernel_listen(socket, INT_MAX); if (ret < 0) goto error_2; net->socket = socket; afs_charge_preallocation(&net->charge_preallocation_work); _leave(" = 0"); return 0; error_2: sock_release(socket); error_1: _leave(" = %d", ret); return ret; } /* * close the RxRPC socket AFS was using */ void afs_close_socket(struct afs_net *net) { _enter(""); kernel_listen(net->socket, 0); flush_workqueue(afs_async_calls); if (net->spare_incoming_call) { afs_put_call(net->spare_incoming_call); net->spare_incoming_call = NULL; } _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); wait_var_event(&net->nr_outstanding_calls, !atomic_read(&net->nr_outstanding_calls)); _debug("no outstanding calls"); kernel_sock_shutdown(net->socket, SHUT_RDWR); flush_workqueue(afs_async_calls); sock_release(net->socket); _debug("dework"); _leave(""); } /* * Allocate a call. */ static struct afs_call *afs_alloc_call(struct afs_net *net, const struct afs_call_type *type, gfp_t gfp) { struct afs_call *call; int o; call = kzalloc(sizeof(*call), gfp); if (!call) return NULL; call->type = type; call->net = net; call->debug_id = atomic_inc_return(&rxrpc_debug_id); atomic_set(&call->usage, 1); INIT_WORK(&call->async_work, afs_process_async_call); init_waitqueue_head(&call->waitq); spin_lock_init(&call->state_lock); call->_iter = &call->iter; o = atomic_inc_return(&net->nr_outstanding_calls); trace_afs_call(call, afs_call_trace_alloc, 1, o, __builtin_return_address(0)); return call; } /* * Dispose of a reference on a call. */ void afs_put_call(struct afs_call *call) { struct afs_net *net = call->net; int n = atomic_dec_return(&call->usage); int o = atomic_read(&net->nr_outstanding_calls); trace_afs_call(call, afs_call_trace_put, n + 1, o, __builtin_return_address(0)); ASSERTCMP(n, >=, 0); if (n == 0) { ASSERT(!work_pending(&call->async_work)); ASSERT(call->type->name != NULL); if (call->rxcall) { rxrpc_kernel_end_call(net->socket, call->rxcall); call->rxcall = NULL; } if (call->type->destructor) call->type->destructor(call); afs_put_server(call->net, call->cm_server); afs_put_cb_interest(call->net, call->cbi); afs_put_addrlist(call->alist); kfree(call->request); trace_afs_call(call, afs_call_trace_free, 0, o, __builtin_return_address(0)); kfree(call); o = atomic_dec_return(&net->nr_outstanding_calls); if (o == 0) wake_up_var(&net->nr_outstanding_calls); } } static struct afs_call *afs_get_call(struct afs_call *call, enum afs_call_trace why) { int u = atomic_inc_return(&call->usage); trace_afs_call(call, why, u, atomic_read(&call->net->nr_outstanding_calls), __builtin_return_address(0)); return call; } /* * Queue the call for actual work. */ static void afs_queue_call_work(struct afs_call *call) { if (call->type->work) { INIT_WORK(&call->work, call->type->work); afs_get_call(call, afs_call_trace_work); if (!queue_work(afs_wq, &call->work)) afs_put_call(call); } } /* * allocate a call with flat request and reply buffers */ struct afs_call *afs_alloc_flat_call(struct afs_net *net, const struct afs_call_type *type, size_t request_size, size_t reply_max) { struct afs_call *call; call = afs_alloc_call(net, type, GFP_NOFS); if (!call) goto nomem_call; if (request_size) { call->request_size = request_size; call->request = kmalloc(request_size, GFP_NOFS); if (!call->request) goto nomem_free; } if (reply_max) { call->reply_max = reply_max; call->buffer = kmalloc(reply_max, GFP_NOFS); if (!call->buffer) goto nomem_free; } afs_extract_to_buf(call, call->reply_max); call->operation_ID = type->op; init_waitqueue_head(&call->waitq); return call; nomem_free: afs_put_call(call); nomem_call: return NULL; } /* * clean up a call with flat buffer */ void afs_flat_call_destructor(struct afs_call *call) { _enter(""); kfree(call->request); call->request = NULL; kfree(call->buffer); call->buffer = NULL; } #define AFS_BVEC_MAX 8 /* * Load the given bvec with the next few pages. */ static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, struct bio_vec *bv, pgoff_t first, pgoff_t last, unsigned offset) { struct page *pages[AFS_BVEC_MAX]; unsigned int nr, n, i, to, bytes = 0; nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); n = find_get_pages_contig(call->mapping, first, nr, pages); ASSERTCMP(n, ==, nr); msg->msg_flags |= MSG_MORE; for (i = 0; i < nr; i++) { to = PAGE_SIZE; if (first + i >= last) { to = call->last_to; msg->msg_flags &= ~MSG_MORE; } bv[i].bv_page = pages[i]; bv[i].bv_len = to - offset; bv[i].bv_offset = offset; bytes += to - offset; offset = 0; } iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); } /* * Advance the AFS call state when the RxRPC call ends the transmit phase. */ static void afs_notify_end_request_tx(struct sock *sock, struct rxrpc_call *rxcall, unsigned long call_user_ID) { struct afs_call *call = (struct afs_call *)call_user_ID; afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); } /* * attach the data from a bunch of pages on an inode to a call */ static int afs_send_pages(struct afs_call *call, struct msghdr *msg) { struct bio_vec bv[AFS_BVEC_MAX]; unsigned int bytes, nr, loop, offset; pgoff_t first = call->first, last = call->last; int ret; offset = call->first_offset; call->first_offset = 0; do { afs_load_bvec(call, msg, bv, first, last, offset); trace_afs_send_pages(call, msg, first, last, offset); offset = 0; bytes = msg->msg_iter.count; nr = msg->msg_iter.nr_segs; ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, bytes, afs_notify_end_request_tx); for (loop = 0; loop < nr; loop++) put_page(bv[loop].bv_page); if (ret < 0) break; first += nr; } while (first <= last); trace_afs_sent_pages(call, call->first, last, first, ret); return ret; } /* * initiate a call */ long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp, bool async) { struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; struct rxrpc_call *rxcall; struct msghdr msg; struct kvec iov[1]; s64 tx_total_len; int ret; _enter(",{%pISp},", &srx->transport); ASSERT(call->type != NULL); ASSERT(call->type->name != NULL); _debug("____MAKE %p{%s,%x} [%d]____", call, call->type->name, key_serial(call->key), atomic_read(&call->net->nr_outstanding_calls)); call->async = async; call->addr_ix = ac->index; call->alist = afs_get_addrlist(ac->alist); /* Work out the length we're going to transmit. This is awkward for * calls such as FS.StoreData where there's an extra injection of data * after the initial fixed part. */ tx_total_len = call->request_size; if (call->send_pages) { if (call->last == call->first) { tx_total_len += call->last_to - call->first_offset; } else { /* It looks mathematically like you should be able to * combine the following lines with the ones above, but * unsigned arithmetic is fun when it wraps... */ tx_total_len += PAGE_SIZE - call->first_offset; tx_total_len += call->last_to; tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; } } /* create a call */ rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, (unsigned long)call, tx_total_len, gfp, (async ? afs_wake_up_async_call : afs_wake_up_call_waiter), call->upgrade, call->debug_id); if (IS_ERR(rxcall)) { ret = PTR_ERR(rxcall); call->error = ret; goto error_kill_call; } call->rxcall = rxcall; /* send the request */ iov[0].iov_base = call->request; iov[0].iov_len = call->request_size; msg.msg_name = NULL; msg.msg_namelen = 0; iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); ret = rxrpc_kernel_send_data(call->net->socket, rxcall, &msg, call->request_size, afs_notify_end_request_tx); if (ret < 0) goto error_do_abort; if (call->send_pages) { ret = afs_send_pages(call, &msg); if (ret < 0) goto error_do_abort; } /* at this point, an async call may no longer exist as it may have * already completed */ if (call->async) return -EINPROGRESS; return afs_wait_for_call_to_complete(call, ac); error_do_abort: call->state = AFS_CALL_COMPLETE; if (ret != -ECONNABORTED) { rxrpc_kernel_abort_call(call->net->socket, rxcall, RX_USER_ABORT, ret, "KSD"); } else { iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); rxrpc_kernel_recv_data(call->net->socket, rxcall, &msg.msg_iter, false, &call->abort_code, &call->service_id); ac->abort_code = call->abort_code; ac->responded = true; } call->error = ret; trace_afs_call_done(call); error_kill_call: if (call->type->done) call->type->done(call); afs_put_call(call); ac->error = ret; _leave(" = %d", ret); return ret; } /* * deliver messages to a call */ static void afs_deliver_to_call(struct afs_call *call) { enum afs_call_state state; u32 abort_code, remote_abort = 0; int ret; _enter("%s", call->type->name); while (state = READ_ONCE(call->state), state == AFS_CALL_CL_AWAIT_REPLY || state == AFS_CALL_SV_AWAIT_OP_ID || state == AFS_CALL_SV_AWAIT_REQUEST || state == AFS_CALL_SV_AWAIT_ACK ) { if (state == AFS_CALL_SV_AWAIT_ACK) { iov_iter_kvec(&call->iter, READ, NULL, 0, 0); ret = rxrpc_kernel_recv_data(call->net->socket, call->rxcall, &call->iter, false, &remote_abort, &call->service_id); trace_afs_receive_data(call, &call->iter, false, ret); if (ret == -EINPROGRESS || ret == -EAGAIN) return; if (ret < 0 || ret == 1) { if (ret == 1) ret = 0; goto call_complete; } return; } if (call->want_reply_time && rxrpc_kernel_get_reply_time(call->net->socket, call->rxcall, &call->reply_time)) call->want_reply_time = false; ret = call->type->deliver(call); state = READ_ONCE(call->state); switch (ret) { case 0: afs_queue_call_work(call); if (state == AFS_CALL_CL_PROC_REPLY) { if (call->cbi) set_bit(AFS_SERVER_FL_MAY_HAVE_CB, &call->cbi->server->flags); goto call_complete; } ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); goto done; case -EINPROGRESS: case -EAGAIN: goto out; case -ECONNABORTED: ASSERTCMP(state, ==, AFS_CALL_COMPLETE); goto done; case -ENOTSUPP: abort_code = RXGEN_OPCODE; rxrpc_kernel_abort_call(call->net->socket, call->rxcall, abort_code, ret, "KIV"); goto local_abort; case -EIO: pr_err("kAFS: Call %u in bad state %u\n", call->debug_id, state); /* Fall through */ case -ENODATA: case -EBADMSG: case -EMSGSIZE: default: abort_code = RXGEN_CC_UNMARSHAL; if (state != AFS_CALL_CL_AWAIT_REPLY) abort_code = RXGEN_SS_UNMARSHAL; rxrpc_kernel_abort_call(call->net->socket, call->rxcall, abort_code, ret, "KUM"); goto local_abort; } } done: if (call->type->done) call->type->done(call); if (state == AFS_CALL_COMPLETE && call->incoming) afs_put_call(call); out: _leave(""); return; local_abort: abort_code = 0; call_complete: afs_set_call_complete(call, ret, remote_abort); state = AFS_CALL_COMPLETE; goto done; } /* * wait synchronously for a call to complete */ static long afs_wait_for_call_to_complete(struct afs_call *call, struct afs_addr_cursor *ac) { signed long rtt2, timeout; long ret; bool stalled = false; u64 rtt; u32 life, last_life; DECLARE_WAITQUEUE(myself, current); _enter(""); rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); rtt2 = nsecs_to_jiffies64(rtt) * 2; if (rtt2 < 2) rtt2 = 2; timeout = rtt2; last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); add_wait_queue(&call->waitq, &myself); for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); /* deliver any messages that are in the queue */ if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && call->need_attention) { call->need_attention = false; __set_current_state(TASK_RUNNING); afs_deliver_to_call(call); continue; } if (afs_check_call_state(call, AFS_CALL_COMPLETE)) break; life = rxrpc_kernel_check_life(call->net->socket, call->rxcall); if (timeout == 0 && life == last_life && signal_pending(current)) { if (stalled) break; __set_current_state(TASK_RUNNING); rxrpc_kernel_probe_life(call->net->socket, call->rxcall); timeout = rtt2; stalled = true; continue; } if (life != last_life) { timeout = rtt2; last_life = life; stalled = false; } timeout = schedule_timeout(timeout); } remove_wait_queue(&call->waitq, &myself); __set_current_state(TASK_RUNNING); /* Kill off the call if it's still live. */ if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { _debug("call interrupted"); if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, RX_USER_ABORT, -EINTR, "KWI")) afs_set_call_complete(call, -EINTR, 0); } spin_lock_bh(&call->state_lock); ac->abort_code = call->abort_code; ac->error = call->error; spin_unlock_bh(&call->state_lock); ret = ac->error; switch (ret) { case 0: if (call->ret_reply0) { ret = (long)call->reply[0]; call->reply[0] = NULL; } /* Fall through */ case -ECONNABORTED: ac->responded = true; break; } _debug("call complete"); afs_put_call(call); _leave(" = %p", (void *)ret); return ret; } /* * wake up a waiting call */ static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, unsigned long call_user_ID) { struct afs_call *call = (struct afs_call *)call_user_ID; call->need_attention = true; wake_up(&call->waitq); } /* * wake up an asynchronous call */ static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, unsigned long call_user_ID) { struct afs_call *call = (struct afs_call *)call_user_ID; int u; trace_afs_notify_call(rxcall, call); call->need_attention = true; u = atomic_fetch_add_unless(&call->usage, 1, 0); if (u != 0) { trace_afs_call(call, afs_call_trace_wake, u, atomic_read(&call->net->nr_outstanding_calls), __builtin_return_address(0)); if (!queue_work(afs_async_calls, &call->async_work)) afs_put_call(call); } } /* * Delete an asynchronous call. The work item carries a ref to the call struct * that we need to release. */ static void afs_delete_async_call(struct work_struct *work) { struct afs_call *call = container_of(work, struct afs_call, async_work); _enter(""); afs_put_call(call); _leave(""); } /* * Perform I/O processing on an asynchronous call. The work item carries a ref * to the call struct that we either need to release or to pass on. */ static void afs_process_async_call(struct work_struct *work) { struct afs_call *call = container_of(work, struct afs_call, async_work); _enter(""); if (call->state < AFS_CALL_COMPLETE && call->need_attention) { call->need_attention = false; afs_deliver_to_call(call); } if (call->state == AFS_CALL_COMPLETE) { /* We have two refs to release - one from the alloc and one * queued with the work item - and we can't just deallocate the * call because the work item may be queued again. */ call->async_work.func = afs_delete_async_call; if (!queue_work(afs_async_calls, &call->async_work)) afs_put_call(call); } afs_put_call(call); _leave(""); } static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) { struct afs_call *call = (struct afs_call *)user_call_ID; call->rxcall = rxcall; } /* * Charge the incoming call preallocation. */ void afs_charge_preallocation(struct work_struct *work) { struct afs_net *net = container_of(work, struct afs_net, charge_preallocation_work); struct afs_call *call = net->spare_incoming_call; for (;;) { if (!call) { call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); if (!call) break; call->async = true; call->state = AFS_CALL_SV_AWAIT_OP_ID; init_waitqueue_head(&call->waitq); afs_extract_to_tmp(call); } if (rxrpc_kernel_charge_accept(net->socket, afs_wake_up_async_call, afs_rx_attach, (unsigned long)call, GFP_KERNEL, call->debug_id) < 0) break; call = NULL; } net->spare_incoming_call = call; } /* * Discard a preallocated call when a socket is shut down. */ static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, unsigned long user_call_ID) { struct afs_call *call = (struct afs_call *)user_call_ID; call->rxcall = NULL; afs_put_call(call); } /* * Notification of an incoming call. */ static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, unsigned long user_call_ID) { struct afs_net *net = afs_sock2net(sk); queue_work(afs_wq, &net->charge_preallocation_work); } /* * Grab the operation ID from an incoming cache manager call. The socket * buffer is discarded on error or if we don't yet have sufficient data. */ static int afs_deliver_cm_op_id(struct afs_call *call) { int ret; _enter("{%zu}", iov_iter_count(call->_iter)); /* the operation ID forms the first four bytes of the request data */ ret = afs_extract_data(call, true); if (ret < 0) return ret; call->operation_ID = ntohl(call->tmp); afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); /* ask the cache manager to route the call (it'll change the call type * if successful) */ if (!afs_cm_incoming_call(call)) return -ENOTSUPP; trace_afs_cb_call(call); /* pass responsibility for the remainer of this message off to the * cache manager op */ return call->type->deliver(call); } /* * Advance the AFS call state when an RxRPC service call ends the transmit * phase. */ static void afs_notify_end_reply_tx(struct sock *sock, struct rxrpc_call *rxcall, unsigned long call_user_ID) { struct afs_call *call = (struct afs_call *)call_user_ID; afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); } /* * send an empty reply */ void afs_send_empty_reply(struct afs_call *call) { struct afs_net *net = call->net; struct msghdr msg; _enter(""); rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); msg.msg_name = NULL; msg.msg_namelen = 0; iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, afs_notify_end_reply_tx)) { case 0: _leave(" [replied]"); return; case -ENOMEM: _debug("oom"); rxrpc_kernel_abort_call(net->socket, call->rxcall, RX_USER_ABORT, -ENOMEM, "KOO"); default: _leave(" [error]"); return; } } /* * send a simple reply */ void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) { struct afs_net *net = call->net; struct msghdr msg; struct kvec iov[1]; int n; _enter(""); rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); iov[0].iov_base = (void *) buf; iov[0].iov_len = len; msg.msg_name = NULL; msg.msg_namelen = 0; iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, afs_notify_end_reply_tx); if (n >= 0) { /* Success */ _leave(" [replied]"); return; } if (n == -ENOMEM) { _debug("oom"); rxrpc_kernel_abort_call(net->socket, call->rxcall, RX_USER_ABORT, -ENOMEM, "KOO"); } _leave(" [error]"); } /* * Extract a piece of data from the received data socket buffers. */ int afs_extract_data(struct afs_call *call, bool want_more) { struct afs_net *net = call->net; struct iov_iter *iter = call->_iter; enum afs_call_state state; u32 remote_abort = 0; int ret; _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more); ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, want_more, &remote_abort, &call->service_id); if (ret == 0 || ret == -EAGAIN) return ret; state = READ_ONCE(call->state); if (ret == 1) { switch (state) { case AFS_CALL_CL_AWAIT_REPLY: afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); break; case AFS_CALL_SV_AWAIT_REQUEST: afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); break; case AFS_CALL_COMPLETE: kdebug("prem complete %d", call->error); return afs_io_error(call, afs_io_error_extract); default: break; } return 0; } afs_set_call_complete(call, ret, remote_abort); return ret; } /* * Log protocol error production. */ noinline int afs_protocol_error(struct afs_call *call, int error, enum afs_eproto_cause cause) { trace_afs_protocol_error(call, error, cause); return error; }