/* Maintain an RxRPC server socket to do AFS communications through * * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/slab.h> #include <net/sock.h> #include <net/af_rxrpc.h> #include <rxrpc/packet.h> #include "internal.h" #include "afs_cm.h" struct socket *afs_socket; /* my RxRPC socket */ static struct workqueue_struct *afs_async_calls; static struct afs_call *afs_spare_incoming_call; static atomic_t afs_outstanding_calls; static void afs_free_call(struct afs_call *); static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); static int afs_wait_for_call_to_complete(struct afs_call *); static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); static int afs_dont_wait_for_call_to_complete(struct afs_call *); static void afs_process_async_call(struct work_struct *); static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); static int afs_deliver_cm_op_id(struct afs_call *); /* synchronous call management */ const struct afs_wait_mode afs_sync_call = { .notify_rx = afs_wake_up_call_waiter, .wait = afs_wait_for_call_to_complete, }; /* asynchronous call management */ const struct afs_wait_mode afs_async_call = { .notify_rx = afs_wake_up_async_call, .wait = afs_dont_wait_for_call_to_complete, }; /* asynchronous incoming call management */ static const struct afs_wait_mode afs_async_incoming_call = { .notify_rx = afs_wake_up_async_call, }; /* asynchronous incoming call initial processing */ static const struct afs_call_type afs_RXCMxxxx = { .name = "CB.xxxx", .deliver = afs_deliver_cm_op_id, .abort_to_error = afs_abort_to_error, }; static void afs_charge_preallocation(struct work_struct *); static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation); static int afs_wait_atomic_t(atomic_t *p) { schedule(); return 0; } /* * open an RxRPC socket and bind it to be a server for callback notifications * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT */ int afs_open_socket(void) { struct sockaddr_rxrpc srx; struct socket *socket; int ret; _enter(""); ret = -ENOMEM; afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0); if (!afs_async_calls) goto error_0; ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); if (ret < 0) goto error_1; socket->sk->sk_allocation = GFP_NOFS; /* bind the callback manager's address to make this a server socket */ srx.srx_family = AF_RXRPC; srx.srx_service = CM_SERVICE; srx.transport_type = SOCK_DGRAM; srx.transport_len = sizeof(srx.transport.sin); srx.transport.sin.sin_family = AF_INET; srx.transport.sin.sin_port = htons(AFS_CM_PORT); memset(&srx.transport.sin.sin_addr, 0, sizeof(srx.transport.sin.sin_addr)); ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); if (ret < 0) goto error_2; rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, afs_rx_discard_new_call); ret = kernel_listen(socket, INT_MAX); if (ret < 0) goto error_2; afs_socket = socket; afs_charge_preallocation(NULL); _leave(" = 0"); return 0; error_2: sock_release(socket); error_1: destroy_workqueue(afs_async_calls); error_0: _leave(" = %d", ret); return ret; } /* * close the RxRPC socket AFS was using */ void afs_close_socket(void) { _enter(""); if (afs_spare_incoming_call) { atomic_inc(&afs_outstanding_calls); afs_free_call(afs_spare_incoming_call); afs_spare_incoming_call = NULL; } _debug("outstanding %u", atomic_read(&afs_outstanding_calls)); wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t, TASK_UNINTERRUPTIBLE); _debug("no outstanding calls"); flush_workqueue(afs_async_calls); kernel_sock_shutdown(afs_socket, SHUT_RDWR); flush_workqueue(afs_async_calls); sock_release(afs_socket); _debug("dework"); destroy_workqueue(afs_async_calls); _leave(""); } /* * free a call */ static void afs_free_call(struct afs_call *call) { _debug("DONE %p{%s} [%d]", call, call->type->name, atomic_read(&afs_outstanding_calls)); ASSERTCMP(call->rxcall, ==, NULL); ASSERT(!work_pending(&call->async_work)); ASSERT(call->type->name != NULL); kfree(call->request); kfree(call); if (atomic_dec_and_test(&afs_outstanding_calls)) wake_up_atomic_t(&afs_outstanding_calls); } /* * End a call but do not free it */ static void afs_end_call_nofree(struct afs_call *call) { if (call->rxcall) { rxrpc_kernel_end_call(afs_socket, call->rxcall); call->rxcall = NULL; } if (call->type->destructor) call->type->destructor(call); } /* * End a call and free it */ static void afs_end_call(struct afs_call *call) { afs_end_call_nofree(call); afs_free_call(call); } /* * allocate a call with flat request and reply buffers */ struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, size_t request_size, size_t reply_max) { struct afs_call *call; call = kzalloc(sizeof(*call), GFP_NOFS); if (!call) goto nomem_call; _debug("CALL %p{%s} [%d]", call, type->name, atomic_read(&afs_outstanding_calls)); atomic_inc(&afs_outstanding_calls); call->type = type; call->request_size = request_size; call->reply_max = reply_max; if (request_size) { call->request = kmalloc(request_size, GFP_NOFS); if (!call->request) goto nomem_free; } if (reply_max) { call->buffer = kmalloc(reply_max, GFP_NOFS); if (!call->buffer) goto nomem_free; } init_waitqueue_head(&call->waitq); return call; nomem_free: afs_free_call(call); nomem_call: return NULL; } /* * clean up a call with flat buffer */ void afs_flat_call_destructor(struct afs_call *call) { _enter(""); kfree(call->request); call->request = NULL; kfree(call->buffer); call->buffer = NULL; } /* * attach the data from a bunch of pages on an inode to a call */ static int afs_send_pages(struct afs_call *call, struct msghdr *msg, struct kvec *iov) { struct page *pages[8]; unsigned count, n, loop, offset, to; pgoff_t first = call->first, last = call->last; int ret; _enter(""); offset = call->first_offset; call->first_offset = 0; do { _debug("attach %lx-%lx", first, last); count = last - first + 1; if (count > ARRAY_SIZE(pages)) count = ARRAY_SIZE(pages); n = find_get_pages_contig(call->mapping, first, count, pages); ASSERTCMP(n, ==, count); loop = 0; do { msg->msg_flags = 0; to = PAGE_SIZE; if (first + loop >= last) to = call->last_to; else msg->msg_flags = MSG_MORE; iov->iov_base = kmap(pages[loop]) + offset; iov->iov_len = to - offset; offset = 0; _debug("- range %u-%u%s", offset, to, msg->msg_flags ? " [more]" : ""); iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, iov, 1, to - offset); /* have to change the state *before* sending the last * packet as RxRPC might give us the reply before it * returns from sending the request */ if (first + loop >= last) call->state = AFS_CALL_AWAIT_REPLY; ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, msg, to - offset); kunmap(pages[loop]); if (ret < 0) break; } while (++loop < count); first += count; for (loop = 0; loop < count; loop++) put_page(pages[loop]); if (ret < 0) break; } while (first <= last); _leave(" = %d", ret); return ret; } /* * initiate a call */ int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, const struct afs_wait_mode *wait_mode) { struct sockaddr_rxrpc srx; struct rxrpc_call *rxcall; struct msghdr msg; struct kvec iov[1]; int ret; _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); ASSERT(call->type != NULL); ASSERT(call->type->name != NULL); _debug("____MAKE %p{%s,%x} [%d]____", call, call->type->name, key_serial(call->key), atomic_read(&afs_outstanding_calls)); call->wait_mode = wait_mode; INIT_WORK(&call->async_work, afs_process_async_call); memset(&srx, 0, sizeof(srx)); srx.srx_family = AF_RXRPC; srx.srx_service = call->service_id; srx.transport_type = SOCK_DGRAM; srx.transport_len = sizeof(srx.transport.sin); srx.transport.sin.sin_family = AF_INET; srx.transport.sin.sin_port = call->port; memcpy(&srx.transport.sin.sin_addr, addr, 4); /* create a call */ rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, (unsigned long) call, gfp, wait_mode->notify_rx); call->key = NULL; if (IS_ERR(rxcall)) { ret = PTR_ERR(rxcall); goto error_kill_call; } call->rxcall = rxcall; /* send the request */ iov[0].iov_base = call->request; iov[0].iov_len = call->request_size; msg.msg_name = NULL; msg.msg_namelen = 0; iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, call->request_size); msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = (call->send_pages ? MSG_MORE : 0); /* have to change the state *before* sending the last packet as RxRPC * might give us the reply before it returns from sending the * request */ if (!call->send_pages) call->state = AFS_CALL_AWAIT_REPLY; ret = rxrpc_kernel_send_data(afs_socket, rxcall, &msg, call->request_size); if (ret < 0) goto error_do_abort; if (call->send_pages) { ret = afs_send_pages(call, &msg, iov); if (ret < 0) goto error_do_abort; } /* at this point, an async call may no longer exist as it may have * already completed */ return wait_mode->wait(call); error_do_abort: rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT, -ret, "KSD"); error_kill_call: afs_end_call(call); _leave(" = %d", ret); return ret; } /* * deliver messages to a call */ static void afs_deliver_to_call(struct afs_call *call) { u32 abort_code; int ret; _enter("%s", call->type->name); while (call->state == AFS_CALL_AWAIT_REPLY || call->state == AFS_CALL_AWAIT_OP_ID || call->state == AFS_CALL_AWAIT_REQUEST || call->state == AFS_CALL_AWAIT_ACK ) { if (call->state == AFS_CALL_AWAIT_ACK) { size_t offset = 0; ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, NULL, 0, &offset, false, &call->abort_code); if (ret == -EINPROGRESS || ret == -EAGAIN) return; if (ret == 1 || ret < 0) { call->state = AFS_CALL_COMPLETE; goto done; } return; } ret = call->type->deliver(call); switch (ret) { case 0: if (call->state == AFS_CALL_AWAIT_REPLY) call->state = AFS_CALL_COMPLETE; goto done; case -EINPROGRESS: case -EAGAIN: goto out; case -ENOTCONN: abort_code = RX_CALL_DEAD; rxrpc_kernel_abort_call(afs_socket, call->rxcall, abort_code, -ret, "KNC"); goto do_abort; case -ENOTSUPP: abort_code = RX_INVALID_OPERATION; rxrpc_kernel_abort_call(afs_socket, call->rxcall, abort_code, -ret, "KIV"); goto do_abort; case -ENODATA: case -EBADMSG: case -EMSGSIZE: default: abort_code = RXGEN_CC_UNMARSHAL; if (call->state != AFS_CALL_AWAIT_REPLY) abort_code = RXGEN_SS_UNMARSHAL; rxrpc_kernel_abort_call(afs_socket, call->rxcall, abort_code, EBADMSG, "KUM"); goto do_abort; } } done: if (call->state == AFS_CALL_COMPLETE && call->incoming) afs_end_call(call); out: _leave(""); return; do_abort: call->error = ret; call->state = AFS_CALL_COMPLETE; goto done; } /* * wait synchronously for a call to complete */ static int afs_wait_for_call_to_complete(struct afs_call *call) { const char *abort_why; int ret; DECLARE_WAITQUEUE(myself, current); _enter(""); add_wait_queue(&call->waitq, &myself); for (;;) { set_current_state(TASK_INTERRUPTIBLE); /* deliver any messages that are in the queue */ if (call->state < AFS_CALL_COMPLETE && call->need_attention) { call->need_attention = false; __set_current_state(TASK_RUNNING); afs_deliver_to_call(call); continue; } abort_why = "KWC"; ret = call->error; if (call->state == AFS_CALL_COMPLETE) break; abort_why = "KWI"; ret = -EINTR; if (signal_pending(current)) break; schedule(); } remove_wait_queue(&call->waitq, &myself); __set_current_state(TASK_RUNNING); /* kill the call */ if (call->state < AFS_CALL_COMPLETE) { _debug("call incomplete"); rxrpc_kernel_abort_call(afs_socket, call->rxcall, RX_CALL_DEAD, -ret, abort_why); } _debug("call complete"); afs_end_call(call); _leave(" = %d", ret); return ret; } /* * wake up a waiting call */ static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, unsigned long call_user_ID) { struct afs_call *call = (struct afs_call *)call_user_ID; call->need_attention = true; wake_up(&call->waitq); } /* * wake up an asynchronous call */ static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, unsigned long call_user_ID) { struct afs_call *call = (struct afs_call *)call_user_ID; call->need_attention = true; queue_work(afs_async_calls, &call->async_work); } /* * put a call into asynchronous mode * - mustn't touch the call descriptor as the call my have completed by the * time we get here */ static int afs_dont_wait_for_call_to_complete(struct afs_call *call) { _enter(""); return -EINPROGRESS; } /* * delete an asynchronous call */ static void afs_delete_async_call(struct work_struct *work) { struct afs_call *call = container_of(work, struct afs_call, async_work); _enter(""); afs_free_call(call); _leave(""); } /* * perform processing on an asynchronous call */ static void afs_process_async_call(struct work_struct *work) { struct afs_call *call = container_of(work, struct afs_call, async_work); _enter(""); if (call->state < AFS_CALL_COMPLETE && call->need_attention) { call->need_attention = false; afs_deliver_to_call(call); } if (call->state == AFS_CALL_COMPLETE && call->wait_mode) { if (call->wait_mode->async_complete) call->wait_mode->async_complete(call->reply, call->error); call->reply = NULL; /* kill the call */ afs_end_call_nofree(call); /* we can't just delete the call because the work item may be * queued */ call->async_work.func = afs_delete_async_call; queue_work(afs_async_calls, &call->async_work); } _leave(""); } static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) { struct afs_call *call = (struct afs_call *)user_call_ID; call->rxcall = rxcall; } /* * Charge the incoming call preallocation. */ static void afs_charge_preallocation(struct work_struct *work) { struct afs_call *call = afs_spare_incoming_call; for (;;) { if (!call) { call = kzalloc(sizeof(struct afs_call), GFP_KERNEL); if (!call) break; INIT_WORK(&call->async_work, afs_process_async_call); call->wait_mode = &afs_async_incoming_call; call->type = &afs_RXCMxxxx; init_waitqueue_head(&call->waitq); call->state = AFS_CALL_AWAIT_OP_ID; } if (rxrpc_kernel_charge_accept(afs_socket, afs_wake_up_async_call, afs_rx_attach, (unsigned long)call, GFP_KERNEL) < 0) break; call = NULL; } afs_spare_incoming_call = call; } /* * Discard a preallocated call when a socket is shut down. */ static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, unsigned long user_call_ID) { struct afs_call *call = (struct afs_call *)user_call_ID; atomic_inc(&afs_outstanding_calls); call->rxcall = NULL; afs_free_call(call); } /* * Notification of an incoming call. */ static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, unsigned long user_call_ID) { atomic_inc(&afs_outstanding_calls); queue_work(afs_wq, &afs_charge_preallocation_work); } /* * Grab the operation ID from an incoming cache manager call. The socket * buffer is discarded on error or if we don't yet have sufficient data. */ static int afs_deliver_cm_op_id(struct afs_call *call) { int ret; _enter("{%zu}", call->offset); ASSERTCMP(call->offset, <, 4); /* the operation ID forms the first four bytes of the request data */ ret = afs_extract_data(call, &call->tmp, 4, true); if (ret < 0) return ret; call->operation_ID = ntohl(call->tmp); call->state = AFS_CALL_AWAIT_REQUEST; call->offset = 0; /* ask the cache manager to route the call (it'll change the call type * if successful) */ if (!afs_cm_incoming_call(call)) return -ENOTSUPP; /* pass responsibility for the remainer of this message off to the * cache manager op */ return call->type->deliver(call); } /* * send an empty reply */ void afs_send_empty_reply(struct afs_call *call) { struct msghdr msg; _enter(""); msg.msg_name = NULL; msg.msg_namelen = 0; iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; call->state = AFS_CALL_AWAIT_ACK; switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) { case 0: _leave(" [replied]"); return; case -ENOMEM: _debug("oom"); rxrpc_kernel_abort_call(afs_socket, call->rxcall, RX_USER_ABORT, ENOMEM, "KOO"); default: afs_end_call(call); _leave(" [error]"); return; } } /* * send a simple reply */ void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) { struct msghdr msg; struct kvec iov[1]; int n; _enter(""); iov[0].iov_base = (void *) buf; iov[0].iov_len = len; msg.msg_name = NULL; msg.msg_namelen = 0; iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); msg.msg_control = NULL; msg.msg_controllen = 0; msg.msg_flags = 0; call->state = AFS_CALL_AWAIT_ACK; n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len); if (n >= 0) { /* Success */ _leave(" [replied]"); return; } if (n == -ENOMEM) { _debug("oom"); rxrpc_kernel_abort_call(afs_socket, call->rxcall, RX_USER_ABORT, ENOMEM, "KOO"); } afs_end_call(call); _leave(" [error]"); } /* * Extract a piece of data from the received data socket buffers. */ int afs_extract_data(struct afs_call *call, void *buf, size_t count, bool want_more) { int ret; _enter("{%s,%zu},,%zu,%d", call->type->name, call->offset, count, want_more); ASSERTCMP(call->offset, <=, count); ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, buf, count, &call->offset, want_more, &call->abort_code); if (ret == 0 || ret == -EAGAIN) return ret; if (ret == 1) { switch (call->state) { case AFS_CALL_AWAIT_REPLY: call->state = AFS_CALL_COMPLETE; break; case AFS_CALL_AWAIT_REQUEST: call->state = AFS_CALL_REPLYING; break; default: break; } return 0; } if (ret == -ECONNABORTED) call->error = call->type->abort_to_error(call->abort_code); else call->error = ret; call->state = AFS_CALL_COMPLETE; return ret; }