// SPDX-License-Identifier: GPL-2.0 // // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface // // Copyright (c) 2022 Chuanhong Guo // // This driver is based on the SPI-NAND mtd driver from Mediatek SDK: // // Copyright (C) 2020 MediaTek Inc. // Author: Weijie Gao // // This controller organize the page data as several interleaved sectors // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size) // +---------+------+------+---------+------+------+-----+ // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... | // +---------+------+------+---------+------+------+-----+ // With auto-format turned on, DMA only returns this part: // +---------+---------+-----+ // | Sector1 | Sector2 | ... | // +---------+---------+-----+ // The FDM data will be filled to the registers, and ECC parity data isn't // accessible. // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA // in it's original order shown in the first table. ECC can't be turned on when // auto-format is off. // // However, Linux SPI-NAND driver expects the data returned as: // +------+-----+ // | Page | OOB | // +------+-----+ // where the page data is continuously stored instead of interleaved. // So we assume all instructions matching the page_op template between ECC // prepare_io_req and finish_io_req are for page cache r/w. // Here's how this spi-mem driver operates when reading: // 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off). // 2. Perform page ops and let the controller fill the DMA bounce buffer with // de-interleaved sector data and set FDM registers. // 3. Return the data as: // +---------+---------+-----+------+------+-----+ // | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... | // +---------+---------+-----+------+------+-----+ // 4. For other matching spi_mem ops outside a prepare/finish_io_req pair, // read the data with auto-format off into the bounce buffer and copy // needed data to the buffer specified in the request. // // Write requests operates in a similar manner. // As a limitation of this strategy, we won't be able to access any ECC parity // data at all in Linux. // // Here's the bad block mark situation on MTK chips: // In older chips like mt7622, MTK uses the first FDM byte in the first sector // as the bad block mark. After de-interleaving, this byte appears at [pagesize] // in the returned data, which is the BBM position expected by kernel. However, // the conventional bad block mark is the first byte of the OOB, which is part // of the last sector data in the interleaved layout. Instead of fixing their // hardware, MTK decided to address this inconsistency in software. On these // later chips, the BootROM expects the following: // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at // (page_size - (nsectors - 1) * spare_size) in the DMA buffer. // 2. The original byte stored at that position in the DMA buffer will be stored // as the first byte of the FDM section in the last sector. // We can't disagree with the BootROM, so after de-interleaving, we need to // perform the following swaps in read: // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size], // which is the expected BBM position by kernel. // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to // [page_size - (nsectors - 1) * spare_size] // Similarly, when writing, we need to perform swaps in the other direction. #include #include #include #include #include #include #include #include #include #include #include #include #include #include // NFI registers #define NFI_CNFG 0x000 #define CNFG_OP_MODE_S 12 #define CNFG_OP_MODE_CUST 6 #define CNFG_OP_MODE_PROGRAM 3 #define CNFG_AUTO_FMT_EN BIT(9) #define CNFG_HW_ECC_EN BIT(8) #define CNFG_DMA_BURST_EN BIT(2) #define CNFG_READ_MODE BIT(1) #define CNFG_DMA_MODE BIT(0) #define NFI_PAGEFMT 0x0004 #define NFI_SPARE_SIZE_LS_S 16 #define NFI_FDM_ECC_NUM_S 12 #define NFI_FDM_NUM_S 8 #define NFI_SPARE_SIZE_S 4 #define NFI_SEC_SEL_512 BIT(2) #define NFI_PAGE_SIZE_S 0 #define NFI_PAGE_SIZE_512_2K 0 #define NFI_PAGE_SIZE_2K_4K 1 #define NFI_PAGE_SIZE_4K_8K 2 #define NFI_PAGE_SIZE_8K_16K 3 #define NFI_CON 0x008 #define CON_SEC_NUM_S 12 #define CON_BWR BIT(9) #define CON_BRD BIT(8) #define CON_NFI_RST BIT(1) #define CON_FIFO_FLUSH BIT(0) #define NFI_INTR_EN 0x010 #define NFI_INTR_STA 0x014 #define NFI_IRQ_INTR_EN BIT(31) #define NFI_IRQ_CUS_READ BIT(8) #define NFI_IRQ_CUS_PG BIT(7) #define NFI_CMD 0x020 #define NFI_CMD_DUMMY_READ 0x00 #define NFI_CMD_DUMMY_WRITE 0x80 #define NFI_STRDATA 0x040 #define STR_DATA BIT(0) #define NFI_STA 0x060 #define NFI_NAND_FSM_7622 GENMASK(28, 24) #define NFI_NAND_FSM_7986 GENMASK(29, 23) #define NFI_FSM GENMASK(19, 16) #define READ_EMPTY BIT(12) #define NFI_FIFOSTA 0x064 #define FIFO_WR_REMAIN_S 8 #define FIFO_RD_REMAIN_S 0 #define NFI_ADDRCNTR 0x070 #define SEC_CNTR GENMASK(16, 12) #define SEC_CNTR_S 12 #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) #define NFI_STRADDR 0x080 #define NFI_BYTELEN 0x084 #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) #define NFI_FDM0L 0x0a0 #define NFI_FDM0M 0x0a4 #define NFI_FDML(n) (NFI_FDM0L + (n)*8) #define NFI_FDMM(n) (NFI_FDM0M + (n)*8) #define NFI_DEBUG_CON1 0x220 #define WBUF_EN BIT(2) #define NFI_MASTERSTA 0x224 #define MAS_ADDR GENMASK(11, 9) #define MAS_RD GENMASK(8, 6) #define MAS_WR GENMASK(5, 3) #define MAS_RDDLY GENMASK(2, 0) #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY) #define NFI_MASTERSTA_MASK_7986 3 // SNFI registers #define SNF_MAC_CTL 0x500 #define MAC_XIO_SEL BIT(4) #define SF_MAC_EN BIT(3) #define SF_TRIG BIT(2) #define WIP_READY BIT(1) #define WIP BIT(0) #define SNF_MAC_OUTL 0x504 #define SNF_MAC_INL 0x508 #define SNF_RD_CTL2 0x510 #define DATA_READ_DUMMY_S 8 #define DATA_READ_MAX_DUMMY 0xf #define DATA_READ_CMD_S 0 #define SNF_RD_CTL3 0x514 #define SNF_PG_CTL1 0x524 #define PG_LOAD_CMD_S 8 #define SNF_PG_CTL2 0x528 #define SNF_MISC_CTL 0x538 #define SW_RST BIT(28) #define FIFO_RD_LTC_S 25 #define PG_LOAD_X4_EN BIT(20) #define DATA_READ_MODE_S 16 #define DATA_READ_MODE GENMASK(18, 16) #define DATA_READ_MODE_X1 0 #define DATA_READ_MODE_X2 1 #define DATA_READ_MODE_X4 2 #define DATA_READ_MODE_DUAL 5 #define DATA_READ_MODE_QUAD 6 #define PG_LOAD_CUSTOM_EN BIT(7) #define DATARD_CUSTOM_EN BIT(6) #define CS_DESELECT_CYC_S 0 #define SNF_MISC_CTL2 0x53c #define PROGRAM_LOAD_BYTE_NUM_S 16 #define READ_DATA_BYTE_NUM_S 11 #define SNF_DLY_CTL3 0x548 #define SFCK_SAM_DLY_S 0 #define SNF_STA_CTL1 0x550 #define CUS_PG_DONE BIT(28) #define CUS_READ_DONE BIT(27) #define SPI_STATE_S 0 #define SPI_STATE GENMASK(3, 0) #define SNF_CFG 0x55c #define SPI_MODE BIT(0) #define SNF_GPRAM 0x800 #define SNF_GPRAM_SIZE 0xa0 #define SNFI_POLL_INTERVAL 1000000 static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 }; static const u8 mt7986_spare_sizes[] = { 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, 74 }; struct mtk_snand_caps { u16 sector_size; u16 max_sectors; u16 fdm_size; u16 fdm_ecc_size; u16 fifo_size; bool bbm_swap; bool empty_page_check; u32 mastersta_mask; u32 nandfsm_mask; const u8 *spare_sizes; u32 num_spare_size; }; static const struct mtk_snand_caps mt7622_snand_caps = { .sector_size = 512, .max_sectors = 8, .fdm_size = 8, .fdm_ecc_size = 1, .fifo_size = 32, .bbm_swap = false, .empty_page_check = false, .mastersta_mask = NFI_MASTERSTA_MASK_7622, .nandfsm_mask = NFI_NAND_FSM_7622, .spare_sizes = mt7622_spare_sizes, .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) }; static const struct mtk_snand_caps mt7629_snand_caps = { .sector_size = 512, .max_sectors = 8, .fdm_size = 8, .fdm_ecc_size = 1, .fifo_size = 32, .bbm_swap = true, .empty_page_check = false, .mastersta_mask = NFI_MASTERSTA_MASK_7622, .nandfsm_mask = NFI_NAND_FSM_7622, .spare_sizes = mt7622_spare_sizes, .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) }; static const struct mtk_snand_caps mt7986_snand_caps = { .sector_size = 1024, .max_sectors = 8, .fdm_size = 8, .fdm_ecc_size = 1, .fifo_size = 64, .bbm_swap = true, .empty_page_check = true, .mastersta_mask = NFI_MASTERSTA_MASK_7986, .nandfsm_mask = NFI_NAND_FSM_7986, .spare_sizes = mt7986_spare_sizes, .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes) }; struct mtk_snand_conf { size_t page_size; size_t oob_size; u8 nsectors; u8 spare_size; }; struct mtk_snand { struct spi_controller *ctlr; struct device *dev; struct clk *nfi_clk; struct clk *pad_clk; void __iomem *nfi_base; int irq; struct completion op_done; const struct mtk_snand_caps *caps; struct mtk_ecc_config *ecc_cfg; struct mtk_ecc *ecc; struct mtk_snand_conf nfi_cfg; struct mtk_ecc_stats ecc_stats; struct nand_ecc_engine ecc_eng; bool autofmt; u8 *buf; size_t buf_len; }; static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand) { struct nand_ecc_engine *eng = nand->ecc.engine; return container_of(eng, struct mtk_snand, ecc_eng); } static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size) { if (snf->buf_len >= size) return 0; kfree(snf->buf); snf->buf = kmalloc(size, GFP_KERNEL); if (!snf->buf) return -ENOMEM; snf->buf_len = size; memset(snf->buf, 0xff, snf->buf_len); return 0; } static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg) { return readl(snf->nfi_base + reg); } static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val) { writel(val, snf->nfi_base + reg); } static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val) { writew(val, snf->nfi_base + reg); } static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set) { u32 val; val = readl(snf->nfi_base + reg); val &= ~clr; val |= set; writel(val, snf->nfi_base + reg); } static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len) { u32 i, val = 0, es = sizeof(u32); for (i = reg; i < reg + len; i++) { if (i == reg || i % es == 0) val = nfi_read32(snf, i & ~(es - 1)); *data++ = (u8)(val >> (8 * (i % es))); } } static int mtk_nfi_reset(struct mtk_snand *snf) { u32 val, fifo_mask; int ret; nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, !(val & snf->caps->mastersta_mask), 0, SNFI_POLL_INTERVAL); if (ret) { dev_err(snf->dev, "NFI master is still busy after reset\n"); return ret; } ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val, !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0, SNFI_POLL_INTERVAL); if (ret) { dev_err(snf->dev, "Failed to reset NFI\n"); return ret; } fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) | ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S); ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val, !(val & fifo_mask), 0, SNFI_POLL_INTERVAL); if (ret) { dev_err(snf->dev, "NFI FIFOs are not empty\n"); return ret; } return 0; } static int mtk_snand_mac_reset(struct mtk_snand *snf) { int ret; u32 val; nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST); ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val, !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL); if (ret) dev_err(snf->dev, "Failed to reset SNFI MAC\n"); nfi_write32(snf, SNF_MISC_CTL, (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S)); return ret; } static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen) { int ret; u32 val; nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN); nfi_write32(snf, SNF_MAC_OUTL, outlen); nfi_write32(snf, SNF_MAC_INL, inlen); nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG); ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, val & WIP_READY, 0, SNFI_POLL_INTERVAL); if (ret) { dev_err(snf->dev, "Timed out waiting for WIP_READY\n"); goto cleanup; } ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP), 0, SNFI_POLL_INTERVAL); if (ret) dev_err(snf->dev, "Timed out waiting for WIP cleared\n"); cleanup: nfi_write32(snf, SNF_MAC_CTL, 0); return ret; } static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op) { u32 rx_len = 0; u32 reg_offs = 0; u32 val = 0; const u8 *tx_buf = NULL; u8 *rx_buf = NULL; int i, ret; u8 b; if (op->data.dir == SPI_MEM_DATA_IN) { rx_len = op->data.nbytes; rx_buf = op->data.buf.in; } else { tx_buf = op->data.buf.out; } mtk_snand_mac_reset(snf); for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) { b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff; val |= b << (8 * (reg_offs % 4)); if (reg_offs % 4 == 3) { nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); val = 0; } } for (i = 0; i < op->addr.nbytes; i++, reg_offs++) { b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff; val |= b << (8 * (reg_offs % 4)); if (reg_offs % 4 == 3) { nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); val = 0; } } for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) { if (reg_offs % 4 == 3) { nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); val = 0; } } if (op->data.dir == SPI_MEM_DATA_OUT) { for (i = 0; i < op->data.nbytes; i++, reg_offs++) { val |= tx_buf[i] << (8 * (reg_offs % 4)); if (reg_offs % 4 == 3) { nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); val = 0; } } } if (reg_offs % 4) nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val); for (i = 0; i < reg_offs; i += 4) dev_dbg(snf->dev, "%d: %08X", i, nfi_read32(snf, SNF_GPRAM + i)); dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len); ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len); if (ret) return ret; if (!rx_len) return 0; nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len); return 0; } static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size, u32 oob_size) { int spare_idx = -1; u32 spare_size, spare_size_shift, pagesize_idx; u32 sector_size_512; u8 nsectors; int i; // skip if it's already configured as required. if (snf->nfi_cfg.page_size == page_size && snf->nfi_cfg.oob_size == oob_size) return 0; nsectors = page_size / snf->caps->sector_size; if (nsectors > snf->caps->max_sectors) { dev_err(snf->dev, "too many sectors required.\n"); goto err; } if (snf->caps->sector_size == 512) { sector_size_512 = NFI_SEC_SEL_512; spare_size_shift = NFI_SPARE_SIZE_S; } else { sector_size_512 = 0; spare_size_shift = NFI_SPARE_SIZE_LS_S; } switch (page_size) { case SZ_512: pagesize_idx = NFI_PAGE_SIZE_512_2K; break; case SZ_2K: if (snf->caps->sector_size == 512) pagesize_idx = NFI_PAGE_SIZE_2K_4K; else pagesize_idx = NFI_PAGE_SIZE_512_2K; break; case SZ_4K: if (snf->caps->sector_size == 512) pagesize_idx = NFI_PAGE_SIZE_4K_8K; else pagesize_idx = NFI_PAGE_SIZE_2K_4K; break; case SZ_8K: if (snf->caps->sector_size == 512) pagesize_idx = NFI_PAGE_SIZE_8K_16K; else pagesize_idx = NFI_PAGE_SIZE_4K_8K; break; case SZ_16K: pagesize_idx = NFI_PAGE_SIZE_8K_16K; break; default: dev_err(snf->dev, "unsupported page size.\n"); goto err; } spare_size = oob_size / nsectors; // If we're using the 1KB sector size, HW will automatically double the // spare size. We should only use half of the value in this case. if (snf->caps->sector_size == 1024) spare_size /= 2; for (i = snf->caps->num_spare_size - 1; i >= 0; i--) { if (snf->caps->spare_sizes[i] <= spare_size) { spare_size = snf->caps->spare_sizes[i]; if (snf->caps->sector_size == 1024) spare_size *= 2; spare_idx = i; break; } } if (spare_idx < 0) { dev_err(snf->dev, "unsupported spare size: %u\n", spare_size); goto err; } nfi_write32(snf, NFI_PAGEFMT, (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) | (snf->caps->fdm_size << NFI_FDM_NUM_S) | (spare_idx << spare_size_shift) | (pagesize_idx << NFI_PAGE_SIZE_S) | sector_size_512); snf->nfi_cfg.page_size = page_size; snf->nfi_cfg.oob_size = oob_size; snf->nfi_cfg.nsectors = nsectors; snf->nfi_cfg.spare_size = spare_size; dev_dbg(snf->dev, "page format: (%u + %u) * %u\n", snf->caps->sector_size, spare_size, nsectors); return snand_prepare_bouncebuf(snf, page_size + oob_size); err: dev_err(snf->dev, "page size %u + %u is not supported\n", page_size, oob_size); return -EOPNOTSUPP; } static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobecc) { // ECC area is not accessible return -ERANGE; } static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobfree) { struct nand_device *nand = mtd_to_nanddev(mtd); struct mtk_snand *ms = nand_to_mtk_snand(nand); if (section >= ms->nfi_cfg.nsectors) return -ERANGE; oobfree->length = ms->caps->fdm_size - 1; oobfree->offset = section * ms->caps->fdm_size + 1; return 0; } static const struct mtd_ooblayout_ops mtk_snand_ooblayout = { .ecc = mtk_snand_ooblayout_ecc, .free = mtk_snand_ooblayout_free, }; static int mtk_snand_ecc_init_ctx(struct nand_device *nand) { struct mtk_snand *snf = nand_to_mtk_snand(nand); struct nand_ecc_props *conf = &nand->ecc.ctx.conf; struct nand_ecc_props *reqs = &nand->ecc.requirements; struct nand_ecc_props *user = &nand->ecc.user_conf; struct mtd_info *mtd = nanddev_to_mtd(nand); int step_size = 0, strength = 0, desired_correction = 0, steps; bool ecc_user = false; int ret; u32 parity_bits, max_ecc_bytes; struct mtk_ecc_config *ecc_cfg; ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, nand->memorg.oobsize); if (ret) return ret; ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); if (!ecc_cfg) return -ENOMEM; nand->ecc.ctx.priv = ecc_cfg; if (user->step_size && user->strength) { step_size = user->step_size; strength = user->strength; ecc_user = true; } else if (reqs->step_size && reqs->strength) { step_size = reqs->step_size; strength = reqs->strength; } if (step_size && strength) { steps = mtd->writesize / step_size; desired_correction = steps * strength; strength = desired_correction / snf->nfi_cfg.nsectors; } ecc_cfg->mode = ECC_NFI_MODE; ecc_cfg->sectors = snf->nfi_cfg.nsectors; ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size; // calculate the max possible strength under current page format parity_bits = mtk_ecc_get_parity_bits(snf->ecc); max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size; ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits; mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength); // if there's a user requested strength, find the minimum strength that // meets the requirement. Otherwise use the maximum strength which is // expected by BootROM. if (ecc_user && strength) { u32 s_next = ecc_cfg->strength - 1; while (1) { mtk_ecc_adjust_strength(snf->ecc, &s_next); if (s_next >= ecc_cfg->strength) break; if (s_next < strength) break; s_next = ecc_cfg->strength - 1; } } mtd_set_ooblayout(mtd, &mtk_snand_ooblayout); conf->step_size = snf->caps->sector_size; conf->strength = ecc_cfg->strength; if (ecc_cfg->strength < strength) dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n", strength); dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n", ecc_cfg->strength, snf->caps->sector_size); return 0; } static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand) { struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); kfree(ecc_cfg); } static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct mtk_snand *snf = nand_to_mtk_snand(nand); struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); int ret; ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, nand->memorg.oobsize); if (ret) return ret; snf->autofmt = true; snf->ecc_cfg = ecc_cfg; return 0; } static int mtk_snand_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req) { struct mtk_snand *snf = nand_to_mtk_snand(nand); struct mtd_info *mtd = nanddev_to_mtd(nand); snf->ecc_cfg = NULL; snf->autofmt = false; if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ)) return 0; if (snf->ecc_stats.failed) mtd->ecc_stats.failed += snf->ecc_stats.failed; mtd->ecc_stats.corrected += snf->ecc_stats.corrected; return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips; } static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = { .init_ctx = mtk_snand_ecc_init_ctx, .cleanup_ctx = mtk_snand_ecc_cleanup_ctx, .prepare_io_req = mtk_snand_ecc_prepare_io_req, .finish_io_req = mtk_snand_ecc_finish_io_req, }; static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf) { u32 vall, valm; u8 *oobptr = buf; int i, j; for (i = 0; i < snf->nfi_cfg.nsectors; i++) { vall = nfi_read32(snf, NFI_FDML(i)); valm = nfi_read32(snf, NFI_FDMM(i)); for (j = 0; j < snf->caps->fdm_size; j++) oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); oobptr += snf->caps->fdm_size; } } static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf) { u32 fdm_size = snf->caps->fdm_size; const u8 *oobptr = buf; u32 vall, valm; int i, j; for (i = 0; i < snf->nfi_cfg.nsectors; i++) { vall = 0; valm = 0; for (j = 0; j < 8; j++) { if (j < 4) vall |= (j < fdm_size ? oobptr[j] : 0xff) << (j * 8); else valm |= (j < fdm_size ? oobptr[j] : 0xff) << ((j - 4) * 8); } nfi_write32(snf, NFI_FDML(i), vall); nfi_write32(snf, NFI_FDMM(i), valm); oobptr += fdm_size; } } static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf) { u32 buf_bbm_pos, fdm_bbm_pos; if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) return; // swap [pagesize] byte on nand with the first fdm byte // in the last sector. buf_bbm_pos = snf->nfi_cfg.page_size - (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size; fdm_bbm_pos = snf->nfi_cfg.page_size + (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]); } static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf) { u32 fdm_bbm_pos1, fdm_bbm_pos2; if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) return; // swap the first fdm byte in the first and the last sector. fdm_bbm_pos1 = snf->nfi_cfg.page_size; fdm_bbm_pos2 = snf->nfi_cfg.page_size + (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]); } static int mtk_snand_read_page_cache(struct mtk_snand *snf, const struct spi_mem_op *op) { u8 *buf = snf->buf; u8 *buf_fdm = buf + snf->nfi_cfg.page_size; // the address part to be sent by the controller u32 op_addr = op->addr.val; // where to start copying data from bounce buffer u32 rd_offset = 0; u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth); u32 op_mode = 0; u32 dma_len = snf->buf_len; int ret = 0; u32 rd_mode, rd_bytes, val; dma_addr_t buf_dma; if (snf->autofmt) { u32 last_bit; u32 mask; dma_len = snf->nfi_cfg.page_size; op_mode = CNFG_AUTO_FMT_EN; if (op->data.ecc) op_mode |= CNFG_HW_ECC_EN; // extract the plane bit: // Find the highest bit set in (pagesize+oobsize). // Bits higher than that in op->addr are kept and sent over SPI // Lower bits are used as an offset for copying data from DMA // bounce buffer. last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); mask = (1 << last_bit) - 1; rd_offset = op_addr & mask; op_addr &= ~mask; // check if we can dma to the caller memory if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size) buf = op->data.buf.in; } mtk_snand_mac_reset(snf); mtk_nfi_reset(snf); // command and dummy cycles nfi_write32(snf, SNF_RD_CTL2, (dummy_clk << DATA_READ_DUMMY_S) | (op->cmd.opcode << DATA_READ_CMD_S)); // read address nfi_write32(snf, SNF_RD_CTL3, op_addr); // Set read op_mode if (op->data.buswidth == 4) rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD : DATA_READ_MODE_X4; else if (op->data.buswidth == 2) rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL : DATA_READ_MODE_X2; else rd_mode = DATA_READ_MODE_X1; rd_mode <<= DATA_READ_MODE_S; nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE, rd_mode | DATARD_CUSTOM_EN); // Set bytes to read rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * snf->nfi_cfg.nsectors; nfi_write32(snf, SNF_MISC_CTL2, (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes); // NFI read prepare nfi_write16(snf, NFI_CNFG, (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN | CNFG_READ_MODE | CNFG_DMA_MODE | op_mode); nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE); ret = dma_mapping_error(snf->dev, buf_dma); if (ret) { dev_err(snf->dev, "DMA mapping failed.\n"); goto cleanup; } nfi_write32(snf, NFI_STRADDR, buf_dma); if (op->data.ecc) { snf->ecc_cfg->op = ECC_DECODE; ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); if (ret) goto cleanup_dma; } // Prepare for custom read interrupt nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ); reinit_completion(&snf->op_done); // Trigger NFI into custom mode nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ); // Start DMA read nfi_rmw32(snf, NFI_CON, 0, CON_BRD); nfi_write16(snf, NFI_STRDATA, STR_DATA); if (!wait_for_completion_timeout( &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { dev_err(snf->dev, "DMA timed out for reading from cache.\n"); ret = -ETIMEDOUT; goto cleanup; } // Wait for BUS_SEC_CNTR returning expected value ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val, BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, SNFI_POLL_INTERVAL); if (ret) { dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n"); goto cleanup2; } // Wait for bus becoming idle ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, !(val & snf->caps->mastersta_mask), 0, SNFI_POLL_INTERVAL); if (ret) { dev_err(snf->dev, "Timed out waiting for bus becoming idle\n"); goto cleanup2; } if (op->data.ecc) { ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE); if (ret) { dev_err(snf->dev, "wait ecc done timeout\n"); goto cleanup2; } // save status before disabling ecc mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats, snf->nfi_cfg.nsectors); } dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); if (snf->autofmt) { mtk_snand_read_fdm(snf, buf_fdm); if (snf->caps->bbm_swap) { mtk_snand_bm_swap(snf, buf); mtk_snand_fdm_bm_swap(snf); } } // copy data back if (nfi_read32(snf, NFI_STA) & READ_EMPTY) { memset(op->data.buf.in, 0xff, op->data.nbytes); snf->ecc_stats.bitflips = 0; snf->ecc_stats.failed = 0; snf->ecc_stats.corrected = 0; } else { if (buf == op->data.buf.in) { u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size; u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size; if (req_left) memcpy(op->data.buf.in + snf->nfi_cfg.page_size, buf_fdm, cap_len < req_left ? cap_len : req_left); } else if (rd_offset < snf->buf_len) { u32 cap_len = snf->buf_len - rd_offset; if (op->data.nbytes < cap_len) cap_len = op->data.nbytes; memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len); } } cleanup2: if (op->data.ecc) mtk_ecc_disable(snf->ecc); cleanup_dma: // unmap dma only if any error happens. (otherwise it's done before // data copying) if (ret) dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); cleanup: // Stop read nfi_write32(snf, NFI_CON, 0); nfi_write16(snf, NFI_CNFG, 0); // Clear SNF done flag nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE); nfi_write32(snf, SNF_STA_CTL1, 0); // Disable interrupt nfi_read32(snf, NFI_INTR_STA); nfi_write32(snf, NFI_INTR_EN, 0); nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0); return ret; } static int mtk_snand_write_page_cache(struct mtk_snand *snf, const struct spi_mem_op *op) { // the address part to be sent by the controller u32 op_addr = op->addr.val; // where to start copying data from bounce buffer u32 wr_offset = 0; u32 op_mode = 0; int ret = 0; u32 wr_mode = 0; u32 dma_len = snf->buf_len; u32 wr_bytes, val; size_t cap_len; dma_addr_t buf_dma; if (snf->autofmt) { u32 last_bit; u32 mask; dma_len = snf->nfi_cfg.page_size; op_mode = CNFG_AUTO_FMT_EN; if (op->data.ecc) op_mode |= CNFG_HW_ECC_EN; last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); mask = (1 << last_bit) - 1; wr_offset = op_addr & mask; op_addr &= ~mask; } mtk_snand_mac_reset(snf); mtk_nfi_reset(snf); if (wr_offset) memset(snf->buf, 0xff, wr_offset); cap_len = snf->buf_len - wr_offset; if (op->data.nbytes < cap_len) cap_len = op->data.nbytes; memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len); if (snf->autofmt) { if (snf->caps->bbm_swap) { mtk_snand_fdm_bm_swap(snf); mtk_snand_bm_swap(snf, snf->buf); } mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size); } // Command nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S)); // write address nfi_write32(snf, SNF_PG_CTL2, op_addr); // Set read op_mode if (op->data.buswidth == 4) wr_mode = PG_LOAD_X4_EN; nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN, wr_mode | PG_LOAD_CUSTOM_EN); // Set bytes to write wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * snf->nfi_cfg.nsectors; nfi_write32(snf, SNF_MISC_CTL2, (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes); // NFI write prepare nfi_write16(snf, NFI_CNFG, (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode); nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE); ret = dma_mapping_error(snf->dev, buf_dma); if (ret) { dev_err(snf->dev, "DMA mapping failed.\n"); goto cleanup; } nfi_write32(snf, NFI_STRADDR, buf_dma); if (op->data.ecc) { snf->ecc_cfg->op = ECC_ENCODE; ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); if (ret) goto cleanup_dma; } // Prepare for custom write interrupt nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG); reinit_completion(&snf->op_done); ; // Trigger NFI into custom mode nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE); // Start DMA write nfi_rmw32(snf, NFI_CON, 0, CON_BWR); nfi_write16(snf, NFI_STRDATA, STR_DATA); if (!wait_for_completion_timeout( &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { dev_err(snf->dev, "DMA timed out for program load.\n"); ret = -ETIMEDOUT; goto cleanup_ecc; } // Wait for NFI_SEC_CNTR returning expected value ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val, NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, SNFI_POLL_INTERVAL); if (ret) dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n"); cleanup_ecc: if (op->data.ecc) mtk_ecc_disable(snf->ecc); cleanup_dma: dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE); cleanup: // Stop write nfi_write32(snf, NFI_CON, 0); nfi_write16(snf, NFI_CNFG, 0); // Clear SNF done flag nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE); nfi_write32(snf, SNF_STA_CTL1, 0); // Disable interrupt nfi_read32(snf, NFI_INTR_STA); nfi_write32(snf, NFI_INTR_EN, 0); nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0); return ret; } /** * mtk_snand_is_page_ops() - check if the op is a controller supported page op. * @op spi-mem op to check * * Check whether op can be executed with read_from_cache or program_load * mode in the controller. * This controller can execute typical Read From Cache and Program Load * instructions found on SPI-NAND with 2-byte address. * DTR and cmd buswidth & nbytes should be checked before calling this. * * Return: true if the op matches the instruction template */ static bool mtk_snand_is_page_ops(const struct spi_mem_op *op) { if (op->addr.nbytes != 2) return false; if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && op->addr.buswidth != 4) return false; // match read from page instructions if (op->data.dir == SPI_MEM_DATA_IN) { // check dummy cycle first if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth > DATA_READ_MAX_DUMMY) return false; // quad io / quad out if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) && op->data.buswidth == 4) return true; // dual io / dual out if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) && op->data.buswidth == 2) return true; // standard spi if (op->addr.buswidth == 1 && op->data.buswidth == 1) return true; } else if (op->data.dir == SPI_MEM_DATA_OUT) { // check dummy cycle first if (op->dummy.nbytes) return false; // program load quad out if (op->addr.buswidth == 1 && op->data.buswidth == 4) return true; // standard spi if (op->addr.buswidth == 1 && op->data.buswidth == 1) return true; } return false; } static bool mtk_snand_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (!spi_mem_default_supports_op(mem, op)) return false; if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) return false; if (mtk_snand_is_page_ops(op)) return true; return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) && (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) && (op->data.nbytes == 0 || op->data.buswidth == 1)); } static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); // page ops transfer size must be exactly ((sector_size + spare_size) * // nsectors). Limit the op size if the caller requests more than that. // exec_op will read more than needed and discard the leftover if the // caller requests less data. if (mtk_snand_is_page_ops(op)) { size_t l; // skip adjust_op_size for page ops if (ms->autofmt) return 0; l = ms->caps->sector_size + ms->nfi_cfg.spare_size; l *= ms->nfi_cfg.nsectors; if (op->data.nbytes > l) op->data.nbytes = l; } else { size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; if (hl >= SNF_GPRAM_SIZE) return -EOPNOTSUPP; if (op->data.nbytes > SNF_GPRAM_SIZE - hl) op->data.nbytes = SNF_GPRAM_SIZE - hl; } return 0; } static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, op->addr.val, op->addr.buswidth, op->addr.nbytes, op->data.buswidth, op->data.nbytes); if (mtk_snand_is_page_ops(op)) { if (op->data.dir == SPI_MEM_DATA_IN) return mtk_snand_read_page_cache(ms, op); else return mtk_snand_write_page_cache(ms, op); } else { return mtk_snand_mac_io(ms, op); } } static const struct spi_controller_mem_ops mtk_snand_mem_ops = { .adjust_op_size = mtk_snand_adjust_op_size, .supports_op = mtk_snand_supports_op, .exec_op = mtk_snand_exec_op, }; static const struct spi_controller_mem_caps mtk_snand_mem_caps = { .ecc = true, }; static irqreturn_t mtk_snand_irq(int irq, void *id) { struct mtk_snand *snf = id; u32 sta, ien; sta = nfi_read32(snf, NFI_INTR_STA); ien = nfi_read32(snf, NFI_INTR_EN); if (!(sta & ien)) return IRQ_NONE; nfi_write32(snf, NFI_INTR_EN, 0); complete(&snf->op_done); return IRQ_HANDLED; } static const struct of_device_id mtk_snand_ids[] = { { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps }, { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps }, { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps }, {}, }; MODULE_DEVICE_TABLE(of, mtk_snand_ids); static int mtk_snand_enable_clk(struct mtk_snand *ms) { int ret; ret = clk_prepare_enable(ms->nfi_clk); if (ret) { dev_err(ms->dev, "unable to enable nfi clk\n"); return ret; } ret = clk_prepare_enable(ms->pad_clk); if (ret) { dev_err(ms->dev, "unable to enable pad clk\n"); goto err1; } return 0; err1: clk_disable_unprepare(ms->nfi_clk); return ret; } static void mtk_snand_disable_clk(struct mtk_snand *ms) { clk_disable_unprepare(ms->pad_clk); clk_disable_unprepare(ms->nfi_clk); } static int mtk_snand_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct of_device_id *dev_id; struct spi_controller *ctlr; struct mtk_snand *ms; int ret; dev_id = of_match_node(mtk_snand_ids, np); if (!dev_id) return -EINVAL; ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms)); if (!ctlr) return -ENOMEM; platform_set_drvdata(pdev, ctlr); ms = spi_controller_get_devdata(ctlr); ms->ctlr = ctlr; ms->caps = dev_id->data; ms->ecc = of_mtk_ecc_get(np); if (IS_ERR(ms->ecc)) return PTR_ERR(ms->ecc); else if (!ms->ecc) return -ENODEV; ms->nfi_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ms->nfi_base)) { ret = PTR_ERR(ms->nfi_base); goto release_ecc; } ms->dev = &pdev->dev; ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk"); if (IS_ERR(ms->nfi_clk)) { ret = PTR_ERR(ms->nfi_clk); dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret); goto release_ecc; } ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk"); if (IS_ERR(ms->pad_clk)) { ret = PTR_ERR(ms->pad_clk); dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret); goto release_ecc; } ret = mtk_snand_enable_clk(ms); if (ret) goto release_ecc; init_completion(&ms->op_done); ms->irq = platform_get_irq(pdev, 0); if (ms->irq < 0) { ret = ms->irq; goto disable_clk; } ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0, "mtk-snand", ms); if (ret) { dev_err(ms->dev, "failed to request snfi irq\n"); goto disable_clk; } ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(ms->dev, "failed to set dma mask\n"); goto disable_clk; } // switch to SNFI mode nfi_write32(ms, SNF_CFG, SPI_MODE); // setup an initial page format for ops matching page_cache_op template // before ECC is called. ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size, ms->caps->spare_sizes[0]); if (ret) { dev_err(ms->dev, "failed to set initial page format\n"); goto disable_clk; } // setup ECC engine ms->ecc_eng.dev = &pdev->dev; ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops; ms->ecc_eng.priv = ms; ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng); if (ret) { dev_err(&pdev->dev, "failed to register ecc engine.\n"); goto disable_clk; } ctlr->num_chipselect = 1; ctlr->mem_ops = &mtk_snand_mem_ops; ctlr->mem_caps = &mtk_snand_mem_caps; ctlr->bits_per_word_mask = SPI_BPW_MASK(8); ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; ctlr->dev.of_node = pdev->dev.of_node; ret = spi_register_controller(ctlr); if (ret) { dev_err(&pdev->dev, "spi_register_controller failed.\n"); goto disable_clk; } return 0; disable_clk: mtk_snand_disable_clk(ms); release_ecc: mtk_ecc_release(ms->ecc); return ret; } static int mtk_snand_remove(struct platform_device *pdev) { struct spi_controller *ctlr = platform_get_drvdata(pdev); struct mtk_snand *ms = spi_controller_get_devdata(ctlr); spi_unregister_controller(ctlr); mtk_snand_disable_clk(ms); mtk_ecc_release(ms->ecc); kfree(ms->buf); return 0; } static struct platform_driver mtk_snand_driver = { .probe = mtk_snand_probe, .remove = mtk_snand_remove, .driver = { .name = "mtk-snand", .of_match_table = mtk_snand_ids, }, }; module_platform_driver(mtk_snand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Chuanhong Guo "); MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");