// SPDX-License-Identifier: GPL-2.0 /* * Freescale i.MX7 SoC series MIPI-CSI V3.3 receiver driver * * Copyright (C) 2019 Linaro Ltd * Copyright (C) 2015-2016 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright (C) 2011 - 2013 Samsung Electronics Co., Ltd. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CSIS_DRIVER_NAME "imx7-mipi-csis" #define CSIS_SUBDEV_NAME CSIS_DRIVER_NAME #define CSIS_PAD_SINK 0 #define CSIS_PAD_SOURCE 1 #define CSIS_PADS_NUM 2 #define MIPI_CSIS_DEF_PIX_WIDTH 640 #define MIPI_CSIS_DEF_PIX_HEIGHT 480 /* Register map definition */ /* CSIS common control */ #define MIPI_CSIS_CMN_CTRL 0x04 #define MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW BIT(16) #define MIPI_CSIS_CMN_CTRL_INTER_MODE BIT(10) #define MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW_CTRL BIT(2) #define MIPI_CSIS_CMN_CTRL_RESET BIT(1) #define MIPI_CSIS_CMN_CTRL_ENABLE BIT(0) #define MIPI_CSIS_CMN_CTRL_LANE_NR_OFFSET 8 #define MIPI_CSIS_CMN_CTRL_LANE_NR_MASK (3 << 8) /* CSIS clock control */ #define MIPI_CSIS_CLK_CTRL 0x08 #define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH3(x) ((x) << 28) #define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH2(x) ((x) << 24) #define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH1(x) ((x) << 20) #define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH0(x) ((x) << 16) #define MIPI_CSIS_CLK_CTRL_CLKGATE_EN_MSK (0xf << 4) #define MIPI_CSIS_CLK_CTRL_WCLK_SRC BIT(0) /* CSIS Interrupt mask */ #define MIPI_CSIS_INTMSK 0x10 #define MIPI_CSIS_INTMSK_EVEN_BEFORE BIT(31) #define MIPI_CSIS_INTMSK_EVEN_AFTER BIT(30) #define MIPI_CSIS_INTMSK_ODD_BEFORE BIT(29) #define MIPI_CSIS_INTMSK_ODD_AFTER BIT(28) #define MIPI_CSIS_INTMSK_FRAME_START BIT(24) #define MIPI_CSIS_INTMSK_FRAME_END BIT(20) #define MIPI_CSIS_INTMSK_ERR_SOT_HS BIT(16) #define MIPI_CSIS_INTMSK_ERR_LOST_FS BIT(12) #define MIPI_CSIS_INTMSK_ERR_LOST_FE BIT(8) #define MIPI_CSIS_INTMSK_ERR_OVER BIT(4) #define MIPI_CSIS_INTMSK_ERR_WRONG_CFG BIT(3) #define MIPI_CSIS_INTMSK_ERR_ECC BIT(2) #define MIPI_CSIS_INTMSK_ERR_CRC BIT(1) #define MIPI_CSIS_INTMSK_ERR_UNKNOWN BIT(0) /* CSIS Interrupt source */ #define MIPI_CSIS_INTSRC 0x14 #define MIPI_CSIS_INTSRC_EVEN_BEFORE BIT(31) #define MIPI_CSIS_INTSRC_EVEN_AFTER BIT(30) #define MIPI_CSIS_INTSRC_EVEN BIT(30) #define MIPI_CSIS_INTSRC_ODD_BEFORE BIT(29) #define MIPI_CSIS_INTSRC_ODD_AFTER BIT(28) #define MIPI_CSIS_INTSRC_ODD (0x3 << 28) #define MIPI_CSIS_INTSRC_NON_IMAGE_DATA (0xf << 28) #define MIPI_CSIS_INTSRC_FRAME_START BIT(24) #define MIPI_CSIS_INTSRC_FRAME_END BIT(20) #define MIPI_CSIS_INTSRC_ERR_SOT_HS BIT(16) #define MIPI_CSIS_INTSRC_ERR_LOST_FS BIT(12) #define MIPI_CSIS_INTSRC_ERR_LOST_FE BIT(8) #define MIPI_CSIS_INTSRC_ERR_OVER BIT(4) #define MIPI_CSIS_INTSRC_ERR_WRONG_CFG BIT(3) #define MIPI_CSIS_INTSRC_ERR_ECC BIT(2) #define MIPI_CSIS_INTSRC_ERR_CRC BIT(1) #define MIPI_CSIS_INTSRC_ERR_UNKNOWN BIT(0) #define MIPI_CSIS_INTSRC_ERRORS 0xfffff /* D-PHY status control */ #define MIPI_CSIS_DPHYSTATUS 0x20 #define MIPI_CSIS_DPHYSTATUS_ULPS_DAT BIT(8) #define MIPI_CSIS_DPHYSTATUS_STOPSTATE_DAT BIT(4) #define MIPI_CSIS_DPHYSTATUS_ULPS_CLK BIT(1) #define MIPI_CSIS_DPHYSTATUS_STOPSTATE_CLK BIT(0) /* D-PHY common control */ #define MIPI_CSIS_DPHYCTRL 0x24 #define MIPI_CSIS_DPHYCTRL_HSS_MASK (0xff << 24) #define MIPI_CSIS_DPHYCTRL_HSS_OFFSET 24 #define MIPI_CSIS_DPHYCTRL_SCLKS_MASK (0x3 << 22) #define MIPI_CSIS_DPHYCTRL_SCLKS_OFFSET 22 #define MIPI_CSIS_DPHYCTRL_DPDN_SWAP_CLK BIT(6) #define MIPI_CSIS_DPHYCTRL_DPDN_SWAP_DAT BIT(5) #define MIPI_CSIS_DPHYCTRL_ENABLE_DAT BIT(1) #define MIPI_CSIS_DPHYCTRL_ENABLE_CLK BIT(0) #define MIPI_CSIS_DPHYCTRL_ENABLE (0x1f << 0) /* D-PHY Master and Slave Control register Low */ #define MIPI_CSIS_DPHYBCTRL_L 0x30 /* D-PHY Master and Slave Control register High */ #define MIPI_CSIS_DPHYBCTRL_H 0x34 /* D-PHY Slave Control register Low */ #define MIPI_CSIS_DPHYSCTRL_L 0x38 /* D-PHY Slave Control register High */ #define MIPI_CSIS_DPHYSCTRL_H 0x3c /* ISP Configuration register */ #define MIPI_CSIS_ISPCONFIG_CH0 0x40 #define MIPI_CSIS_ISPCONFIG_CH1 0x50 #define MIPI_CSIS_ISPCONFIG_CH2 0x60 #define MIPI_CSIS_ISPCONFIG_CH3 0x70 #define MIPI_CSIS_ISPCFG_MEM_FULL_GAP_MSK (0xff << 24) #define MIPI_CSIS_ISPCFG_MEM_FULL_GAP(x) ((x) << 24) #define MIPI_CSIS_ISPCFG_DOUBLE_CMPNT BIT(12) #define MIPI_CSIS_ISPCFG_ALIGN_32BIT BIT(11) #define MIPI_CSIS_ISPCFG_FMT_YCBCR422_8BIT (0x1e << 2) #define MIPI_CSIS_ISPCFG_FMT_RAW8 (0x2a << 2) #define MIPI_CSIS_ISPCFG_FMT_RAW10 (0x2b << 2) #define MIPI_CSIS_ISPCFG_FMT_RAW12 (0x2c << 2) #define MIPI_CSIS_ISPCFG_FMT_RAW14 (0x2d << 2) /* User defined formats, x = 1...4 */ #define MIPI_CSIS_ISPCFG_FMT_USER(x) ((0x30 + (x) - 1) << 2) #define MIPI_CSIS_ISPCFG_FMT_MASK (0x3f << 2) /* ISP Image Resolution register */ #define MIPI_CSIS_ISPRESOL_CH0 0x44 #define MIPI_CSIS_ISPRESOL_CH1 0x54 #define MIPI_CSIS_ISPRESOL_CH2 0x64 #define MIPI_CSIS_ISPRESOL_CH3 0x74 #define CSIS_MAX_PIX_WIDTH 0xffff #define CSIS_MAX_PIX_HEIGHT 0xffff /* ISP SYNC register */ #define MIPI_CSIS_ISPSYNC_CH0 0x48 #define MIPI_CSIS_ISPSYNC_CH1 0x58 #define MIPI_CSIS_ISPSYNC_CH2 0x68 #define MIPI_CSIS_ISPSYNC_CH3 0x78 #define MIPI_CSIS_ISPSYNC_HSYNC_LINTV_OFFSET 18 #define MIPI_CSIS_ISPSYNC_VSYNC_SINTV_OFFSET 12 #define MIPI_CSIS_ISPSYNC_VSYNC_EINTV_OFFSET 0 /* Non-image packet data buffers */ #define MIPI_CSIS_PKTDATA_ODD 0x2000 #define MIPI_CSIS_PKTDATA_EVEN 0x3000 #define MIPI_CSIS_PKTDATA_SIZE SZ_4K #define DEFAULT_SCLK_CSIS_FREQ 166000000UL enum { ST_POWERED = 1, ST_STREAMING = 2, ST_SUSPENDED = 4, }; struct mipi_csis_event { u32 mask; const char * const name; unsigned int counter; }; static const struct mipi_csis_event mipi_csis_events[] = { /* Errors */ { MIPI_CSIS_INTSRC_ERR_SOT_HS, "SOT Error" }, { MIPI_CSIS_INTSRC_ERR_LOST_FS, "Lost Frame Start Error" }, { MIPI_CSIS_INTSRC_ERR_LOST_FE, "Lost Frame End Error" }, { MIPI_CSIS_INTSRC_ERR_OVER, "FIFO Overflow Error" }, { MIPI_CSIS_INTSRC_ERR_WRONG_CFG, "Wrong Configuration Error" }, { MIPI_CSIS_INTSRC_ERR_ECC, "ECC Error" }, { MIPI_CSIS_INTSRC_ERR_CRC, "CRC Error" }, { MIPI_CSIS_INTSRC_ERR_UNKNOWN, "Unknown Error" }, /* Non-image data receive events */ { MIPI_CSIS_INTSRC_EVEN_BEFORE, "Non-image data before even frame" }, { MIPI_CSIS_INTSRC_EVEN_AFTER, "Non-image data after even frame" }, { MIPI_CSIS_INTSRC_ODD_BEFORE, "Non-image data before odd frame" }, { MIPI_CSIS_INTSRC_ODD_AFTER, "Non-image data after odd frame" }, /* Frame start/end */ { MIPI_CSIS_INTSRC_FRAME_START, "Frame Start" }, { MIPI_CSIS_INTSRC_FRAME_END, "Frame End" }, }; #define MIPI_CSIS_NUM_EVENTS ARRAY_SIZE(mipi_csis_events) static const char * const mipi_csis_clk_id[] = {"pclk", "wrap", "phy"}; struct csis_hw_reset { struct regmap *src; u8 req_src; u8 rst_bit; }; struct csi_state { /* lock elements below */ struct mutex lock; /* lock for event handler */ spinlock_t slock; struct device *dev; struct media_pad pads[CSIS_PADS_NUM]; struct v4l2_subdev mipi_sd; struct v4l2_async_notifier notifier; struct v4l2_subdev *src_sd; u8 index; struct platform_device *pdev; struct phy *phy; void __iomem *regs; struct clk *wrap_clk; int irq; u32 flags; struct dentry *debugfs_root; bool debug; int num_clks; struct clk_bulk_data *clks; u32 clk_frequency; u32 hs_settle; struct reset_control *mrst; const struct csis_pix_format *csis_fmt; struct v4l2_mbus_framefmt format_mbus; struct v4l2_fwnode_bus_mipi_csi2 bus; struct mipi_csis_event events[MIPI_CSIS_NUM_EVENTS]; struct csis_hw_reset hw_reset; struct regulator *mipi_phy_regulator; }; struct csis_pix_format { u32 code; u32 fmt_reg; u8 width; }; static const struct csis_pix_format mipi_csis_formats[] = { /* YUV formats. */ { .code = MEDIA_BUS_FMT_UYVY8_2X8, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_YCBCR422_8BIT, .width = 8, }, { .code = MEDIA_BUS_FMT_UYVY10_2X10, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_YCBCR422_8BIT, .width = 10, }, /* RAW (Bayer and greyscale) formats. */ { .code = MEDIA_BUS_FMT_SBGGR8_1X8, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_SGBRG8_1X8, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_SGRBG8_1X8, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_SRGGB8_1X8, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_Y8_1X8, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW8, .width = 8, }, { .code = MEDIA_BUS_FMT_SBGGR10_1X10, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_SGBRG10_1X10, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_SGRBG10_1X10, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_SRGGB10_1X10, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_Y10_1X10, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW10, .width = 10, }, { .code = MEDIA_BUS_FMT_SBGGR12_1X12, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_SGBRG12_1X12, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_SGRBG12_1X12, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_SRGGB12_1X12, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_Y12_1X12, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW12, .width = 12, }, { .code = MEDIA_BUS_FMT_SBGGR14_1X14, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW14, .width = 14, }, { .code = MEDIA_BUS_FMT_SGBRG14_1X14, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW14, .width = 14, }, { .code = MEDIA_BUS_FMT_SGRBG14_1X14, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW14, .width = 14, }, { .code = MEDIA_BUS_FMT_SRGGB14_1X14, .fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW14, .width = 14, } }; #define mipi_csis_write(__csis, __r, __v) writel(__v, (__csis)->regs + (__r)) #define mipi_csis_read(__csis, __r) readl((__csis)->regs + (__r)) static int mipi_csis_dump_regs(struct csi_state *state) { struct device *dev = &state->pdev->dev; unsigned int i; u32 cfg; static const struct { u32 offset; const char * const name; } registers[] = { { 0x04, "CTRL" }, { 0x24, "DPHYCTRL" }, { 0x08, "CLKCTRL" }, { 0x20, "DPHYSTS" }, { 0x10, "INTMSK" }, { 0x40, "CONFIG_CH0" }, { 0x44, "RESOL_CH0" }, { 0xC0, "DBG_CONFIG" }, { 0x38, "DPHYSLAVE_L" }, { 0x3C, "DPHYSLAVE_H" }, }; dev_info(dev, "--- REGISTERS ---\n"); for (i = 0; i < ARRAY_SIZE(registers); i++) { cfg = mipi_csis_read(state, registers[i].offset); dev_info(dev, "%12s: 0x%08x\n", registers[i].name, cfg); } return 0; } static struct csi_state * mipi_notifier_to_csis_state(struct v4l2_async_notifier *n) { return container_of(n, struct csi_state, notifier); } static struct csi_state *mipi_sd_to_csis_state(struct v4l2_subdev *sdev) { return container_of(sdev, struct csi_state, mipi_sd); } static const struct csis_pix_format *find_csis_format(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(mipi_csis_formats); i++) if (code == mipi_csis_formats[i].code) return &mipi_csis_formats[i]; return NULL; } static void mipi_csis_enable_interrupts(struct csi_state *state, bool on) { mipi_csis_write(state, MIPI_CSIS_INTMSK, on ? 0xffffffff : 0); } static void mipi_csis_sw_reset(struct csi_state *state) { u32 val = mipi_csis_read(state, MIPI_CSIS_CMN_CTRL); mipi_csis_write(state, MIPI_CSIS_CMN_CTRL, val | MIPI_CSIS_CMN_CTRL_RESET); usleep_range(10, 20); } static int mipi_csis_phy_init(struct csi_state *state) { state->mipi_phy_regulator = devm_regulator_get(state->dev, "phy"); if (IS_ERR(state->mipi_phy_regulator)) return PTR_ERR(state->mipi_phy_regulator); return regulator_set_voltage(state->mipi_phy_regulator, 1000000, 1000000); } static void mipi_csis_phy_reset(struct csi_state *state) { reset_control_assert(state->mrst); msleep(20); reset_control_deassert(state->mrst); } static void mipi_csis_system_enable(struct csi_state *state, int on) { u32 val, mask; val = mipi_csis_read(state, MIPI_CSIS_CMN_CTRL); if (on) val |= MIPI_CSIS_CMN_CTRL_ENABLE; else val &= ~MIPI_CSIS_CMN_CTRL_ENABLE; mipi_csis_write(state, MIPI_CSIS_CMN_CTRL, val); val = mipi_csis_read(state, MIPI_CSIS_DPHYCTRL); val &= ~MIPI_CSIS_DPHYCTRL_ENABLE; if (on) { mask = (1 << (state->bus.num_data_lanes + 1)) - 1; val |= (mask & MIPI_CSIS_DPHYCTRL_ENABLE); } mipi_csis_write(state, MIPI_CSIS_DPHYCTRL, val); } /* Called with the state.lock mutex held */ static void __mipi_csis_set_format(struct csi_state *state) { struct v4l2_mbus_framefmt *mf = &state->format_mbus; u32 val; /* Color format */ val = mipi_csis_read(state, MIPI_CSIS_ISPCONFIG_CH0); val &= ~(MIPI_CSIS_ISPCFG_ALIGN_32BIT | MIPI_CSIS_ISPCFG_FMT_MASK); val |= state->csis_fmt->fmt_reg; mipi_csis_write(state, MIPI_CSIS_ISPCONFIG_CH0, val); /* Pixel resolution */ val = mf->width | (mf->height << 16); mipi_csis_write(state, MIPI_CSIS_ISPRESOL_CH0, val); } static void mipi_csis_set_hsync_settle(struct csi_state *state, int hs_settle) { u32 val = mipi_csis_read(state, MIPI_CSIS_DPHYCTRL); val = (val & ~MIPI_CSIS_DPHYCTRL_HSS_MASK) | (hs_settle << 24); mipi_csis_write(state, MIPI_CSIS_DPHYCTRL, val); } static void mipi_csis_set_params(struct csi_state *state) { int lanes = state->bus.num_data_lanes; u32 val; val = mipi_csis_read(state, MIPI_CSIS_CMN_CTRL); val &= ~MIPI_CSIS_CMN_CTRL_LANE_NR_MASK; val |= (lanes - 1) << MIPI_CSIS_CMN_CTRL_LANE_NR_OFFSET; val |= MIPI_CSIS_CMN_CTRL_INTER_MODE; mipi_csis_write(state, MIPI_CSIS_CMN_CTRL, val); __mipi_csis_set_format(state); mipi_csis_set_hsync_settle(state, state->hs_settle); val = (0 << MIPI_CSIS_ISPSYNC_HSYNC_LINTV_OFFSET) | (0 << MIPI_CSIS_ISPSYNC_VSYNC_SINTV_OFFSET) | (0 << MIPI_CSIS_ISPSYNC_VSYNC_EINTV_OFFSET); mipi_csis_write(state, MIPI_CSIS_ISPSYNC_CH0, val); val = mipi_csis_read(state, MIPI_CSIS_CLK_CTRL); val &= ~MIPI_CSIS_CLK_CTRL_WCLK_SRC; if (state->wrap_clk) val |= MIPI_CSIS_CLK_CTRL_WCLK_SRC; else val &= ~MIPI_CSIS_CLK_CTRL_WCLK_SRC; val |= MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH0(15); val &= ~MIPI_CSIS_CLK_CTRL_CLKGATE_EN_MSK; mipi_csis_write(state, MIPI_CSIS_CLK_CTRL, val); mipi_csis_write(state, MIPI_CSIS_DPHYBCTRL_L, 0x1f4); mipi_csis_write(state, MIPI_CSIS_DPHYBCTRL_H, 0); /* Update the shadow register. */ val = mipi_csis_read(state, MIPI_CSIS_CMN_CTRL); mipi_csis_write(state, MIPI_CSIS_CMN_CTRL, val | MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW | MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW_CTRL); } static int mipi_csis_clk_enable(struct csi_state *state) { return clk_bulk_prepare_enable(state->num_clks, state->clks); } static void mipi_csis_clk_disable(struct csi_state *state) { clk_bulk_disable_unprepare(state->num_clks, state->clks); } static int mipi_csis_clk_get(struct csi_state *state) { struct device *dev = &state->pdev->dev; unsigned int i; int ret; state->num_clks = ARRAY_SIZE(mipi_csis_clk_id); state->clks = devm_kcalloc(dev, state->num_clks, sizeof(*state->clks), GFP_KERNEL); if (!state->clks) return -ENOMEM; for (i = 0; i < state->num_clks; i++) state->clks[i].id = mipi_csis_clk_id[i]; ret = devm_clk_bulk_get(dev, state->num_clks, state->clks); if (ret < 0) return ret; state->wrap_clk = devm_clk_get(dev, "wrap"); if (IS_ERR(state->wrap_clk)) return PTR_ERR(state->wrap_clk); /* Set clock rate */ ret = clk_set_rate(state->wrap_clk, state->clk_frequency); if (ret < 0) dev_err(dev, "set rate=%d failed: %d\n", state->clk_frequency, ret); return ret; } static void mipi_csis_start_stream(struct csi_state *state) { mipi_csis_sw_reset(state); mipi_csis_set_params(state); mipi_csis_system_enable(state, true); mipi_csis_enable_interrupts(state, true); } static void mipi_csis_stop_stream(struct csi_state *state) { mipi_csis_enable_interrupts(state, false); mipi_csis_system_enable(state, false); } static void mipi_csis_clear_counters(struct csi_state *state) { unsigned long flags; unsigned int i; spin_lock_irqsave(&state->slock, flags); for (i = 0; i < MIPI_CSIS_NUM_EVENTS; i++) state->events[i].counter = 0; spin_unlock_irqrestore(&state->slock, flags); } static void mipi_csis_log_counters(struct csi_state *state, bool non_errors) { int i = non_errors ? MIPI_CSIS_NUM_EVENTS : MIPI_CSIS_NUM_EVENTS - 4; struct device *dev = &state->pdev->dev; unsigned long flags; spin_lock_irqsave(&state->slock, flags); for (i--; i >= 0; i--) { if (state->events[i].counter > 0 || state->debug) dev_info(dev, "%s events: %d\n", state->events[i].name, state->events[i].counter); } spin_unlock_irqrestore(&state->slock, flags); } /* * V4L2 subdev operations */ static int mipi_csis_s_stream(struct v4l2_subdev *mipi_sd, int enable) { struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); int ret = 0; if (enable) { mipi_csis_clear_counters(state); ret = pm_runtime_get_sync(&state->pdev->dev); if (ret < 0) { pm_runtime_put_noidle(&state->pdev->dev); return ret; } ret = v4l2_subdev_call(state->src_sd, core, s_power, 1); if (ret < 0) return ret; } mutex_lock(&state->lock); if (enable) { if (state->flags & ST_SUSPENDED) { ret = -EBUSY; goto unlock; } mipi_csis_start_stream(state); ret = v4l2_subdev_call(state->src_sd, video, s_stream, 1); if (ret < 0) goto unlock; mipi_csis_log_counters(state, true); state->flags |= ST_STREAMING; } else { v4l2_subdev_call(state->src_sd, video, s_stream, 0); ret = v4l2_subdev_call(state->src_sd, core, s_power, 0); mipi_csis_stop_stream(state); state->flags &= ~ST_STREAMING; if (state->debug) mipi_csis_log_counters(state, true); } unlock: mutex_unlock(&state->lock); if (!enable) pm_runtime_put(&state->pdev->dev); return ret; } static int mipi_csis_link_setup(struct media_entity *entity, const struct media_pad *local_pad, const struct media_pad *remote_pad, u32 flags) { struct v4l2_subdev *mipi_sd = media_entity_to_v4l2_subdev(entity); struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); struct v4l2_subdev *remote_sd; int ret = 0; dev_dbg(state->dev, "link setup %s -> %s", remote_pad->entity->name, local_pad->entity->name); remote_sd = media_entity_to_v4l2_subdev(remote_pad->entity); mutex_lock(&state->lock); if (local_pad->flags & MEDIA_PAD_FL_SINK) { if (flags & MEDIA_LNK_FL_ENABLED) { if (state->src_sd) { ret = -EBUSY; goto out; } state->src_sd = remote_sd; } else { state->src_sd = NULL; } } out: mutex_unlock(&state->lock); return ret; } static struct v4l2_mbus_framefmt * mipi_csis_get_format(struct csi_state *state, struct v4l2_subdev_pad_config *cfg, enum v4l2_subdev_format_whence which, unsigned int pad) { if (which == V4L2_SUBDEV_FORMAT_TRY) return v4l2_subdev_get_try_format(&state->mipi_sd, cfg, pad); return &state->format_mbus; } static int mipi_csis_init_cfg(struct v4l2_subdev *mipi_sd, struct v4l2_subdev_pad_config *cfg) { struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); struct v4l2_mbus_framefmt *fmt_sink; struct v4l2_mbus_framefmt *fmt_source; enum v4l2_subdev_format_whence which; which = cfg ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE; fmt_sink = mipi_csis_get_format(state, cfg, which, CSIS_PAD_SINK); fmt_sink->code = MEDIA_BUS_FMT_UYVY8_2X8; fmt_sink->width = MIPI_CSIS_DEF_PIX_WIDTH; fmt_sink->height = MIPI_CSIS_DEF_PIX_HEIGHT; fmt_sink->field = V4L2_FIELD_NONE; fmt_sink->colorspace = V4L2_COLORSPACE_SMPTE170M; fmt_sink->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt_sink->colorspace); fmt_sink->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt_sink->colorspace); fmt_sink->quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, fmt_sink->colorspace, fmt_sink->ycbcr_enc); /* * When called from mipi_csis_subdev_init() to initialize the active * configuration, cfg is NULL, which indicates there's no source pad * configuration to set. */ if (!cfg) return 0; fmt_source = mipi_csis_get_format(state, cfg, which, CSIS_PAD_SOURCE); *fmt_source = *fmt_sink; return 0; } static int mipi_csis_get_fmt(struct v4l2_subdev *mipi_sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *sdformat) { struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); struct v4l2_mbus_framefmt *fmt; mutex_lock(&state->lock); fmt = mipi_csis_get_format(state, cfg, sdformat->which, sdformat->pad); sdformat->format = *fmt; mutex_unlock(&state->lock); return 0; } static int mipi_csis_enum_mbus_code(struct v4l2_subdev *mipi_sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); /* * The CSIS can't transcode in any way, the source format is identical * to the sink format. */ if (code->pad == CSIS_PAD_SOURCE) { struct v4l2_mbus_framefmt *fmt; if (code->index > 0) return -EINVAL; fmt = mipi_csis_get_format(state, cfg, code->which, code->pad); code->code = fmt->code; return 0; } if (code->pad != CSIS_PAD_SINK) return -EINVAL; if (code->index >= ARRAY_SIZE(mipi_csis_formats)) return -EINVAL; code->code = mipi_csis_formats[code->index].code; return 0; } static int mipi_csis_set_fmt(struct v4l2_subdev *mipi_sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *sdformat) { struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); struct csis_pix_format const *csis_fmt; struct v4l2_mbus_framefmt *fmt; unsigned int align; /* * The CSIS can't transcode in any way, the source format can't be * modified. */ if (sdformat->pad == CSIS_PAD_SOURCE) return mipi_csis_get_fmt(mipi_sd, cfg, sdformat); if (sdformat->pad != CSIS_PAD_SINK) return -EINVAL; fmt = mipi_csis_get_format(state, cfg, sdformat->which, sdformat->pad); mutex_lock(&state->lock); /* Validate the media bus code and clamp the size. */ csis_fmt = find_csis_format(sdformat->format.code); if (!csis_fmt) csis_fmt = &mipi_csis_formats[0]; fmt->code = csis_fmt->code; fmt->width = sdformat->format.width; fmt->height = sdformat->format.height; /* * The total number of bits per line must be a multiple of 8. We thus * need to align the width for formats that are not multiples of 8 * bits. */ switch (csis_fmt->width % 8) { case 0: align = 1; break; case 4: align = 2; break; case 2: case 6: align = 4; break; case 1: case 3: case 5: case 7: align = 8; break; } v4l_bound_align_image(&fmt->width, 1, CSIS_MAX_PIX_WIDTH, align, &fmt->height, 1, CSIS_MAX_PIX_HEIGHT, 1, 0); sdformat->format = *fmt; /* Propagate the format from sink to source. */ fmt = mipi_csis_get_format(state, cfg, sdformat->which, CSIS_PAD_SOURCE); *fmt = sdformat->format; /* Store the CSIS format descriptor for active formats. */ if (sdformat->which == V4L2_SUBDEV_FORMAT_ACTIVE) state->csis_fmt = csis_fmt; mutex_unlock(&state->lock); return 0; } static int mipi_csis_log_status(struct v4l2_subdev *mipi_sd) { struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); mutex_lock(&state->lock); mipi_csis_log_counters(state, true); if (state->debug && (state->flags & ST_POWERED)) mipi_csis_dump_regs(state); mutex_unlock(&state->lock); return 0; } static irqreturn_t mipi_csis_irq_handler(int irq, void *dev_id) { struct csi_state *state = dev_id; unsigned long flags; unsigned int i; u32 status; status = mipi_csis_read(state, MIPI_CSIS_INTSRC); spin_lock_irqsave(&state->slock, flags); /* Update the event/error counters */ if ((status & MIPI_CSIS_INTSRC_ERRORS) || state->debug) { for (i = 0; i < MIPI_CSIS_NUM_EVENTS; i++) { if (!(status & state->events[i].mask)) continue; state->events[i].counter++; } } spin_unlock_irqrestore(&state->slock, flags); mipi_csis_write(state, MIPI_CSIS_INTSRC, status); return IRQ_HANDLED; } static const struct v4l2_subdev_core_ops mipi_csis_core_ops = { .log_status = mipi_csis_log_status, }; static const struct media_entity_operations mipi_csis_entity_ops = { .link_setup = mipi_csis_link_setup, .link_validate = v4l2_subdev_link_validate, .get_fwnode_pad = v4l2_subdev_get_fwnode_pad_1_to_1, }; static const struct v4l2_subdev_video_ops mipi_csis_video_ops = { .s_stream = mipi_csis_s_stream, }; static const struct v4l2_subdev_pad_ops mipi_csis_pad_ops = { .init_cfg = mipi_csis_init_cfg, .enum_mbus_code = mipi_csis_enum_mbus_code, .get_fmt = mipi_csis_get_fmt, .set_fmt = mipi_csis_set_fmt, }; static const struct v4l2_subdev_ops mipi_csis_subdev_ops = { .core = &mipi_csis_core_ops, .video = &mipi_csis_video_ops, .pad = &mipi_csis_pad_ops, }; static int mipi_csis_parse_dt(struct platform_device *pdev, struct csi_state *state) { struct device_node *node = pdev->dev.of_node; if (of_property_read_u32(node, "clock-frequency", &state->clk_frequency)) state->clk_frequency = DEFAULT_SCLK_CSIS_FREQ; /* Get MIPI PHY resets */ state->mrst = devm_reset_control_get_exclusive(&pdev->dev, "mrst"); if (IS_ERR(state->mrst)) return PTR_ERR(state->mrst); /* Get MIPI CSI-2 bus configuration from the endpoint node. */ of_property_read_u32(node, "fsl,csis-hs-settle", &state->hs_settle); return 0; } static int mipi_csis_pm_resume(struct device *dev, bool runtime); static int mipi_csis_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd, struct v4l2_async_subdev *asd) { struct csi_state *state = mipi_notifier_to_csis_state(notifier); struct media_pad *sink = &state->mipi_sd.entity.pads[CSIS_PAD_SINK]; return v4l2_create_fwnode_links_to_pad(sd, sink); } static const struct v4l2_async_notifier_operations mipi_csis_notify_ops = { .bound = mipi_csis_notify_bound, }; static int mipi_csis_subdev_init(struct v4l2_subdev *mipi_sd, struct platform_device *pdev, const struct v4l2_subdev_ops *ops) { struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); v4l2_subdev_init(mipi_sd, ops); mipi_sd->owner = THIS_MODULE; snprintf(mipi_sd->name, sizeof(mipi_sd->name), "%s.%d", CSIS_SUBDEV_NAME, state->index); mipi_sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; mipi_sd->ctrl_handler = NULL; mipi_sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; mipi_sd->entity.ops = &mipi_csis_entity_ops; mipi_sd->dev = &pdev->dev; state->csis_fmt = &mipi_csis_formats[0]; mipi_csis_init_cfg(mipi_sd, NULL); v4l2_set_subdevdata(mipi_sd, &pdev->dev); state->pads[CSIS_PAD_SINK].flags = MEDIA_PAD_FL_SINK; state->pads[CSIS_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE; return media_entity_pads_init(&mipi_sd->entity, CSIS_PADS_NUM, state->pads); } static int mipi_csis_async_register(struct csi_state *state) { struct v4l2_fwnode_endpoint vep = { .bus_type = V4L2_MBUS_CSI2_DPHY, }; struct v4l2_async_subdev *asd = NULL; struct fwnode_handle *ep; int ret; v4l2_async_notifier_init(&state->notifier); ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(state->dev), 0, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!ep) return -ENOTCONN; ret = v4l2_fwnode_endpoint_parse(ep, &vep); if (ret) goto err_parse; state->bus = vep.bus.mipi_csi2; dev_dbg(state->dev, "data lanes: %d\n", state->bus.num_data_lanes); dev_dbg(state->dev, "flags: 0x%08x\n", state->bus.flags); asd = kzalloc(sizeof(*asd), GFP_KERNEL); if (!asd) { ret = -ENOMEM; goto err_parse; } ret = v4l2_async_notifier_add_fwnode_remote_subdev( &state->notifier, ep, asd); if (ret) goto err_parse; fwnode_handle_put(ep); state->notifier.ops = &mipi_csis_notify_ops; ret = v4l2_async_subdev_notifier_register(&state->mipi_sd, &state->notifier); if (ret) return ret; return v4l2_async_register_subdev(&state->mipi_sd); err_parse: fwnode_handle_put(ep); kfree(asd); return ret; } static int mipi_csis_dump_regs_show(struct seq_file *m, void *private) { struct csi_state *state = m->private; return mipi_csis_dump_regs(state); } DEFINE_SHOW_ATTRIBUTE(mipi_csis_dump_regs); static void mipi_csis_debugfs_init(struct csi_state *state) { state->debugfs_root = debugfs_create_dir(dev_name(state->dev), NULL); debugfs_create_bool("debug_enable", 0600, state->debugfs_root, &state->debug); debugfs_create_file("dump_regs", 0600, state->debugfs_root, state, &mipi_csis_dump_regs_fops); } static void mipi_csis_debugfs_exit(struct csi_state *state) { debugfs_remove_recursive(state->debugfs_root); } static int mipi_csis_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct csi_state *state; int ret; state = devm_kzalloc(dev, sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; spin_lock_init(&state->slock); state->pdev = pdev; state->dev = dev; ret = mipi_csis_parse_dt(pdev, state); if (ret < 0) { dev_err(dev, "Failed to parse device tree: %d\n", ret); return ret; } ret = mipi_csis_phy_init(state); if (ret < 0) return ret; mipi_csis_phy_reset(state); state->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(state->regs)) return PTR_ERR(state->regs); state->irq = platform_get_irq(pdev, 0); if (state->irq < 0) return state->irq; ret = mipi_csis_clk_get(state); if (ret < 0) return ret; ret = mipi_csis_clk_enable(state); if (ret < 0) { dev_err(state->dev, "failed to enable clocks: %d\n", ret); return ret; } ret = devm_request_irq(dev, state->irq, mipi_csis_irq_handler, 0, dev_name(dev), state); if (ret) { dev_err(dev, "Interrupt request failed\n"); goto disable_clock; } platform_set_drvdata(pdev, &state->mipi_sd); mutex_init(&state->lock); ret = mipi_csis_subdev_init(&state->mipi_sd, pdev, &mipi_csis_subdev_ops); if (ret < 0) goto disable_clock; ret = mipi_csis_async_register(state); if (ret < 0) { dev_err(&pdev->dev, "async register failed: %d\n", ret); goto cleanup; } memcpy(state->events, mipi_csis_events, sizeof(state->events)); mipi_csis_debugfs_init(state); pm_runtime_enable(dev); if (!pm_runtime_enabled(dev)) { ret = mipi_csis_pm_resume(dev, true); if (ret < 0) goto unregister_all; } dev_info(&pdev->dev, "lanes: %d, hs_settle: %d, wclk: %d, freq: %u\n", state->bus.num_data_lanes, state->hs_settle, state->wrap_clk ? 1 : 0, state->clk_frequency); return 0; unregister_all: mipi_csis_debugfs_exit(state); cleanup: media_entity_cleanup(&state->mipi_sd.entity); v4l2_async_notifier_unregister(&state->notifier); v4l2_async_notifier_cleanup(&state->notifier); v4l2_async_unregister_subdev(&state->mipi_sd); disable_clock: mipi_csis_clk_disable(state); mutex_destroy(&state->lock); return ret; } static int mipi_csis_pm_suspend(struct device *dev, bool runtime) { struct v4l2_subdev *mipi_sd = dev_get_drvdata(dev); struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); int ret = 0; mutex_lock(&state->lock); if (state->flags & ST_POWERED) { mipi_csis_stop_stream(state); ret = regulator_disable(state->mipi_phy_regulator); if (ret) goto unlock; mipi_csis_clk_disable(state); state->flags &= ~ST_POWERED; if (!runtime) state->flags |= ST_SUSPENDED; } unlock: mutex_unlock(&state->lock); return ret ? -EAGAIN : 0; } static int mipi_csis_pm_resume(struct device *dev, bool runtime) { struct v4l2_subdev *mipi_sd = dev_get_drvdata(dev); struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); int ret = 0; mutex_lock(&state->lock); if (!runtime && !(state->flags & ST_SUSPENDED)) goto unlock; if (!(state->flags & ST_POWERED)) { ret = regulator_enable(state->mipi_phy_regulator); if (ret) goto unlock; state->flags |= ST_POWERED; mipi_csis_clk_enable(state); } if (state->flags & ST_STREAMING) mipi_csis_start_stream(state); state->flags &= ~ST_SUSPENDED; unlock: mutex_unlock(&state->lock); return ret ? -EAGAIN : 0; } static int __maybe_unused mipi_csis_suspend(struct device *dev) { return mipi_csis_pm_suspend(dev, false); } static int __maybe_unused mipi_csis_resume(struct device *dev) { return mipi_csis_pm_resume(dev, false); } static int __maybe_unused mipi_csis_runtime_suspend(struct device *dev) { return mipi_csis_pm_suspend(dev, true); } static int __maybe_unused mipi_csis_runtime_resume(struct device *dev) { return mipi_csis_pm_resume(dev, true); } static int mipi_csis_remove(struct platform_device *pdev) { struct v4l2_subdev *mipi_sd = platform_get_drvdata(pdev); struct csi_state *state = mipi_sd_to_csis_state(mipi_sd); mipi_csis_debugfs_exit(state); v4l2_async_notifier_unregister(&state->notifier); v4l2_async_notifier_cleanup(&state->notifier); v4l2_async_unregister_subdev(&state->mipi_sd); pm_runtime_disable(&pdev->dev); mipi_csis_pm_suspend(&pdev->dev, true); mipi_csis_clk_disable(state); media_entity_cleanup(&state->mipi_sd.entity); mutex_destroy(&state->lock); pm_runtime_set_suspended(&pdev->dev); return 0; } static const struct dev_pm_ops mipi_csis_pm_ops = { SET_RUNTIME_PM_OPS(mipi_csis_runtime_suspend, mipi_csis_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(mipi_csis_suspend, mipi_csis_resume) }; static const struct of_device_id mipi_csis_of_match[] = { { .compatible = "fsl,imx7-mipi-csi2", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mipi_csis_of_match); static struct platform_driver mipi_csis_driver = { .probe = mipi_csis_probe, .remove = mipi_csis_remove, .driver = { .of_match_table = mipi_csis_of_match, .name = CSIS_DRIVER_NAME, .pm = &mipi_csis_pm_ops, }, }; module_platform_driver(mipi_csis_driver); MODULE_DESCRIPTION("i.MX7 MIPI CSI-2 Receiver driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx7-mipi-csi2");