/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "host.h" #include "isci.h" #include "port.h" #include "probe_roms.h" #include "remote_device.h" #include "request.h" #include "scu_completion_codes.h" #include "scu_event_codes.h" #include "registers.h" #include "scu_remote_node_context.h" #include "scu_task_context.h" #define SCU_CONTEXT_RAM_INIT_STALL_TIME 200 #define smu_max_ports(dcc_value) \ (\ (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \ >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \ ) #define smu_max_task_contexts(dcc_value) \ (\ (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \ >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \ ) #define smu_max_rncs(dcc_value) \ (\ (((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \ >> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \ ) #define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100 /** * * * The number of milliseconds to wait while a given phy is consuming power * before allowing another set of phys to consume power. Ultimately, this will * be specified by OEM parameter. */ #define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500 /** * NORMALIZE_PUT_POINTER() - * * This macro will normalize the completion queue put pointer so its value can * be used as an array inde */ #define NORMALIZE_PUT_POINTER(x) \ ((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK) /** * NORMALIZE_EVENT_POINTER() - * * This macro will normalize the completion queue event entry so its value can * be used as an index. */ #define NORMALIZE_EVENT_POINTER(x) \ (\ ((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \ >> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \ ) /** * NORMALIZE_GET_POINTER() - * * This macro will normalize the completion queue get pointer so its value can * be used as an index into an array */ #define NORMALIZE_GET_POINTER(x) \ ((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK) /** * NORMALIZE_GET_POINTER_CYCLE_BIT() - * * This macro will normalize the completion queue cycle pointer so it matches * the completion queue cycle bit */ #define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \ ((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT)) /** * COMPLETION_QUEUE_CYCLE_BIT() - * * This macro will return the cycle bit of the completion queue entry */ #define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000) /* Init the state machine and call the state entry function (if any) */ void sci_init_sm(struct sci_base_state_machine *sm, const struct sci_base_state *state_table, u32 initial_state) { sci_state_transition_t handler; sm->initial_state_id = initial_state; sm->previous_state_id = initial_state; sm->current_state_id = initial_state; sm->state_table = state_table; handler = sm->state_table[initial_state].enter_state; if (handler) handler(sm); } /* Call the state exit fn, update the current state, call the state entry fn */ void sci_change_state(struct sci_base_state_machine *sm, u32 next_state) { sci_state_transition_t handler; handler = sm->state_table[sm->current_state_id].exit_state; if (handler) handler(sm); sm->previous_state_id = sm->current_state_id; sm->current_state_id = next_state; handler = sm->state_table[sm->current_state_id].enter_state; if (handler) handler(sm); } static bool sci_controller_completion_queue_has_entries(struct isci_host *ihost) { u32 get_value = ihost->completion_queue_get; u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK; if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index])) return true; return false; } static bool sci_controller_isr(struct isci_host *ihost) { if (sci_controller_completion_queue_has_entries(ihost)) return true; /* we have a spurious interrupt it could be that we have already * emptied the completion queue from a previous interrupt * FIXME: really!? */ writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); /* There is a race in the hardware that could cause us not to be * notified of an interrupt completion if we do not take this * step. We will mask then unmask the interrupts so if there is * another interrupt pending the clearing of the interrupt * source we get the next interrupt message. */ spin_lock(&ihost->scic_lock); if (test_bit(IHOST_IRQ_ENABLED, &ihost->flags)) { writel(0xFF000000, &ihost->smu_registers->interrupt_mask); writel(0, &ihost->smu_registers->interrupt_mask); } spin_unlock(&ihost->scic_lock); return false; } irqreturn_t isci_msix_isr(int vec, void *data) { struct isci_host *ihost = data; if (sci_controller_isr(ihost)) tasklet_schedule(&ihost->completion_tasklet); return IRQ_HANDLED; } static bool sci_controller_error_isr(struct isci_host *ihost) { u32 interrupt_status; interrupt_status = readl(&ihost->smu_registers->interrupt_status); interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND); if (interrupt_status != 0) { /* * There is an error interrupt pending so let it through and handle * in the callback */ return true; } /* * There is a race in the hardware that could cause us not to be notified * of an interrupt completion if we do not take this step. We will mask * then unmask the error interrupts so if there was another interrupt * pending we will be notified. * Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */ writel(0xff, &ihost->smu_registers->interrupt_mask); writel(0, &ihost->smu_registers->interrupt_mask); return false; } static void sci_controller_task_completion(struct isci_host *ihost, u32 ent) { u32 index = SCU_GET_COMPLETION_INDEX(ent); struct isci_request *ireq = ihost->reqs[index]; /* Make sure that we really want to process this IO request */ if (test_bit(IREQ_ACTIVE, &ireq->flags) && ireq->io_tag != SCI_CONTROLLER_INVALID_IO_TAG && ISCI_TAG_SEQ(ireq->io_tag) == ihost->io_request_sequence[index]) /* Yep this is a valid io request pass it along to the * io request handler */ sci_io_request_tc_completion(ireq, ent); } static void sci_controller_sdma_completion(struct isci_host *ihost, u32 ent) { u32 index; struct isci_request *ireq; struct isci_remote_device *idev; index = SCU_GET_COMPLETION_INDEX(ent); switch (scu_get_command_request_type(ent)) { case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC: case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC: ireq = ihost->reqs[index]; dev_warn(&ihost->pdev->dev, "%s: %x for io request %p\n", __func__, ent, ireq); /* @todo For a post TC operation we need to fail the IO * request */ break; case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC: case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC: case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC: idev = ihost->device_table[index]; dev_warn(&ihost->pdev->dev, "%s: %x for device %p\n", __func__, ent, idev); /* @todo For a port RNC operation we need to fail the * device */ break; default: dev_warn(&ihost->pdev->dev, "%s: unknown completion type %x\n", __func__, ent); break; } } static void sci_controller_unsolicited_frame(struct isci_host *ihost, u32 ent) { u32 index; u32 frame_index; struct scu_unsolicited_frame_header *frame_header; struct isci_phy *iphy; struct isci_remote_device *idev; enum sci_status result = SCI_FAILURE; frame_index = SCU_GET_FRAME_INDEX(ent); frame_header = ihost->uf_control.buffers.array[frame_index].header; ihost->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE; if (SCU_GET_FRAME_ERROR(ent)) { /* * / @todo If the IAF frame or SIGNATURE FIS frame has an error will * / this cause a problem? We expect the phy initialization will * / fail if there is an error in the frame. */ sci_controller_release_frame(ihost, frame_index); return; } if (frame_header->is_address_frame) { index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); iphy = &ihost->phys[index]; result = sci_phy_frame_handler(iphy, frame_index); } else { index = SCU_GET_COMPLETION_INDEX(ent); if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { /* * This is a signature fis or a frame from a direct attached SATA * device that has not yet been created. In either case forwared * the frame to the PE and let it take care of the frame data. */ index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); iphy = &ihost->phys[index]; result = sci_phy_frame_handler(iphy, frame_index); } else { if (index < ihost->remote_node_entries) idev = ihost->device_table[index]; else idev = NULL; if (idev != NULL) result = sci_remote_device_frame_handler(idev, frame_index); else sci_controller_release_frame(ihost, frame_index); } } if (result != SCI_SUCCESS) { /* * / @todo Is there any reason to report some additional error message * / when we get this failure notifiction? */ } } static void sci_controller_event_completion(struct isci_host *ihost, u32 ent) { struct isci_remote_device *idev; struct isci_request *ireq; struct isci_phy *iphy; u32 index; index = SCU_GET_COMPLETION_INDEX(ent); switch (scu_get_event_type(ent)) { case SCU_EVENT_TYPE_SMU_COMMAND_ERROR: /* / @todo The driver did something wrong and we need to fix the condtion. */ dev_err(&ihost->pdev->dev, "%s: SCIC Controller 0x%p received SMU command error " "0x%x\n", __func__, ihost, ent); break; case SCU_EVENT_TYPE_SMU_PCQ_ERROR: case SCU_EVENT_TYPE_SMU_ERROR: case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR: /* * / @todo This is a hardware failure and its likely that we want to * / reset the controller. */ dev_err(&ihost->pdev->dev, "%s: SCIC Controller 0x%p received fatal controller " "event 0x%x\n", __func__, ihost, ent); break; case SCU_EVENT_TYPE_TRANSPORT_ERROR: ireq = ihost->reqs[index]; sci_io_request_event_handler(ireq, ent); break; case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT: switch (scu_get_event_specifier(ent)) { case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE: case SCU_EVENT_SPECIFIC_TASK_TIMEOUT: ireq = ihost->reqs[index]; if (ireq != NULL) sci_io_request_event_handler(ireq, ent); else dev_warn(&ihost->pdev->dev, "%s: SCIC Controller 0x%p received " "event 0x%x for io request object " "that doesnt exist.\n", __func__, ihost, ent); break; case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT: idev = ihost->device_table[index]; if (idev != NULL) sci_remote_device_event_handler(idev, ent); else dev_warn(&ihost->pdev->dev, "%s: SCIC Controller 0x%p received " "event 0x%x for remote device object " "that doesnt exist.\n", __func__, ihost, ent); break; } break; case SCU_EVENT_TYPE_BROADCAST_CHANGE: /* * direct the broadcast change event to the phy first and then let * the phy redirect the broadcast change to the port object */ case SCU_EVENT_TYPE_ERR_CNT_EVENT: /* * direct error counter event to the phy object since that is where * we get the event notification. This is a type 4 event. */ case SCU_EVENT_TYPE_OSSP_EVENT: index = SCU_GET_PROTOCOL_ENGINE_INDEX(ent); iphy = &ihost->phys[index]; sci_phy_event_handler(iphy, ent); break; case SCU_EVENT_TYPE_RNC_SUSPEND_TX: case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX: case SCU_EVENT_TYPE_RNC_OPS_MISC: if (index < ihost->remote_node_entries) { idev = ihost->device_table[index]; if (idev != NULL) sci_remote_device_event_handler(idev, ent); } else dev_err(&ihost->pdev->dev, "%s: SCIC Controller 0x%p received event 0x%x " "for remote device object 0x%0x that doesnt " "exist.\n", __func__, ihost, ent, index); break; default: dev_warn(&ihost->pdev->dev, "%s: SCIC Controller received unknown event code %x\n", __func__, ent); break; } } static void sci_controller_process_completions(struct isci_host *ihost) { u32 completion_count = 0; u32 ent; u32 get_index; u32 get_cycle; u32 event_get; u32 event_cycle; dev_dbg(&ihost->pdev->dev, "%s: completion queue begining get:0x%08x\n", __func__, ihost->completion_queue_get); /* Get the component parts of the completion queue */ get_index = NORMALIZE_GET_POINTER(ihost->completion_queue_get); get_cycle = SMU_CQGR_CYCLE_BIT & ihost->completion_queue_get; event_get = NORMALIZE_EVENT_POINTER(ihost->completion_queue_get); event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & ihost->completion_queue_get; while ( NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle) == COMPLETION_QUEUE_CYCLE_BIT(ihost->completion_queue[get_index]) ) { completion_count++; ent = ihost->completion_queue[get_index]; /* increment the get pointer and check for rollover to toggle the cycle bit */ get_cycle ^= ((get_index+1) & SCU_MAX_COMPLETION_QUEUE_ENTRIES) << (SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT - SCU_MAX_COMPLETION_QUEUE_SHIFT); get_index = (get_index+1) & (SCU_MAX_COMPLETION_QUEUE_ENTRIES-1); dev_dbg(&ihost->pdev->dev, "%s: completion queue entry:0x%08x\n", __func__, ent); switch (SCU_GET_COMPLETION_TYPE(ent)) { case SCU_COMPLETION_TYPE_TASK: sci_controller_task_completion(ihost, ent); break; case SCU_COMPLETION_TYPE_SDMA: sci_controller_sdma_completion(ihost, ent); break; case SCU_COMPLETION_TYPE_UFI: sci_controller_unsolicited_frame(ihost, ent); break; case SCU_COMPLETION_TYPE_EVENT: sci_controller_event_completion(ihost, ent); break; case SCU_COMPLETION_TYPE_NOTIFY: { event_cycle ^= ((event_get+1) & SCU_MAX_EVENTS) << (SMU_COMPLETION_QUEUE_GET_EVENT_CYCLE_BIT_SHIFT - SCU_MAX_EVENTS_SHIFT); event_get = (event_get+1) & (SCU_MAX_EVENTS-1); sci_controller_event_completion(ihost, ent); break; } default: dev_warn(&ihost->pdev->dev, "%s: SCIC Controller received unknown " "completion type %x\n", __func__, ent); break; } } /* Update the get register if we completed one or more entries */ if (completion_count > 0) { ihost->completion_queue_get = SMU_CQGR_GEN_BIT(ENABLE) | SMU_CQGR_GEN_BIT(EVENT_ENABLE) | event_cycle | SMU_CQGR_GEN_VAL(EVENT_POINTER, event_get) | get_cycle | SMU_CQGR_GEN_VAL(POINTER, get_index); writel(ihost->completion_queue_get, &ihost->smu_registers->completion_queue_get); } dev_dbg(&ihost->pdev->dev, "%s: completion queue ending get:0x%08x\n", __func__, ihost->completion_queue_get); } static void sci_controller_error_handler(struct isci_host *ihost) { u32 interrupt_status; interrupt_status = readl(&ihost->smu_registers->interrupt_status); if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) && sci_controller_completion_queue_has_entries(ihost)) { sci_controller_process_completions(ihost); writel(SMU_ISR_QUEUE_SUSPEND, &ihost->smu_registers->interrupt_status); } else { dev_err(&ihost->pdev->dev, "%s: status: %#x\n", __func__, interrupt_status); sci_change_state(&ihost->sm, SCIC_FAILED); return; } /* If we dont process any completions I am not sure that we want to do this. * We are in the middle of a hardware fault and should probably be reset. */ writel(0, &ihost->smu_registers->interrupt_mask); } irqreturn_t isci_intx_isr(int vec, void *data) { irqreturn_t ret = IRQ_NONE; struct isci_host *ihost = data; if (sci_controller_isr(ihost)) { writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); tasklet_schedule(&ihost->completion_tasklet); ret = IRQ_HANDLED; } else if (sci_controller_error_isr(ihost)) { spin_lock(&ihost->scic_lock); sci_controller_error_handler(ihost); spin_unlock(&ihost->scic_lock); ret = IRQ_HANDLED; } return ret; } irqreturn_t isci_error_isr(int vec, void *data) { struct isci_host *ihost = data; if (sci_controller_error_isr(ihost)) sci_controller_error_handler(ihost); return IRQ_HANDLED; } /** * isci_host_start_complete() - This function is called by the core library, * through the ISCI Module, to indicate controller start status. * @isci_host: This parameter specifies the ISCI host object * @completion_status: This parameter specifies the completion status from the * core library. * */ static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status) { if (completion_status != SCI_SUCCESS) dev_info(&ihost->pdev->dev, "controller start timed out, continuing...\n"); clear_bit(IHOST_START_PENDING, &ihost->flags); wake_up(&ihost->eventq); } int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time) { struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); struct isci_host *ihost = ha->lldd_ha; if (test_bit(IHOST_START_PENDING, &ihost->flags)) return 0; sas_drain_work(ha); return 1; } /** * sci_controller_get_suggested_start_timeout() - This method returns the * suggested sci_controller_start() timeout amount. The user is free to * use any timeout value, but this method provides the suggested minimum * start timeout value. The returned value is based upon empirical * information determined as a result of interoperability testing. * @controller: the handle to the controller object for which to return the * suggested start timeout. * * This method returns the number of milliseconds for the suggested start * operation timeout. */ static u32 sci_controller_get_suggested_start_timeout(struct isci_host *ihost) { /* Validate the user supplied parameters. */ if (!ihost) return 0; /* * The suggested minimum timeout value for a controller start operation: * * Signature FIS Timeout * + Phy Start Timeout * + Number of Phy Spin Up Intervals * --------------------------------- * Number of milliseconds for the controller start operation. * * NOTE: The number of phy spin up intervals will be equivalent * to the number of phys divided by the number phys allowed * per interval - 1 (once OEM parameters are supported). * Currently we assume only 1 phy per interval. */ return SCIC_SDS_SIGNATURE_FIS_TIMEOUT + SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT + ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); } static void sci_controller_enable_interrupts(struct isci_host *ihost) { set_bit(IHOST_IRQ_ENABLED, &ihost->flags); writel(0, &ihost->smu_registers->interrupt_mask); } void sci_controller_disable_interrupts(struct isci_host *ihost) { clear_bit(IHOST_IRQ_ENABLED, &ihost->flags); writel(0xffffffff, &ihost->smu_registers->interrupt_mask); readl(&ihost->smu_registers->interrupt_mask); /* flush */ } static void sci_controller_enable_port_task_scheduler(struct isci_host *ihost) { u32 port_task_scheduler_value; port_task_scheduler_value = readl(&ihost->scu_registers->peg0.ptsg.control); port_task_scheduler_value |= (SCU_PTSGCR_GEN_BIT(ETM_ENABLE) | SCU_PTSGCR_GEN_BIT(PTSG_ENABLE)); writel(port_task_scheduler_value, &ihost->scu_registers->peg0.ptsg.control); } static void sci_controller_assign_task_entries(struct isci_host *ihost) { u32 task_assignment; /* * Assign all the TCs to function 0 * TODO: Do we actually need to read this register to write it back? */ task_assignment = readl(&ihost->smu_registers->task_context_assignment[0]); task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) | (SMU_TCA_GEN_VAL(ENDING, ihost->task_context_entries - 1)) | (SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE)); writel(task_assignment, &ihost->smu_registers->task_context_assignment[0]); } static void sci_controller_initialize_completion_queue(struct isci_host *ihost) { u32 index; u32 completion_queue_control_value; u32 completion_queue_get_value; u32 completion_queue_put_value; ihost->completion_queue_get = 0; completion_queue_control_value = (SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) | SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1)); writel(completion_queue_control_value, &ihost->smu_registers->completion_queue_control); /* Set the completion queue get pointer and enable the queue */ completion_queue_get_value = ( (SMU_CQGR_GEN_VAL(POINTER, 0)) | (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0)) | (SMU_CQGR_GEN_BIT(ENABLE)) | (SMU_CQGR_GEN_BIT(EVENT_ENABLE)) ); writel(completion_queue_get_value, &ihost->smu_registers->completion_queue_get); /* Set the completion queue put pointer */ completion_queue_put_value = ( (SMU_CQPR_GEN_VAL(POINTER, 0)) | (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0)) ); writel(completion_queue_put_value, &ihost->smu_registers->completion_queue_put); /* Initialize the cycle bit of the completion queue entries */ for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) { /* * If get.cycle_bit != completion_queue.cycle_bit * its not a valid completion queue entry * so at system start all entries are invalid */ ihost->completion_queue[index] = 0x80000000; } } static void sci_controller_initialize_unsolicited_frame_queue(struct isci_host *ihost) { u32 frame_queue_control_value; u32 frame_queue_get_value; u32 frame_queue_put_value; /* Write the queue size */ frame_queue_control_value = SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES); writel(frame_queue_control_value, &ihost->scu_registers->sdma.unsolicited_frame_queue_control); /* Setup the get pointer for the unsolicited frame queue */ frame_queue_get_value = ( SCU_UFQGP_GEN_VAL(POINTER, 0) | SCU_UFQGP_GEN_BIT(ENABLE_BIT) ); writel(frame_queue_get_value, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); /* Setup the put pointer for the unsolicited frame queue */ frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0); writel(frame_queue_put_value, &ihost->scu_registers->sdma.unsolicited_frame_put_pointer); } void sci_controller_transition_to_ready(struct isci_host *ihost, enum sci_status status) { if (ihost->sm.current_state_id == SCIC_STARTING) { /* * We move into the ready state, because some of the phys/ports * may be up and operational. */ sci_change_state(&ihost->sm, SCIC_READY); isci_host_start_complete(ihost, status); } } static bool is_phy_starting(struct isci_phy *iphy) { enum sci_phy_states state; state = iphy->sm.current_state_id; switch (state) { case SCI_PHY_STARTING: case SCI_PHY_SUB_INITIAL: case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: case SCI_PHY_SUB_AWAIT_IAF_UF: case SCI_PHY_SUB_AWAIT_SAS_POWER: case SCI_PHY_SUB_AWAIT_SATA_POWER: case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: case SCI_PHY_SUB_AWAIT_OSSP_EN: case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: case SCI_PHY_SUB_FINAL: return true; default: return false; } } bool is_controller_start_complete(struct isci_host *ihost) { int i; for (i = 0; i < SCI_MAX_PHYS; i++) { struct isci_phy *iphy = &ihost->phys[i]; u32 state = iphy->sm.current_state_id; /* in apc mode we need to check every phy, in * mpc mode we only need to check phys that have * been configured into a port */ if (is_port_config_apc(ihost)) /* pass */; else if (!phy_get_non_dummy_port(iphy)) continue; /* The controller start operation is complete iff: * - all links have been given an opportunity to start * - have no indication of a connected device * - have an indication of a connected device and it has * finished the link training process. */ if ((iphy->is_in_link_training == false && state == SCI_PHY_INITIAL) || (iphy->is_in_link_training == false && state == SCI_PHY_STOPPED) || (iphy->is_in_link_training == true && is_phy_starting(iphy)) || (ihost->port_agent.phy_ready_mask != ihost->port_agent.phy_configured_mask)) return false; } return true; } /** * sci_controller_start_next_phy - start phy * @scic: controller * * If all the phys have been started, then attempt to transition the * controller to the READY state and inform the user * (sci_cb_controller_start_complete()). */ static enum sci_status sci_controller_start_next_phy(struct isci_host *ihost) { struct sci_oem_params *oem = &ihost->oem_parameters; struct isci_phy *iphy; enum sci_status status; status = SCI_SUCCESS; if (ihost->phy_startup_timer_pending) return status; if (ihost->next_phy_to_start >= SCI_MAX_PHYS) { if (is_controller_start_complete(ihost)) { sci_controller_transition_to_ready(ihost, SCI_SUCCESS); sci_del_timer(&ihost->phy_timer); ihost->phy_startup_timer_pending = false; } } else { iphy = &ihost->phys[ihost->next_phy_to_start]; if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { if (phy_get_non_dummy_port(iphy) == NULL) { ihost->next_phy_to_start++; /* Caution recursion ahead be forwarned * * The PHY was never added to a PORT in MPC mode * so start the next phy in sequence This phy * will never go link up and will not draw power * the OEM parameters either configured the phy * incorrectly for the PORT or it was never * assigned to a PORT */ return sci_controller_start_next_phy(ihost); } } status = sci_phy_start(iphy); if (status == SCI_SUCCESS) { sci_mod_timer(&ihost->phy_timer, SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT); ihost->phy_startup_timer_pending = true; } else { dev_warn(&ihost->pdev->dev, "%s: Controller stop operation failed " "to stop phy %d because of status " "%d.\n", __func__, ihost->phys[ihost->next_phy_to_start].phy_index, status); } ihost->next_phy_to_start++; } return status; } static void phy_startup_timeout(unsigned long data) { struct sci_timer *tmr = (struct sci_timer *)data; struct isci_host *ihost = container_of(tmr, typeof(*ihost), phy_timer); unsigned long flags; enum sci_status status; spin_lock_irqsave(&ihost->scic_lock, flags); if (tmr->cancel) goto done; ihost->phy_startup_timer_pending = false; do { status = sci_controller_start_next_phy(ihost); } while (status != SCI_SUCCESS); done: spin_unlock_irqrestore(&ihost->scic_lock, flags); } static u16 isci_tci_active(struct isci_host *ihost) { return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); } static enum sci_status sci_controller_start(struct isci_host *ihost, u32 timeout) { enum sci_status result; u16 index; if (ihost->sm.current_state_id != SCIC_INITIALIZED) { dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", __func__, ihost->sm.current_state_id); return SCI_FAILURE_INVALID_STATE; } /* Build the TCi free pool */ BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8); ihost->tci_head = 0; ihost->tci_tail = 0; for (index = 0; index < ihost->task_context_entries; index++) isci_tci_free(ihost, index); /* Build the RNi free pool */ sci_remote_node_table_initialize(&ihost->available_remote_nodes, ihost->remote_node_entries); /* * Before anything else lets make sure we will not be * interrupted by the hardware. */ sci_controller_disable_interrupts(ihost); /* Enable the port task scheduler */ sci_controller_enable_port_task_scheduler(ihost); /* Assign all the task entries to ihost physical function */ sci_controller_assign_task_entries(ihost); /* Now initialize the completion queue */ sci_controller_initialize_completion_queue(ihost); /* Initialize the unsolicited frame queue for use */ sci_controller_initialize_unsolicited_frame_queue(ihost); /* Start all of the ports on this controller */ for (index = 0; index < ihost->logical_port_entries; index++) { struct isci_port *iport = &ihost->ports[index]; result = sci_port_start(iport); if (result) return result; } sci_controller_start_next_phy(ihost); sci_mod_timer(&ihost->timer, timeout); sci_change_state(&ihost->sm, SCIC_STARTING); return SCI_SUCCESS; } void isci_host_scan_start(struct Scsi_Host *shost) { struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha; unsigned long tmo = sci_controller_get_suggested_start_timeout(ihost); set_bit(IHOST_START_PENDING, &ihost->flags); spin_lock_irq(&ihost->scic_lock); sci_controller_start(ihost, tmo); sci_controller_enable_interrupts(ihost); spin_unlock_irq(&ihost->scic_lock); } static void isci_host_stop_complete(struct isci_host *ihost) { sci_controller_disable_interrupts(ihost); clear_bit(IHOST_STOP_PENDING, &ihost->flags); wake_up(&ihost->eventq); } static void sci_controller_completion_handler(struct isci_host *ihost) { /* Empty out the completion queue */ if (sci_controller_completion_queue_has_entries(ihost)) sci_controller_process_completions(ihost); /* Clear the interrupt and enable all interrupts again */ writel(SMU_ISR_COMPLETION, &ihost->smu_registers->interrupt_status); /* Could we write the value of SMU_ISR_COMPLETION? */ writel(0xFF000000, &ihost->smu_registers->interrupt_mask); writel(0, &ihost->smu_registers->interrupt_mask); } void ireq_done(struct isci_host *ihost, struct isci_request *ireq, struct sas_task *task) { task->lldd_task = NULL; if (!test_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags) && !(task->task_state_flags & SAS_TASK_STATE_ABORTED)) { if (test_bit(IREQ_COMPLETE_IN_TARGET, &ireq->flags)) { /* Normal notification (task_done) */ dev_dbg(&ihost->pdev->dev, "%s: Normal - ireq/task = %p/%p\n", __func__, ireq, task); task->task_done(task); } else { dev_dbg(&ihost->pdev->dev, "%s: Error - ireq/task = %p/%p\n", __func__, ireq, task); sas_task_abort(task); } } if (test_and_clear_bit(IREQ_ABORT_PATH_ACTIVE, &ireq->flags)) wake_up_all(&ihost->eventq); if (!test_bit(IREQ_NO_AUTO_FREE_TAG, &ireq->flags)) isci_free_tag(ihost, ireq->io_tag); } /** * isci_host_completion_routine() - This function is the delayed service * routine that calls the sci core library's completion handler. It's * scheduled as a tasklet from the interrupt service routine when interrupts * in use, or set as the timeout function in polled mode. * @data: This parameter specifies the ISCI host object * */ void isci_host_completion_routine(unsigned long data) { struct isci_host *ihost = (struct isci_host *)data; u16 active; spin_lock_irq(&ihost->scic_lock); sci_controller_completion_handler(ihost); spin_unlock_irq(&ihost->scic_lock); /* the coalesence timeout doubles at each encoding step, so * update it based on the ilog2 value of the outstanding requests */ active = isci_tci_active(ihost); writel(SMU_ICC_GEN_VAL(NUMBER, active) | SMU_ICC_GEN_VAL(TIMER, ISCI_COALESCE_BASE + ilog2(active)), &ihost->smu_registers->interrupt_coalesce_control); } /** * sci_controller_stop() - This method will stop an individual controller * object.This method will invoke the associated user callback upon * completion. The completion callback is called when the following * conditions are met: -# the method return status is SCI_SUCCESS. -# the * controller has been quiesced. This method will ensure that all IO * requests are quiesced, phys are stopped, and all additional operation by * the hardware is halted. * @controller: the handle to the controller object to stop. * @timeout: This parameter specifies the number of milliseconds in which the * stop operation should complete. * * The controller must be in the STARTED or STOPPED state. Indicate if the * controller stop method succeeded or failed in some way. SCI_SUCCESS if the * stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the * controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the * controller is not either in the STARTED or STOPPED states. */ static enum sci_status sci_controller_stop(struct isci_host *ihost, u32 timeout) { if (ihost->sm.current_state_id != SCIC_READY) { dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", __func__, ihost->sm.current_state_id); return SCI_FAILURE_INVALID_STATE; } sci_mod_timer(&ihost->timer, timeout); sci_change_state(&ihost->sm, SCIC_STOPPING); return SCI_SUCCESS; } /** * sci_controller_reset() - This method will reset the supplied core * controller regardless of the state of said controller. This operation is * considered destructive. In other words, all current operations are wiped * out. No IO completions for outstanding devices occur. Outstanding IO * requests are not aborted or completed at the actual remote device. * @controller: the handle to the controller object to reset. * * Indicate if the controller reset method succeeded or failed in some way. * SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if * the controller reset operation is unable to complete. */ static enum sci_status sci_controller_reset(struct isci_host *ihost) { switch (ihost->sm.current_state_id) { case SCIC_RESET: case SCIC_READY: case SCIC_STOPPING: case SCIC_FAILED: /* * The reset operation is not a graceful cleanup, just * perform the state transition. */ sci_change_state(&ihost->sm, SCIC_RESETTING); return SCI_SUCCESS; default: dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", __func__, ihost->sm.current_state_id); return SCI_FAILURE_INVALID_STATE; } } static enum sci_status sci_controller_stop_phys(struct isci_host *ihost) { u32 index; enum sci_status status; enum sci_status phy_status; status = SCI_SUCCESS; for (index = 0; index < SCI_MAX_PHYS; index++) { phy_status = sci_phy_stop(&ihost->phys[index]); if (phy_status != SCI_SUCCESS && phy_status != SCI_FAILURE_INVALID_STATE) { status = SCI_FAILURE; dev_warn(&ihost->pdev->dev, "%s: Controller stop operation failed to stop " "phy %d because of status %d.\n", __func__, ihost->phys[index].phy_index, phy_status); } } return status; } /** * isci_host_deinit - shutdown frame reception and dma * @ihost: host to take down * * This is called in either the driver shutdown or the suspend path. In * the shutdown case libsas went through port teardown and normal device * removal (i.e. physical links stayed up to service scsi_device removal * commands). In the suspend case we disable the hardware without * notifying libsas of the link down events since we want libsas to * remember the domain across the suspend/resume cycle */ void isci_host_deinit(struct isci_host *ihost) { int i; /* disable output data selects */ for (i = 0; i < isci_gpio_count(ihost); i++) writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); set_bit(IHOST_STOP_PENDING, &ihost->flags); spin_lock_irq(&ihost->scic_lock); sci_controller_stop(ihost, SCIC_CONTROLLER_STOP_TIMEOUT); spin_unlock_irq(&ihost->scic_lock); wait_for_stop(ihost); /* phy stop is after controller stop to allow port and device to * go idle before shutting down the phys, but the expectation is * that i/o has been shut off well before we reach this * function. */ sci_controller_stop_phys(ihost); /* disable sgpio: where the above wait should give time for the * enclosure to sample the gpios going inactive */ writel(0, &ihost->scu_registers->peg0.sgpio.interface_control); spin_lock_irq(&ihost->scic_lock); sci_controller_reset(ihost); spin_unlock_irq(&ihost->scic_lock); /* Cancel any/all outstanding port timers */ for (i = 0; i < ihost->logical_port_entries; i++) { struct isci_port *iport = &ihost->ports[i]; del_timer_sync(&iport->timer.timer); } /* Cancel any/all outstanding phy timers */ for (i = 0; i < SCI_MAX_PHYS; i++) { struct isci_phy *iphy = &ihost->phys[i]; del_timer_sync(&iphy->sata_timer.timer); } del_timer_sync(&ihost->port_agent.timer.timer); del_timer_sync(&ihost->power_control.timer.timer); del_timer_sync(&ihost->timer.timer); del_timer_sync(&ihost->phy_timer.timer); } static void __iomem *scu_base(struct isci_host *isci_host) { struct pci_dev *pdev = isci_host->pdev; int id = isci_host->id; return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id; } static void __iomem *smu_base(struct isci_host *isci_host) { struct pci_dev *pdev = isci_host->pdev; int id = isci_host->id; return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id; } static void sci_controller_initial_state_enter(struct sci_base_state_machine *sm) { struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); sci_change_state(&ihost->sm, SCIC_RESET); } static inline void sci_controller_starting_state_exit(struct sci_base_state_machine *sm) { struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); sci_del_timer(&ihost->timer); } #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853 #define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280 #define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000 #define INTERRUPT_COALESCE_NUMBER_MAX 256 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7 #define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28 /** * sci_controller_set_interrupt_coalescence() - This method allows the user to * configure the interrupt coalescence. * @controller: This parameter represents the handle to the controller object * for which its interrupt coalesce register is overridden. * @coalesce_number: Used to control the number of entries in the Completion * Queue before an interrupt is generated. If the number of entries exceed * this number, an interrupt will be generated. The valid range of the input * is [0, 256]. A setting of 0 results in coalescing being disabled. * @coalesce_timeout: Timeout value in microseconds. The valid range of the * input is [0, 2700000] . A setting of 0 is allowed and results in no * interrupt coalescing timeout. * * Indicate if the user successfully set the interrupt coalesce parameters. * SCI_SUCCESS The user successfully updated the interrutp coalescence. * SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range. */ static enum sci_status sci_controller_set_interrupt_coalescence(struct isci_host *ihost, u32 coalesce_number, u32 coalesce_timeout) { u8 timeout_encode = 0; u32 min = 0; u32 max = 0; /* Check if the input parameters fall in the range. */ if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX) return SCI_FAILURE_INVALID_PARAMETER_VALUE; /* * Defined encoding for interrupt coalescing timeout: * Value Min Max Units * ----- --- --- ----- * 0 - - Disabled * 1 13.3 20.0 ns * 2 26.7 40.0 * 3 53.3 80.0 * 4 106.7 160.0 * 5 213.3 320.0 * 6 426.7 640.0 * 7 853.3 1280.0 * 8 1.7 2.6 us * 9 3.4 5.1 * 10 6.8 10.2 * 11 13.7 20.5 * 12 27.3 41.0 * 13 54.6 81.9 * 14 109.2 163.8 * 15 218.5 327.7 * 16 436.9 655.4 * 17 873.8 1310.7 * 18 1.7 2.6 ms * 19 3.5 5.2 * 20 7.0 10.5 * 21 14.0 21.0 * 22 28.0 41.9 * 23 55.9 83.9 * 24 111.8 167.8 * 25 223.7 335.5 * 26 447.4 671.1 * 27 894.8 1342.2 * 28 1.8 2.7 s * Others Undefined */ /* * Use the table above to decide the encode of interrupt coalescing timeout * value for register writing. */ if (coalesce_timeout == 0) timeout_encode = 0; else{ /* make the timeout value in unit of (10 ns). */ coalesce_timeout = coalesce_timeout * 100; min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10; max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10; /* get the encode of timeout for register writing. */ for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN; timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX; timeout_encode++) { if (min <= coalesce_timeout && max > coalesce_timeout) break; else if (coalesce_timeout >= max && coalesce_timeout < min * 2 && coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) { if ((coalesce_timeout - max) < (2 * min - coalesce_timeout)) break; else{ timeout_encode++; break; } } else { max = max * 2; min = min * 2; } } if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1) /* the value is out of range. */ return SCI_FAILURE_INVALID_PARAMETER_VALUE; } writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) | SMU_ICC_GEN_VAL(TIMER, timeout_encode), &ihost->smu_registers->interrupt_coalesce_control); ihost->interrupt_coalesce_number = (u16)coalesce_number; ihost->interrupt_coalesce_timeout = coalesce_timeout / 100; return SCI_SUCCESS; } static void sci_controller_ready_state_enter(struct sci_base_state_machine *sm) { struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); u32 val; /* enable clock gating for power control of the scu unit */ val = readl(&ihost->smu_registers->clock_gating_control); val &= ~(SMU_CGUCR_GEN_BIT(REGCLK_ENABLE) | SMU_CGUCR_GEN_BIT(TXCLK_ENABLE) | SMU_CGUCR_GEN_BIT(XCLK_ENABLE)); val |= SMU_CGUCR_GEN_BIT(IDLE_ENABLE); writel(val, &ihost->smu_registers->clock_gating_control); /* set the default interrupt coalescence number and timeout value. */ sci_controller_set_interrupt_coalescence(ihost, 0, 0); } static void sci_controller_ready_state_exit(struct sci_base_state_machine *sm) { struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); /* disable interrupt coalescence. */ sci_controller_set_interrupt_coalescence(ihost, 0, 0); } static enum sci_status sci_controller_stop_ports(struct isci_host *ihost) { u32 index; enum sci_status port_status; enum sci_status status = SCI_SUCCESS; for (index = 0; index < ihost->logical_port_entries; index++) { struct isci_port *iport = &ihost->ports[index]; port_status = sci_port_stop(iport); if ((port_status != SCI_SUCCESS) && (port_status != SCI_FAILURE_INVALID_STATE)) { status = SCI_FAILURE; dev_warn(&ihost->pdev->dev, "%s: Controller stop operation failed to " "stop port %d because of status %d.\n", __func__, iport->logical_port_index, port_status); } } return status; } static enum sci_status sci_controller_stop_devices(struct isci_host *ihost) { u32 index; enum sci_status status; enum sci_status device_status; status = SCI_SUCCESS; for (index = 0; index < ihost->remote_node_entries; index++) { if (ihost->device_table[index] != NULL) { /* / @todo What timeout value do we want to provide to this request? */ device_status = sci_remote_device_stop(ihost->device_table[index], 0); if ((device_status != SCI_SUCCESS) && (device_status != SCI_FAILURE_INVALID_STATE)) { dev_warn(&ihost->pdev->dev, "%s: Controller stop operation failed " "to stop device 0x%p because of " "status %d.\n", __func__, ihost->device_table[index], device_status); } } } return status; } static void sci_controller_stopping_state_enter(struct sci_base_state_machine *sm) { struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); sci_controller_stop_devices(ihost); sci_controller_stop_ports(ihost); if (!sci_controller_has_remote_devices_stopping(ihost)) isci_host_stop_complete(ihost); } static void sci_controller_stopping_state_exit(struct sci_base_state_machine *sm) { struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); sci_del_timer(&ihost->timer); } static void sci_controller_reset_hardware(struct isci_host *ihost) { /* Disable interrupts so we dont take any spurious interrupts */ sci_controller_disable_interrupts(ihost); /* Reset the SCU */ writel(0xFFFFFFFF, &ihost->smu_registers->soft_reset_control); /* Delay for 1ms to before clearing the CQP and UFQPR. */ udelay(1000); /* The write to the CQGR clears the CQP */ writel(0x00000000, &ihost->smu_registers->completion_queue_get); /* The write to the UFQGP clears the UFQPR */ writel(0, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); /* clear all interrupts */ writel(~SMU_INTERRUPT_STATUS_RESERVED_MASK, &ihost->smu_registers->interrupt_status); } static void sci_controller_resetting_state_enter(struct sci_base_state_machine *sm) { struct isci_host *ihost = container_of(sm, typeof(*ihost), sm); sci_controller_reset_hardware(ihost); sci_change_state(&ihost->sm, SCIC_RESET); } static const struct sci_base_state sci_controller_state_table[] = { [SCIC_INITIAL] = { .enter_state = sci_controller_initial_state_enter, }, [SCIC_RESET] = {}, [SCIC_INITIALIZING] = {}, [SCIC_INITIALIZED] = {}, [SCIC_STARTING] = { .exit_state = sci_controller_starting_state_exit, }, [SCIC_READY] = { .enter_state = sci_controller_ready_state_enter, .exit_state = sci_controller_ready_state_exit, }, [SCIC_RESETTING] = { .enter_state = sci_controller_resetting_state_enter, }, [SCIC_STOPPING] = { .enter_state = sci_controller_stopping_state_enter, .exit_state = sci_controller_stopping_state_exit, }, [SCIC_FAILED] = {} }; static void controller_timeout(unsigned long data) { struct sci_timer *tmr = (struct sci_timer *)data; struct isci_host *ihost = container_of(tmr, typeof(*ihost), timer); struct sci_base_state_machine *sm = &ihost->sm; unsigned long flags; spin_lock_irqsave(&ihost->scic_lock, flags); if (tmr->cancel) goto done; if (sm->current_state_id == SCIC_STARTING) sci_controller_transition_to_ready(ihost, SCI_FAILURE_TIMEOUT); else if (sm->current_state_id == SCIC_STOPPING) { sci_change_state(sm, SCIC_FAILED); isci_host_stop_complete(ihost); } else /* / @todo Now what do we want to do in this case? */ dev_err(&ihost->pdev->dev, "%s: Controller timer fired when controller was not " "in a state being timed.\n", __func__); done: spin_unlock_irqrestore(&ihost->scic_lock, flags); } static enum sci_status sci_controller_construct(struct isci_host *ihost, void __iomem *scu_base, void __iomem *smu_base) { u8 i; sci_init_sm(&ihost->sm, sci_controller_state_table, SCIC_INITIAL); ihost->scu_registers = scu_base; ihost->smu_registers = smu_base; sci_port_configuration_agent_construct(&ihost->port_agent); /* Construct the ports for this controller */ for (i = 0; i < SCI_MAX_PORTS; i++) sci_port_construct(&ihost->ports[i], i, ihost); sci_port_construct(&ihost->ports[i], SCIC_SDS_DUMMY_PORT, ihost); /* Construct the phys for this controller */ for (i = 0; i < SCI_MAX_PHYS; i++) { /* Add all the PHYs to the dummy port */ sci_phy_construct(&ihost->phys[i], &ihost->ports[SCI_MAX_PORTS], i); } ihost->invalid_phy_mask = 0; sci_init_timer(&ihost->timer, controller_timeout); return sci_controller_reset(ihost); } int sci_oem_parameters_validate(struct sci_oem_params *oem, u8 version) { int i; for (i = 0; i < SCI_MAX_PORTS; i++) if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX) return -EINVAL; for (i = 0; i < SCI_MAX_PHYS; i++) if (oem->phys[i].sas_address.high == 0 && oem->phys[i].sas_address.low == 0) return -EINVAL; if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) { for (i = 0; i < SCI_MAX_PHYS; i++) if (oem->ports[i].phy_mask != 0) return -EINVAL; } else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) { u8 phy_mask = 0; for (i = 0; i < SCI_MAX_PHYS; i++) phy_mask |= oem->ports[i].phy_mask; if (phy_mask == 0) return -EINVAL; } else return -EINVAL; if (oem->controller.max_concurr_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT || oem->controller.max_concurr_spin_up < 1) return -EINVAL; if (oem->controller.do_enable_ssc) { if (version < ISCI_ROM_VER_1_1 && oem->controller.do_enable_ssc != 1) return -EINVAL; if (version >= ISCI_ROM_VER_1_1) { u8 test = oem->controller.ssc_sata_tx_spread_level; switch (test) { case 0: case 2: case 3: case 6: case 7: break; default: return -EINVAL; } test = oem->controller.ssc_sas_tx_spread_level; if (oem->controller.ssc_sas_tx_type == 0) { switch (test) { case 0: case 2: case 3: break; default: return -EINVAL; } } else if (oem->controller.ssc_sas_tx_type == 1) { switch (test) { case 0: case 3: case 6: break; default: return -EINVAL; } } } } return 0; } static u8 max_spin_up(struct isci_host *ihost) { if (ihost->user_parameters.max_concurr_spinup) return min_t(u8, ihost->user_parameters.max_concurr_spinup, MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); else return min_t(u8, ihost->oem_parameters.controller.max_concurr_spin_up, MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT); } static void power_control_timeout(unsigned long data) { struct sci_timer *tmr = (struct sci_timer *)data; struct isci_host *ihost = container_of(tmr, typeof(*ihost), power_control.timer); struct isci_phy *iphy; unsigned long flags; u8 i; spin_lock_irqsave(&ihost->scic_lock, flags); if (tmr->cancel) goto done; ihost->power_control.phys_granted_power = 0; if (ihost->power_control.phys_waiting == 0) { ihost->power_control.timer_started = false; goto done; } for (i = 0; i < SCI_MAX_PHYS; i++) { if (ihost->power_control.phys_waiting == 0) break; iphy = ihost->power_control.requesters[i]; if (iphy == NULL) continue; if (ihost->power_control.phys_granted_power >= max_spin_up(ihost)) break; ihost->power_control.requesters[i] = NULL; ihost->power_control.phys_waiting--; ihost->power_control.phys_granted_power++; sci_phy_consume_power_handler(iphy); if (iphy->protocol == SAS_PROTOCOL_SSP) { u8 j; for (j = 0; j < SCI_MAX_PHYS; j++) { struct isci_phy *requester = ihost->power_control.requesters[j]; /* * Search the power_control queue to see if there are other phys * attached to the same remote device. If found, take all of * them out of await_sas_power state. */ if (requester != NULL && requester != iphy) { u8 other = memcmp(requester->frame_rcvd.iaf.sas_addr, iphy->frame_rcvd.iaf.sas_addr, sizeof(requester->frame_rcvd.iaf.sas_addr)); if (other == 0) { ihost->power_control.requesters[j] = NULL; ihost->power_control.phys_waiting--; sci_phy_consume_power_handler(requester); } } } } } /* * It doesn't matter if the power list is empty, we need to start the * timer in case another phy becomes ready. */ sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); ihost->power_control.timer_started = true; done: spin_unlock_irqrestore(&ihost->scic_lock, flags); } void sci_controller_power_control_queue_insert(struct isci_host *ihost, struct isci_phy *iphy) { BUG_ON(iphy == NULL); if (ihost->power_control.phys_granted_power < max_spin_up(ihost)) { ihost->power_control.phys_granted_power++; sci_phy_consume_power_handler(iphy); /* * stop and start the power_control timer. When the timer fires, the * no_of_phys_granted_power will be set to 0 */ if (ihost->power_control.timer_started) sci_del_timer(&ihost->power_control.timer); sci_mod_timer(&ihost->power_control.timer, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL); ihost->power_control.timer_started = true; } else { /* * There are phys, attached to the same sas address as this phy, are * already in READY state, this phy don't need wait. */ u8 i; struct isci_phy *current_phy; for (i = 0; i < SCI_MAX_PHYS; i++) { u8 other; current_phy = &ihost->phys[i]; other = memcmp(current_phy->frame_rcvd.iaf.sas_addr, iphy->frame_rcvd.iaf.sas_addr, sizeof(current_phy->frame_rcvd.iaf.sas_addr)); if (current_phy->sm.current_state_id == SCI_PHY_READY && current_phy->protocol == SAS_PROTOCOL_SSP && other == 0) { sci_phy_consume_power_handler(iphy); break; } } if (i == SCI_MAX_PHYS) { /* Add the phy in the waiting list */ ihost->power_control.requesters[iphy->phy_index] = iphy; ihost->power_control.phys_waiting++; } } } void sci_controller_power_control_queue_remove(struct isci_host *ihost, struct isci_phy *iphy) { BUG_ON(iphy == NULL); if (ihost->power_control.requesters[iphy->phy_index]) ihost->power_control.phys_waiting--; ihost->power_control.requesters[iphy->phy_index] = NULL; } static int is_long_cable(int phy, unsigned char selection_byte) { return !!(selection_byte & (1 << phy)); } static int is_medium_cable(int phy, unsigned char selection_byte) { return !!(selection_byte & (1 << (phy + 4))); } static enum cable_selections decode_selection_byte( int phy, unsigned char selection_byte) { return ((selection_byte & (1 << phy)) ? 1 : 0) + (selection_byte & (1 << (phy + 4)) ? 2 : 0); } static unsigned char *to_cable_select(struct isci_host *ihost) { if (is_cable_select_overridden()) return ((unsigned char *)&cable_selection_override) + ihost->id; else return &ihost->oem_parameters.controller.cable_selection_mask; } enum cable_selections decode_cable_selection(struct isci_host *ihost, int phy) { return decode_selection_byte(phy, *to_cable_select(ihost)); } char *lookup_cable_names(enum cable_selections selection) { static char *cable_names[] = { [short_cable] = "short", [long_cable] = "long", [medium_cable] = "medium", [undefined_cable] = "" /* bit 0==1 */ }; return (selection <= undefined_cable) ? cable_names[selection] : cable_names[undefined_cable]; } #define AFE_REGISTER_WRITE_DELAY 10 static void sci_controller_afe_initialization(struct isci_host *ihost) { struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; const struct sci_oem_params *oem = &ihost->oem_parameters; struct pci_dev *pdev = ihost->pdev; u32 afe_status; u32 phy_id; unsigned char cable_selection_mask = *to_cable_select(ihost); /* Clear DFX Status registers */ writel(0x0081000f, &afe->afe_dfx_master_control0); udelay(AFE_REGISTER_WRITE_DELAY); if (is_b0(pdev) || is_c0(pdev) || is_c1(pdev)) { /* PM Rx Equalization Save, PM SPhy Rx Acknowledgement * Timer, PM Stagger Timer */ writel(0x0007FFFF, &afe->afe_pmsn_master_control2); udelay(AFE_REGISTER_WRITE_DELAY); } /* Configure bias currents to normal */ if (is_a2(pdev)) writel(0x00005A00, &afe->afe_bias_control); else if (is_b0(pdev) || is_c0(pdev)) writel(0x00005F00, &afe->afe_bias_control); else if (is_c1(pdev)) writel(0x00005500, &afe->afe_bias_control); udelay(AFE_REGISTER_WRITE_DELAY); /* Enable PLL */ if (is_a2(pdev)) writel(0x80040908, &afe->afe_pll_control0); else if (is_b0(pdev) || is_c0(pdev)) writel(0x80040A08, &afe->afe_pll_control0); else if (is_c1(pdev)) { writel(0x80000B08, &afe->afe_pll_control0); udelay(AFE_REGISTER_WRITE_DELAY); writel(0x00000B08, &afe->afe_pll_control0); udelay(AFE_REGISTER_WRITE_DELAY); writel(0x80000B08, &afe->afe_pll_control0); } udelay(AFE_REGISTER_WRITE_DELAY); /* Wait for the PLL to lock */ do { afe_status = readl(&afe->afe_common_block_status); udelay(AFE_REGISTER_WRITE_DELAY); } while ((afe_status & 0x00001000) == 0); if (is_a2(pdev)) { /* Shorten SAS SNW lock time (RxLock timer value from 76 * us to 50 us) */ writel(0x7bcc96ad, &afe->afe_pmsn_master_control0); udelay(AFE_REGISTER_WRITE_DELAY); } for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) { struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_id]; const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id]; int cable_length_long = is_long_cable(phy_id, cable_selection_mask); int cable_length_medium = is_medium_cable(phy_id, cable_selection_mask); if (is_a2(pdev)) { /* All defaults, except the Receive Word * Alignament/Comma Detect Enable....(0xe800) */ writel(0x00004512, &xcvr->afe_xcvr_control0); udelay(AFE_REGISTER_WRITE_DELAY); writel(0x0050100F, &xcvr->afe_xcvr_control1); udelay(AFE_REGISTER_WRITE_DELAY); } else if (is_b0(pdev)) { /* Configure transmitter SSC parameters */ writel(0x00030000, &xcvr->afe_tx_ssc_control); udelay(AFE_REGISTER_WRITE_DELAY); } else if (is_c0(pdev)) { /* Configure transmitter SSC parameters */ writel(0x00010202, &xcvr->afe_tx_ssc_control); udelay(AFE_REGISTER_WRITE_DELAY); /* All defaults, except the Receive Word * Alignament/Comma Detect Enable....(0xe800) */ writel(0x00014500, &xcvr->afe_xcvr_control0); udelay(AFE_REGISTER_WRITE_DELAY); } else if (is_c1(pdev)) { /* Configure transmitter SSC parameters */ writel(0x00010202, &xcvr->afe_tx_ssc_control); udelay(AFE_REGISTER_WRITE_DELAY); /* All defaults, except the Receive Word * Alignament/Comma Detect Enable....(0xe800) */ writel(0x0001C500, &xcvr->afe_xcvr_control0); udelay(AFE_REGISTER_WRITE_DELAY); } /* Power up TX and RX out from power down (PWRDNTX and * PWRDNRX) & increase TX int & ext bias 20%....(0xe85c) */ if (is_a2(pdev)) writel(0x000003F0, &xcvr->afe_channel_control); else if (is_b0(pdev)) { writel(0x000003D7, &xcvr->afe_channel_control); udelay(AFE_REGISTER_WRITE_DELAY); writel(0x000003D4, &xcvr->afe_channel_control); } else if (is_c0(pdev)) { writel(0x000001E7, &xcvr->afe_channel_control); udelay(AFE_REGISTER_WRITE_DELAY); writel(0x000001E4, &xcvr->afe_channel_control); } else if (is_c1(pdev)) { writel(cable_length_long ? 0x000002F7 : 0x000001F7, &xcvr->afe_channel_control); udelay(AFE_REGISTER_WRITE_DELAY); writel(cable_length_long ? 0x000002F4 : 0x000001F4, &xcvr->afe_channel_control); } udelay(AFE_REGISTER_WRITE_DELAY); if (is_a2(pdev)) { /* Enable TX equalization (0xe824) */ writel(0x00040000, &xcvr->afe_tx_control); udelay(AFE_REGISTER_WRITE_DELAY); } if (is_a2(pdev) || is_b0(pdev)) /* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, * TPD=0x0(TX Power On), RDD=0x0(RX Detect * Enabled) ....(0xe800) */ writel(0x00004100, &xcvr->afe_xcvr_control0); else if (is_c0(pdev)) writel(0x00014100, &xcvr->afe_xcvr_control0); else if (is_c1(pdev)) writel(0x0001C100, &xcvr->afe_xcvr_control0); udelay(AFE_REGISTER_WRITE_DELAY); /* Leave DFE/FFE on */ if (is_a2(pdev)) writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); else if (is_b0(pdev)) { writel(0x3F11103F, &xcvr->afe_rx_ssc_control0); udelay(AFE_REGISTER_WRITE_DELAY); /* Enable TX equalization (0xe824) */ writel(0x00040000, &xcvr->afe_tx_control); } else if (is_c0(pdev)) { writel(0x01400C0F, &xcvr->afe_rx_ssc_control1); udelay(AFE_REGISTER_WRITE_DELAY); writel(0x3F6F103F, &xcvr->afe_rx_ssc_control0); udelay(AFE_REGISTER_WRITE_DELAY); /* Enable TX equalization (0xe824) */ writel(0x00040000, &xcvr->afe_tx_control); } else if (is_c1(pdev)) { writel(cable_length_long ? 0x01500C0C : cable_length_medium ? 0x01400C0D : 0x02400C0D, &xcvr->afe_xcvr_control1); udelay(AFE_REGISTER_WRITE_DELAY); writel(0x000003E0, &xcvr->afe_dfx_rx_control1); udelay(AFE_REGISTER_WRITE_DELAY); writel(cable_length_long ? 0x33091C1F : cable_length_medium ? 0x3315181F : 0x2B17161F, &xcvr->afe_rx_ssc_control0); udelay(AFE_REGISTER_WRITE_DELAY); /* Enable TX equalization (0xe824) */ writel(0x00040000, &xcvr->afe_tx_control); } udelay(AFE_REGISTER_WRITE_DELAY); writel(oem_phy->afe_tx_amp_control0, &xcvr->afe_tx_amp_control0); udelay(AFE_REGISTER_WRITE_DELAY); writel(oem_phy->afe_tx_amp_control1, &xcvr->afe_tx_amp_control1); udelay(AFE_REGISTER_WRITE_DELAY); writel(oem_phy->afe_tx_amp_control2, &xcvr->afe_tx_amp_control2); udelay(AFE_REGISTER_WRITE_DELAY); writel(oem_phy->afe_tx_amp_control3, &xcvr->afe_tx_amp_control3); udelay(AFE_REGISTER_WRITE_DELAY); } /* Transfer control to the PEs */ writel(0x00010f00, &afe->afe_dfx_master_control0); udelay(AFE_REGISTER_WRITE_DELAY); } static void sci_controller_initialize_power_control(struct isci_host *ihost) { sci_init_timer(&ihost->power_control.timer, power_control_timeout); memset(ihost->power_control.requesters, 0, sizeof(ihost->power_control.requesters)); ihost->power_control.phys_waiting = 0; ihost->power_control.phys_granted_power = 0; } static enum sci_status sci_controller_initialize(struct isci_host *ihost) { struct sci_base_state_machine *sm = &ihost->sm; enum sci_status result = SCI_FAILURE; unsigned long i, state, val; if (ihost->sm.current_state_id != SCIC_RESET) { dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", __func__, ihost->sm.current_state_id); return SCI_FAILURE_INVALID_STATE; } sci_change_state(sm, SCIC_INITIALIZING); sci_init_timer(&ihost->phy_timer, phy_startup_timeout); ihost->next_phy_to_start = 0; ihost->phy_startup_timer_pending = false; sci_controller_initialize_power_control(ihost); /* * There is nothing to do here for B0 since we do not have to * program the AFE registers. * / @todo The AFE settings are supposed to be correct for the B0 but * / presently they seem to be wrong. */ sci_controller_afe_initialization(ihost); /* Take the hardware out of reset */ writel(0, &ihost->smu_registers->soft_reset_control); /* * / @todo Provide meaningfull error code for hardware failure * result = SCI_FAILURE_CONTROLLER_HARDWARE; */ for (i = 100; i >= 1; i--) { u32 status; /* Loop until the hardware reports success */ udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME); status = readl(&ihost->smu_registers->control_status); if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED) break; } if (i == 0) goto out; /* * Determine what are the actaul device capacities that the * hardware will support */ val = readl(&ihost->smu_registers->device_context_capacity); /* Record the smaller of the two capacity values */ ihost->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS); ihost->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS); ihost->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES); /* * Make all PEs that are unassigned match up with the * logical ports */ for (i = 0; i < ihost->logical_port_entries; i++) { struct scu_port_task_scheduler_group_registers __iomem *ptsg = &ihost->scu_registers->peg0.ptsg; writel(i, &ptsg->protocol_engine[i]); } /* Initialize hardware PCI Relaxed ordering in DMA engines */ val = readl(&ihost->scu_registers->sdma.pdma_configuration); val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); writel(val, &ihost->scu_registers->sdma.pdma_configuration); val = readl(&ihost->scu_registers->sdma.cdma_configuration); val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE); writel(val, &ihost->scu_registers->sdma.cdma_configuration); /* * Initialize the PHYs before the PORTs because the PHY registers * are accessed during the port initialization. */ for (i = 0; i < SCI_MAX_PHYS; i++) { result = sci_phy_initialize(&ihost->phys[i], &ihost->scu_registers->peg0.pe[i].tl, &ihost->scu_registers->peg0.pe[i].ll); if (result != SCI_SUCCESS) goto out; } for (i = 0; i < ihost->logical_port_entries; i++) { struct isci_port *iport = &ihost->ports[i]; iport->port_task_scheduler_registers = &ihost->scu_registers->peg0.ptsg.port[i]; iport->port_pe_configuration_register = &ihost->scu_registers->peg0.ptsg.protocol_engine[0]; iport->viit_registers = &ihost->scu_registers->peg0.viit[i]; } result = sci_port_configuration_agent_initialize(ihost, &ihost->port_agent); out: /* Advance the controller state machine */ if (result == SCI_SUCCESS) state = SCIC_INITIALIZED; else state = SCIC_FAILED; sci_change_state(sm, state); return result; } static int sci_controller_dma_alloc(struct isci_host *ihost) { struct device *dev = &ihost->pdev->dev; size_t size; int i; /* detect re-initialization */ if (ihost->completion_queue) return 0; size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32); ihost->completion_queue = dmam_alloc_coherent(dev, size, &ihost->cq_dma, GFP_KERNEL); if (!ihost->completion_queue) return -ENOMEM; size = ihost->remote_node_entries * sizeof(union scu_remote_node_context); ihost->remote_node_context_table = dmam_alloc_coherent(dev, size, &ihost->rnc_dma, GFP_KERNEL); if (!ihost->remote_node_context_table) return -ENOMEM; size = ihost->task_context_entries * sizeof(struct scu_task_context), ihost->task_context_table = dmam_alloc_coherent(dev, size, &ihost->tc_dma, GFP_KERNEL); if (!ihost->task_context_table) return -ENOMEM; size = SCI_UFI_TOTAL_SIZE; ihost->ufi_buf = dmam_alloc_coherent(dev, size, &ihost->ufi_dma, GFP_KERNEL); if (!ihost->ufi_buf) return -ENOMEM; for (i = 0; i < SCI_MAX_IO_REQUESTS; i++) { struct isci_request *ireq; dma_addr_t dma; ireq = dmam_alloc_coherent(dev, sizeof(*ireq), &dma, GFP_KERNEL); if (!ireq) return -ENOMEM; ireq->tc = &ihost->task_context_table[i]; ireq->owning_controller = ihost; ireq->request_daddr = dma; ireq->isci_host = ihost; ihost->reqs[i] = ireq; } return 0; } static int sci_controller_mem_init(struct isci_host *ihost) { int err = sci_controller_dma_alloc(ihost); if (err) return err; writel(lower_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_lower); writel(upper_32_bits(ihost->cq_dma), &ihost->smu_registers->completion_queue_upper); writel(lower_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_lower); writel(upper_32_bits(ihost->rnc_dma), &ihost->smu_registers->remote_node_context_upper); writel(lower_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_lower); writel(upper_32_bits(ihost->tc_dma), &ihost->smu_registers->host_task_table_upper); sci_unsolicited_frame_control_construct(ihost); /* * Inform the silicon as to the location of the UF headers and * address table. */ writel(lower_32_bits(ihost->uf_control.headers.physical_address), &ihost->scu_registers->sdma.uf_header_base_address_lower); writel(upper_32_bits(ihost->uf_control.headers.physical_address), &ihost->scu_registers->sdma.uf_header_base_address_upper); writel(lower_32_bits(ihost->uf_control.address_table.physical_address), &ihost->scu_registers->sdma.uf_address_table_lower); writel(upper_32_bits(ihost->uf_control.address_table.physical_address), &ihost->scu_registers->sdma.uf_address_table_upper); return 0; } /** * isci_host_init - (re-)initialize hardware and internal (private) state * @ihost: host to init * * Any public facing objects (like asd_sas_port, and asd_sas_phys), or * one-time initialization objects like locks and waitqueues, are * not touched (they are initialized in isci_host_alloc) */ int isci_host_init(struct isci_host *ihost) { int i, err; enum sci_status status; spin_lock_irq(&ihost->scic_lock); status = sci_controller_construct(ihost, scu_base(ihost), smu_base(ihost)); spin_unlock_irq(&ihost->scic_lock); if (status != SCI_SUCCESS) { dev_err(&ihost->pdev->dev, "%s: sci_controller_construct failed - status = %x\n", __func__, status); return -ENODEV; } spin_lock_irq(&ihost->scic_lock); status = sci_controller_initialize(ihost); spin_unlock_irq(&ihost->scic_lock); if (status != SCI_SUCCESS) { dev_warn(&ihost->pdev->dev, "%s: sci_controller_initialize failed -" " status = 0x%x\n", __func__, status); return -ENODEV; } err = sci_controller_mem_init(ihost); if (err) return err; /* enable sgpio */ writel(1, &ihost->scu_registers->peg0.sgpio.interface_control); for (i = 0; i < isci_gpio_count(ihost); i++) writel(SGPIO_HW_CONTROL, &ihost->scu_registers->peg0.sgpio.output_data_select[i]); writel(0, &ihost->scu_registers->peg0.sgpio.vendor_specific_code); return 0; } void sci_controller_link_up(struct isci_host *ihost, struct isci_port *iport, struct isci_phy *iphy) { switch (ihost->sm.current_state_id) { case SCIC_STARTING: sci_del_timer(&ihost->phy_timer); ihost->phy_startup_timer_pending = false; ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, iport, iphy); sci_controller_start_next_phy(ihost); break; case SCIC_READY: ihost->port_agent.link_up_handler(ihost, &ihost->port_agent, iport, iphy); break; default: dev_dbg(&ihost->pdev->dev, "%s: SCIC Controller linkup event from phy %d in " "unexpected state %d\n", __func__, iphy->phy_index, ihost->sm.current_state_id); } } void sci_controller_link_down(struct isci_host *ihost, struct isci_port *iport, struct isci_phy *iphy) { switch (ihost->sm.current_state_id) { case SCIC_STARTING: case SCIC_READY: ihost->port_agent.link_down_handler(ihost, &ihost->port_agent, iport, iphy); break; default: dev_dbg(&ihost->pdev->dev, "%s: SCIC Controller linkdown event from phy %d in " "unexpected state %d\n", __func__, iphy->phy_index, ihost->sm.current_state_id); } } bool sci_controller_has_remote_devices_stopping(struct isci_host *ihost) { u32 index; for (index = 0; index < ihost->remote_node_entries; index++) { if ((ihost->device_table[index] != NULL) && (ihost->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING)) return true; } return false; } void sci_controller_remote_device_stopped(struct isci_host *ihost, struct isci_remote_device *idev) { if (ihost->sm.current_state_id != SCIC_STOPPING) { dev_dbg(&ihost->pdev->dev, "SCIC Controller 0x%p remote device stopped event " "from device 0x%p in unexpected state %d\n", ihost, idev, ihost->sm.current_state_id); return; } if (!sci_controller_has_remote_devices_stopping(ihost)) isci_host_stop_complete(ihost); } void sci_controller_post_request(struct isci_host *ihost, u32 request) { dev_dbg(&ihost->pdev->dev, "%s[%d]: %#x\n", __func__, ihost->id, request); writel(request, &ihost->smu_registers->post_context_port); } struct isci_request *sci_request_by_tag(struct isci_host *ihost, u16 io_tag) { u16 task_index; u16 task_sequence; task_index = ISCI_TAG_TCI(io_tag); if (task_index < ihost->task_context_entries) { struct isci_request *ireq = ihost->reqs[task_index]; if (test_bit(IREQ_ACTIVE, &ireq->flags)) { task_sequence = ISCI_TAG_SEQ(io_tag); if (task_sequence == ihost->io_request_sequence[task_index]) return ireq; } } return NULL; } /** * This method allocates remote node index and the reserves the remote node * context space for use. This method can fail if there are no more remote * node index available. * @scic: This is the controller object which contains the set of * free remote node ids * @sci_dev: This is the device object which is requesting the a remote node * id * @node_id: This is the remote node id that is assinged to the device if one * is available * * enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote * node index available. */ enum sci_status sci_controller_allocate_remote_node_context(struct isci_host *ihost, struct isci_remote_device *idev, u16 *node_id) { u16 node_index; u32 remote_node_count = sci_remote_device_node_count(idev); node_index = sci_remote_node_table_allocate_remote_node( &ihost->available_remote_nodes, remote_node_count ); if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) { ihost->device_table[node_index] = idev; *node_id = node_index; return SCI_SUCCESS; } return SCI_FAILURE_INSUFFICIENT_RESOURCES; } void sci_controller_free_remote_node_context(struct isci_host *ihost, struct isci_remote_device *idev, u16 node_id) { u32 remote_node_count = sci_remote_device_node_count(idev); if (ihost->device_table[node_id] == idev) { ihost->device_table[node_id] = NULL; sci_remote_node_table_release_remote_node_index( &ihost->available_remote_nodes, remote_node_count, node_id ); } } void sci_controller_copy_sata_response(void *response_buffer, void *frame_header, void *frame_buffer) { /* XXX type safety? */ memcpy(response_buffer, frame_header, sizeof(u32)); memcpy(response_buffer + sizeof(u32), frame_buffer, sizeof(struct dev_to_host_fis) - sizeof(u32)); } void sci_controller_release_frame(struct isci_host *ihost, u32 frame_index) { if (sci_unsolicited_frame_control_release_frame(&ihost->uf_control, frame_index)) writel(ihost->uf_control.get, &ihost->scu_registers->sdma.unsolicited_frame_get_pointer); } void isci_tci_free(struct isci_host *ihost, u16 tci) { u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1); ihost->tci_pool[tail] = tci; ihost->tci_tail = tail + 1; } static u16 isci_tci_alloc(struct isci_host *ihost) { u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1); u16 tci = ihost->tci_pool[head]; ihost->tci_head = head + 1; return tci; } static u16 isci_tci_space(struct isci_host *ihost) { return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS); } u16 isci_alloc_tag(struct isci_host *ihost) { if (isci_tci_space(ihost)) { u16 tci = isci_tci_alloc(ihost); u8 seq = ihost->io_request_sequence[tci]; return ISCI_TAG(seq, tci); } return SCI_CONTROLLER_INVALID_IO_TAG; } enum sci_status isci_free_tag(struct isci_host *ihost, u16 io_tag) { u16 tci = ISCI_TAG_TCI(io_tag); u16 seq = ISCI_TAG_SEQ(io_tag); /* prevent tail from passing head */ if (isci_tci_active(ihost) == 0) return SCI_FAILURE_INVALID_IO_TAG; if (seq == ihost->io_request_sequence[tci]) { ihost->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1); isci_tci_free(ihost, tci); return SCI_SUCCESS; } return SCI_FAILURE_INVALID_IO_TAG; } enum sci_status sci_controller_start_io(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq) { enum sci_status status; if (ihost->sm.current_state_id != SCIC_READY) { dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", __func__, ihost->sm.current_state_id); return SCI_FAILURE_INVALID_STATE; } status = sci_remote_device_start_io(ihost, idev, ireq); if (status != SCI_SUCCESS) return status; set_bit(IREQ_ACTIVE, &ireq->flags); sci_controller_post_request(ihost, ireq->post_context); return SCI_SUCCESS; } enum sci_status sci_controller_terminate_request(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq) { /* terminate an ongoing (i.e. started) core IO request. This does not * abort the IO request at the target, but rather removes the IO * request from the host controller. */ enum sci_status status; if (ihost->sm.current_state_id != SCIC_READY) { dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", __func__, ihost->sm.current_state_id); return SCI_FAILURE_INVALID_STATE; } status = sci_io_request_terminate(ireq); dev_dbg(&ihost->pdev->dev, "%s: status=%d; ireq=%p; flags=%lx\n", __func__, status, ireq, ireq->flags); if ((status == SCI_SUCCESS) && !test_bit(IREQ_PENDING_ABORT, &ireq->flags) && !test_and_set_bit(IREQ_TC_ABORT_POSTED, &ireq->flags)) { /* Utilize the original post context command and or in the * POST_TC_ABORT request sub-type. */ sci_controller_post_request( ihost, ireq->post_context | SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT); } return status; } /** * sci_controller_complete_io() - This method will perform core specific * completion operations for an IO request. After this method is invoked, * the user should consider the IO request as invalid until it is properly * reused (i.e. re-constructed). * @ihost: The handle to the controller object for which to complete the * IO request. * @idev: The handle to the remote device object for which to complete * the IO request. * @ireq: the handle to the io request object to complete. */ enum sci_status sci_controller_complete_io(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq) { enum sci_status status; u16 index; switch (ihost->sm.current_state_id) { case SCIC_STOPPING: /* XXX: Implement this function */ return SCI_FAILURE; case SCIC_READY: status = sci_remote_device_complete_io(ihost, idev, ireq); if (status != SCI_SUCCESS) return status; index = ISCI_TAG_TCI(ireq->io_tag); clear_bit(IREQ_ACTIVE, &ireq->flags); return SCI_SUCCESS; default: dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", __func__, ihost->sm.current_state_id); return SCI_FAILURE_INVALID_STATE; } } enum sci_status sci_controller_continue_io(struct isci_request *ireq) { struct isci_host *ihost = ireq->owning_controller; if (ihost->sm.current_state_id != SCIC_READY) { dev_warn(&ihost->pdev->dev, "%s invalid state: %d\n", __func__, ihost->sm.current_state_id); return SCI_FAILURE_INVALID_STATE; } set_bit(IREQ_ACTIVE, &ireq->flags); sci_controller_post_request(ihost, ireq->post_context); return SCI_SUCCESS; } /** * sci_controller_start_task() - This method is called by the SCIC user to * send/start a framework task management request. * @controller: the handle to the controller object for which to start the task * management request. * @remote_device: the handle to the remote device object for which to start * the task management request. * @task_request: the handle to the task request object to start. */ enum sci_task_status sci_controller_start_task(struct isci_host *ihost, struct isci_remote_device *idev, struct isci_request *ireq) { enum sci_status status; if (ihost->sm.current_state_id != SCIC_READY) { dev_warn(&ihost->pdev->dev, "%s: SCIC Controller starting task from invalid " "state\n", __func__); return SCI_TASK_FAILURE_INVALID_STATE; } status = sci_remote_device_start_task(ihost, idev, ireq); switch (status) { case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS: set_bit(IREQ_ACTIVE, &ireq->flags); /* * We will let framework know this task request started successfully, * although core is still woring on starting the request (to post tc when * RNC is resumed.) */ return SCI_SUCCESS; case SCI_SUCCESS: set_bit(IREQ_ACTIVE, &ireq->flags); sci_controller_post_request(ihost, ireq->post_context); break; default: break; } return status; } static int sci_write_gpio_tx_gp(struct isci_host *ihost, u8 reg_index, u8 reg_count, u8 *write_data) { int d; /* no support for TX_GP_CFG */ if (reg_index == 0) return -EINVAL; for (d = 0; d < isci_gpio_count(ihost); d++) { u32 val = 0x444; /* all ODx.n clear */ int i; for (i = 0; i < 3; i++) { int bit = (i << 2) + 2; bit = try_test_sas_gpio_gp_bit(to_sas_gpio_od(d, i), write_data, reg_index, reg_count); if (bit < 0) break; /* if od is set, clear the 'invert' bit */ val &= ~(bit << ((i << 2) + 2)); } if (i < 3) break; writel(val, &ihost->scu_registers->peg0.sgpio.output_data_select[d]); } /* unless reg_index is > 1, we should always be able to write at * least one register */ return d > 0; } int isci_gpio_write(struct sas_ha_struct *sas_ha, u8 reg_type, u8 reg_index, u8 reg_count, u8 *write_data) { struct isci_host *ihost = sas_ha->lldd_ha; int written; switch (reg_type) { case SAS_GPIO_REG_TX_GP: written = sci_write_gpio_tx_gp(ihost, reg_index, reg_count, write_data); break; default: written = -EINVAL; } return written; }