/* * Copyright (c) 2016 Linaro Ltd. * Copyright (c) 2016 Hisilicon Limited. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include "hisi_sas.h" #define DRV_NAME "hisi_sas_v2_hw" /* global registers need init*/ #define DLVRY_QUEUE_ENABLE 0x0 #define IOST_BASE_ADDR_LO 0x8 #define IOST_BASE_ADDR_HI 0xc #define ITCT_BASE_ADDR_LO 0x10 #define ITCT_BASE_ADDR_HI 0x14 #define IO_BROKEN_MSG_ADDR_LO 0x18 #define IO_BROKEN_MSG_ADDR_HI 0x1c #define PHY_CONTEXT 0x20 #define PHY_STATE 0x24 #define PHY_PORT_NUM_MA 0x28 #define PORT_STATE 0x2c #define PORT_STATE_PHY8_PORT_NUM_OFF 16 #define PORT_STATE_PHY8_PORT_NUM_MSK (0xf << PORT_STATE_PHY8_PORT_NUM_OFF) #define PORT_STATE_PHY8_CONN_RATE_OFF 20 #define PORT_STATE_PHY8_CONN_RATE_MSK (0xf << PORT_STATE_PHY8_CONN_RATE_OFF) #define PHY_CONN_RATE 0x30 #define HGC_TRANS_TASK_CNT_LIMIT 0x38 #define AXI_AHB_CLK_CFG 0x3c #define ITCT_CLR 0x44 #define ITCT_CLR_EN_OFF 16 #define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF) #define ITCT_DEV_OFF 0 #define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF) #define AXI_USER1 0x48 #define AXI_USER2 0x4c #define IO_SATA_BROKEN_MSG_ADDR_LO 0x58 #define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c #define SATA_INITI_D2H_STORE_ADDR_LO 0x60 #define SATA_INITI_D2H_STORE_ADDR_HI 0x64 #define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84 #define HGC_SAS_TXFAIL_RETRY_CTRL 0x88 #define HGC_GET_ITV_TIME 0x90 #define DEVICE_MSG_WORK_MODE 0x94 #define OPENA_WT_CONTI_TIME 0x9c #define I_T_NEXUS_LOSS_TIME 0xa0 #define MAX_CON_TIME_LIMIT_TIME 0xa4 #define BUS_INACTIVE_LIMIT_TIME 0xa8 #define REJECT_TO_OPEN_LIMIT_TIME 0xac #define CFG_AGING_TIME 0xbc #define HGC_DFX_CFG2 0xc0 #define HGC_IOMB_PROC1_STATUS 0x104 #define CFG_1US_TIMER_TRSH 0xcc #define HGC_LM_DFX_STATUS2 0x128 #define HGC_LM_DFX_STATUS2_IOSTLIST_OFF 0 #define HGC_LM_DFX_STATUS2_IOSTLIST_MSK (0xfff << \ HGC_LM_DFX_STATUS2_IOSTLIST_OFF) #define HGC_LM_DFX_STATUS2_ITCTLIST_OFF 12 #define HGC_LM_DFX_STATUS2_ITCTLIST_MSK (0x7ff << \ HGC_LM_DFX_STATUS2_ITCTLIST_OFF) #define HGC_CQE_ECC_ADDR 0x13c #define HGC_CQE_ECC_1B_ADDR_OFF 0 #define HGC_CQE_ECC_1B_ADDR_MSK (0x3f << HGC_CQE_ECC_1B_ADDR_OFF) #define HGC_CQE_ECC_MB_ADDR_OFF 8 #define HGC_CQE_ECC_MB_ADDR_MSK (0x3f << HGC_CQE_ECC_MB_ADDR_OFF) #define HGC_IOST_ECC_ADDR 0x140 #define HGC_IOST_ECC_1B_ADDR_OFF 0 #define HGC_IOST_ECC_1B_ADDR_MSK (0x3ff << HGC_IOST_ECC_1B_ADDR_OFF) #define HGC_IOST_ECC_MB_ADDR_OFF 16 #define HGC_IOST_ECC_MB_ADDR_MSK (0x3ff << HGC_IOST_ECC_MB_ADDR_OFF) #define HGC_DQE_ECC_ADDR 0x144 #define HGC_DQE_ECC_1B_ADDR_OFF 0 #define HGC_DQE_ECC_1B_ADDR_MSK (0xfff << HGC_DQE_ECC_1B_ADDR_OFF) #define HGC_DQE_ECC_MB_ADDR_OFF 16 #define HGC_DQE_ECC_MB_ADDR_MSK (0xfff << HGC_DQE_ECC_MB_ADDR_OFF) #define HGC_INVLD_DQE_INFO 0x148 #define HGC_INVLD_DQE_INFO_FB_CH0_OFF 9 #define HGC_INVLD_DQE_INFO_FB_CH0_MSK (0x1 << HGC_INVLD_DQE_INFO_FB_CH0_OFF) #define HGC_INVLD_DQE_INFO_FB_CH3_OFF 18 #define HGC_ITCT_ECC_ADDR 0x150 #define HGC_ITCT_ECC_1B_ADDR_OFF 0 #define HGC_ITCT_ECC_1B_ADDR_MSK (0x3ff << \ HGC_ITCT_ECC_1B_ADDR_OFF) #define HGC_ITCT_ECC_MB_ADDR_OFF 16 #define HGC_ITCT_ECC_MB_ADDR_MSK (0x3ff << \ HGC_ITCT_ECC_MB_ADDR_OFF) #define HGC_AXI_FIFO_ERR_INFO 0x154 #define AXI_ERR_INFO_OFF 0 #define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF) #define FIFO_ERR_INFO_OFF 8 #define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF) #define INT_COAL_EN 0x19c #define OQ_INT_COAL_TIME 0x1a0 #define OQ_INT_COAL_CNT 0x1a4 #define ENT_INT_COAL_TIME 0x1a8 #define ENT_INT_COAL_CNT 0x1ac #define OQ_INT_SRC 0x1b0 #define OQ_INT_SRC_MSK 0x1b4 #define ENT_INT_SRC1 0x1b8 #define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0 #define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF) #define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8 #define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF) #define ENT_INT_SRC2 0x1bc #define ENT_INT_SRC3 0x1c0 #define ENT_INT_SRC3_WP_DEPTH_OFF 8 #define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9 #define ENT_INT_SRC3_RP_DEPTH_OFF 10 #define ENT_INT_SRC3_AXI_OFF 11 #define ENT_INT_SRC3_FIFO_OFF 12 #define ENT_INT_SRC3_LM_OFF 14 #define ENT_INT_SRC3_ITC_INT_OFF 15 #define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF) #define ENT_INT_SRC3_ABT_OFF 16 #define ENT_INT_SRC_MSK1 0x1c4 #define ENT_INT_SRC_MSK2 0x1c8 #define ENT_INT_SRC_MSK3 0x1cc #define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31 #define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF) #define SAS_ECC_INTR 0x1e8 #define SAS_ECC_INTR_DQE_ECC_1B_OFF 0 #define SAS_ECC_INTR_DQE_ECC_MB_OFF 1 #define SAS_ECC_INTR_IOST_ECC_1B_OFF 2 #define SAS_ECC_INTR_IOST_ECC_MB_OFF 3 #define SAS_ECC_INTR_ITCT_ECC_MB_OFF 4 #define SAS_ECC_INTR_ITCT_ECC_1B_OFF 5 #define SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF 6 #define SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF 7 #define SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF 8 #define SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF 9 #define SAS_ECC_INTR_CQE_ECC_1B_OFF 10 #define SAS_ECC_INTR_CQE_ECC_MB_OFF 11 #define SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF 12 #define SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF 13 #define SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF 14 #define SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF 15 #define SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF 16 #define SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF 17 #define SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF 18 #define SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF 19 #define SAS_ECC_INTR_MSK 0x1ec #define HGC_ERR_STAT_EN 0x238 #define DLVRY_Q_0_BASE_ADDR_LO 0x260 #define DLVRY_Q_0_BASE_ADDR_HI 0x264 #define DLVRY_Q_0_DEPTH 0x268 #define DLVRY_Q_0_WR_PTR 0x26c #define DLVRY_Q_0_RD_PTR 0x270 #define HYPER_STREAM_ID_EN_CFG 0xc80 #define OQ0_INT_SRC_MSK 0xc90 #define COMPL_Q_0_BASE_ADDR_LO 0x4e0 #define COMPL_Q_0_BASE_ADDR_HI 0x4e4 #define COMPL_Q_0_DEPTH 0x4e8 #define COMPL_Q_0_WR_PTR 0x4ec #define COMPL_Q_0_RD_PTR 0x4f0 #define HGC_RXM_DFX_STATUS14 0xae8 #define HGC_RXM_DFX_STATUS14_MEM0_OFF 0 #define HGC_RXM_DFX_STATUS14_MEM0_MSK (0x1ff << \ HGC_RXM_DFX_STATUS14_MEM0_OFF) #define HGC_RXM_DFX_STATUS14_MEM1_OFF 9 #define HGC_RXM_DFX_STATUS14_MEM1_MSK (0x1ff << \ HGC_RXM_DFX_STATUS14_MEM1_OFF) #define HGC_RXM_DFX_STATUS14_MEM2_OFF 18 #define HGC_RXM_DFX_STATUS14_MEM2_MSK (0x1ff << \ HGC_RXM_DFX_STATUS14_MEM2_OFF) #define HGC_RXM_DFX_STATUS15 0xaec #define HGC_RXM_DFX_STATUS15_MEM3_OFF 0 #define HGC_RXM_DFX_STATUS15_MEM3_MSK (0x1ff << \ HGC_RXM_DFX_STATUS15_MEM3_OFF) /* phy registers need init */ #define PORT_BASE (0x2000) #define PHY_CFG (PORT_BASE + 0x0) #define HARD_PHY_LINKRATE (PORT_BASE + 0x4) #define PHY_CFG_ENA_OFF 0 #define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF) #define PHY_CFG_DC_OPT_OFF 2 #define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF) #define PROG_PHY_LINK_RATE (PORT_BASE + 0x8) #define PROG_PHY_LINK_RATE_MAX_OFF 0 #define PROG_PHY_LINK_RATE_MAX_MSK (0xff << PROG_PHY_LINK_RATE_MAX_OFF) #define PHY_CTRL (PORT_BASE + 0x14) #define PHY_CTRL_RESET_OFF 0 #define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF) #define SAS_PHY_CTRL (PORT_BASE + 0x20) #define SL_CFG (PORT_BASE + 0x84) #define PHY_PCN (PORT_BASE + 0x44) #define SL_TOUT_CFG (PORT_BASE + 0x8c) #define SL_CONTROL (PORT_BASE + 0x94) #define SL_CONTROL_NOTIFY_EN_OFF 0 #define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF) #define SL_CONTROL_CTA_OFF 17 #define SL_CONTROL_CTA_MSK (0x1 << SL_CONTROL_CTA_OFF) #define RX_PRIMS_STATUS (PORT_BASE + 0x98) #define RX_BCAST_CHG_OFF 1 #define RX_BCAST_CHG_MSK (0x1 << RX_BCAST_CHG_OFF) #define TX_ID_DWORD0 (PORT_BASE + 0x9c) #define TX_ID_DWORD1 (PORT_BASE + 0xa0) #define TX_ID_DWORD2 (PORT_BASE + 0xa4) #define TX_ID_DWORD3 (PORT_BASE + 0xa8) #define TX_ID_DWORD4 (PORT_BASE + 0xaC) #define TX_ID_DWORD5 (PORT_BASE + 0xb0) #define TX_ID_DWORD6 (PORT_BASE + 0xb4) #define TXID_AUTO (PORT_BASE + 0xb8) #define TXID_AUTO_CT3_OFF 1 #define TXID_AUTO_CT3_MSK (0x1 << TXID_AUTO_CT3_OFF) #define TX_HARDRST_OFF 2 #define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF) #define RX_IDAF_DWORD0 (PORT_BASE + 0xc4) #define RX_IDAF_DWORD1 (PORT_BASE + 0xc8) #define RX_IDAF_DWORD2 (PORT_BASE + 0xcc) #define RX_IDAF_DWORD3 (PORT_BASE + 0xd0) #define RX_IDAF_DWORD4 (PORT_BASE + 0xd4) #define RX_IDAF_DWORD5 (PORT_BASE + 0xd8) #define RX_IDAF_DWORD6 (PORT_BASE + 0xdc) #define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc) #define CON_CONTROL (PORT_BASE + 0x118) #define DONE_RECEIVED_TIME (PORT_BASE + 0x11c) #define CHL_INT0 (PORT_BASE + 0x1b4) #define CHL_INT0_HOTPLUG_TOUT_OFF 0 #define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF) #define CHL_INT0_SL_RX_BCST_ACK_OFF 1 #define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF) #define CHL_INT0_SL_PHY_ENABLE_OFF 2 #define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF) #define CHL_INT0_NOT_RDY_OFF 4 #define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF) #define CHL_INT0_PHY_RDY_OFF 5 #define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF) #define CHL_INT1 (PORT_BASE + 0x1b8) #define CHL_INT1_DMAC_TX_ECC_ERR_OFF 15 #define CHL_INT1_DMAC_TX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_TX_ECC_ERR_OFF) #define CHL_INT1_DMAC_RX_ECC_ERR_OFF 17 #define CHL_INT1_DMAC_RX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_RX_ECC_ERR_OFF) #define CHL_INT2 (PORT_BASE + 0x1bc) #define CHL_INT0_MSK (PORT_BASE + 0x1c0) #define CHL_INT1_MSK (PORT_BASE + 0x1c4) #define CHL_INT2_MSK (PORT_BASE + 0x1c8) #define CHL_INT_COAL_EN (PORT_BASE + 0x1d0) #define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0) #define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4) #define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8) #define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc) #define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0) #define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4) #define DMA_TX_STATUS (PORT_BASE + 0x2d0) #define DMA_TX_STATUS_BUSY_OFF 0 #define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF) #define DMA_RX_STATUS (PORT_BASE + 0x2e8) #define DMA_RX_STATUS_BUSY_OFF 0 #define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF) #define AXI_CFG (0x5100) #define AM_CFG_MAX_TRANS (0x5010) #define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014) #define AXI_MASTER_CFG_BASE (0x5000) #define AM_CTRL_GLOBAL (0x0) #define AM_CURR_TRANS_RETURN (0x150) /* HW dma structures */ /* Delivery queue header */ /* dw0 */ #define CMD_HDR_ABORT_FLAG_OFF 0 #define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF) #define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2 #define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF) #define CMD_HDR_RESP_REPORT_OFF 5 #define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF) #define CMD_HDR_TLR_CTRL_OFF 6 #define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF) #define CMD_HDR_PORT_OFF 18 #define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF) #define CMD_HDR_PRIORITY_OFF 27 #define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF) #define CMD_HDR_CMD_OFF 29 #define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF) /* dw1 */ #define CMD_HDR_DIR_OFF 5 #define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF) #define CMD_HDR_RESET_OFF 7 #define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF) #define CMD_HDR_VDTL_OFF 10 #define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF) #define CMD_HDR_FRAME_TYPE_OFF 11 #define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF) #define CMD_HDR_DEV_ID_OFF 16 #define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF) /* dw2 */ #define CMD_HDR_CFL_OFF 0 #define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF) #define CMD_HDR_NCQ_TAG_OFF 10 #define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF) #define CMD_HDR_MRFL_OFF 15 #define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF) #define CMD_HDR_SG_MOD_OFF 24 #define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF) #define CMD_HDR_FIRST_BURST_OFF 26 #define CMD_HDR_FIRST_BURST_MSK (0x1 << CMD_HDR_SG_MOD_OFF) /* dw3 */ #define CMD_HDR_IPTT_OFF 0 #define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF) /* dw6 */ #define CMD_HDR_DIF_SGL_LEN_OFF 0 #define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF) #define CMD_HDR_DATA_SGL_LEN_OFF 16 #define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF) #define CMD_HDR_ABORT_IPTT_OFF 16 #define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF) /* Completion header */ /* dw0 */ #define CMPLT_HDR_RSPNS_XFRD_OFF 10 #define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF) #define CMPLT_HDR_ERX_OFF 12 #define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF) #define CMPLT_HDR_ABORT_STAT_OFF 13 #define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF) /* abort_stat */ #define STAT_IO_NOT_VALID 0x1 #define STAT_IO_NO_DEVICE 0x2 #define STAT_IO_COMPLETE 0x3 #define STAT_IO_ABORTED 0x4 /* dw1 */ #define CMPLT_HDR_IPTT_OFF 0 #define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF) #define CMPLT_HDR_DEV_ID_OFF 16 #define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF) /* ITCT header */ /* qw0 */ #define ITCT_HDR_DEV_TYPE_OFF 0 #define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF) #define ITCT_HDR_VALID_OFF 2 #define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF) #define ITCT_HDR_MCR_OFF 5 #define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF) #define ITCT_HDR_VLN_OFF 9 #define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF) #define ITCT_HDR_SMP_TIMEOUT_OFF 16 #define ITCT_HDR_SMP_TIMEOUT_8US 1 #define ITCT_HDR_SMP_TIMEOUT (ITCT_HDR_SMP_TIMEOUT_8US * \ 250) /* 2ms */ #define ITCT_HDR_AWT_CONTINUE_OFF 25 #define ITCT_HDR_PORT_ID_OFF 28 #define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF) /* qw2 */ #define ITCT_HDR_INLT_OFF 0 #define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF) #define ITCT_HDR_BITLT_OFF 16 #define ITCT_HDR_BITLT_MSK (0xffffULL << ITCT_HDR_BITLT_OFF) #define ITCT_HDR_MCTLT_OFF 32 #define ITCT_HDR_MCTLT_MSK (0xffffULL << ITCT_HDR_MCTLT_OFF) #define ITCT_HDR_RTOLT_OFF 48 #define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF) #define HISI_SAS_FATAL_INT_NR 2 struct hisi_sas_complete_v2_hdr { __le32 dw0; __le32 dw1; __le32 act; __le32 dw3; }; struct hisi_sas_err_record_v2 { /* dw0 */ __le32 trans_tx_fail_type; /* dw1 */ __le32 trans_rx_fail_type; /* dw2 */ __le16 dma_tx_err_type; __le16 sipc_rx_err_type; /* dw3 */ __le32 dma_rx_err_type; }; enum { HISI_SAS_PHY_PHY_UPDOWN, HISI_SAS_PHY_CHNL_INT, HISI_SAS_PHY_INT_NR }; enum { TRANS_TX_FAIL_BASE = 0x0, /* dw0 */ TRANS_RX_FAIL_BASE = 0x100, /* dw1 */ DMA_TX_ERR_BASE = 0x200, /* dw2 bit 15-0 */ SIPC_RX_ERR_BASE = 0x300, /* dw2 bit 31-16*/ DMA_RX_ERR_BASE = 0x400, /* dw3 */ /* trans tx*/ TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS = TRANS_TX_FAIL_BASE, /* 0x0 */ TRANS_TX_ERR_PHY_NOT_ENABLE, /* 0x1 */ TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION, /* 0x2 */ TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION, /* 0x3 */ TRANS_TX_OPEN_CNX_ERR_BY_OTHER, /* 0x4 */ RESERVED0, /* 0x5 */ TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT, /* 0x6 */ TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY, /* 0x7 */ TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED, /* 0x8 */ TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED, /* 0x9 */ TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION, /* 0xa */ TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD, /* 0xb */ TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER, /* 0xc */ TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED, /* 0xd */ TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT, /* 0xe */ TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION, /* 0xf */ TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED, /* 0x10 */ TRANS_TX_ERR_FRAME_TXED, /* 0x11 */ TRANS_TX_ERR_WITH_BREAK_TIMEOUT, /* 0x12 */ TRANS_TX_ERR_WITH_BREAK_REQUEST, /* 0x13 */ TRANS_TX_ERR_WITH_BREAK_RECEVIED, /* 0x14 */ TRANS_TX_ERR_WITH_CLOSE_TIMEOUT, /* 0x15 */ TRANS_TX_ERR_WITH_CLOSE_NORMAL, /* 0x16 for ssp*/ TRANS_TX_ERR_WITH_CLOSE_PHYDISALE, /* 0x17 */ TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x18 */ TRANS_TX_ERR_WITH_CLOSE_COMINIT, /* 0x19 */ TRANS_TX_ERR_WITH_NAK_RECEVIED, /* 0x1a for ssp*/ TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT, /* 0x1b for ssp*/ /*IO_TX_ERR_WITH_R_ERR_RECEVIED, [> 0x1b for sata/stp<] */ TRANS_TX_ERR_WITH_CREDIT_TIMEOUT, /* 0x1c for ssp */ /*IO_RX_ERR_WITH_SATA_DEVICE_LOST 0x1c for sata/stp */ TRANS_TX_ERR_WITH_IPTT_CONFLICT, /* 0x1d for ssp/smp */ TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS, /* 0x1e */ /*IO_TX_ERR_WITH_SYNC_RXD, [> 0x1e <] for sata/stp */ TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT, /* 0x1f for sata/stp */ /* trans rx */ TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR = TRANS_RX_FAIL_BASE, /* 0x100 */ TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR, /* 0x101 for sata/stp */ TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM, /* 0x102 for ssp/smp */ /*IO_ERR_WITH_RXFIS_8B10B_CODE_ERR, [> 0x102 <] for sata/stp */ TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR, /* 0x103 for sata/stp */ TRANS_RX_ERR_WITH_RXFIS_CRC_ERR, /* 0x104 for sata/stp */ TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN, /* 0x105 for smp */ /*IO_ERR_WITH_RXFIS_TX SYNCP, [> 0x105 <] for sata/stp */ TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP, /* 0x106 for sata/stp*/ TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN, /* 0x107 */ TRANS_RX_ERR_WITH_BREAK_TIMEOUT, /* 0x108 */ TRANS_RX_ERR_WITH_BREAK_REQUEST, /* 0x109 */ TRANS_RX_ERR_WITH_BREAK_RECEVIED, /* 0x10a */ RESERVED1, /* 0x10b */ TRANS_RX_ERR_WITH_CLOSE_NORMAL, /* 0x10c */ TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE, /* 0x10d */ TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x10e */ TRANS_RX_ERR_WITH_CLOSE_COMINIT, /* 0x10f */ TRANS_RX_ERR_WITH_DATA_LEN0, /* 0x110 for ssp/smp */ TRANS_RX_ERR_WITH_BAD_HASH, /* 0x111 for ssp */ /*IO_RX_ERR_WITH_FIS_TOO_SHORT, [> 0x111 <] for sata/stp */ TRANS_RX_XRDY_WLEN_ZERO_ERR, /* 0x112 for ssp*/ /*IO_RX_ERR_WITH_FIS_TOO_LONG, [> 0x112 <] for sata/stp */ TRANS_RX_SSP_FRM_LEN_ERR, /* 0x113 for ssp */ /*IO_RX_ERR_WITH_SATA_DEVICE_LOST, [> 0x113 <] for sata */ RESERVED2, /* 0x114 */ RESERVED3, /* 0x115 */ RESERVED4, /* 0x116 */ RESERVED5, /* 0x117 */ TRANS_RX_ERR_WITH_BAD_FRM_TYPE, /* 0x118 */ TRANS_RX_SMP_FRM_LEN_ERR, /* 0x119 */ TRANS_RX_SMP_RESP_TIMEOUT_ERR, /* 0x11a */ RESERVED6, /* 0x11b */ RESERVED7, /* 0x11c */ RESERVED8, /* 0x11d */ RESERVED9, /* 0x11e */ TRANS_RX_R_ERR, /* 0x11f */ /* dma tx */ DMA_TX_DIF_CRC_ERR = DMA_TX_ERR_BASE, /* 0x200 */ DMA_TX_DIF_APP_ERR, /* 0x201 */ DMA_TX_DIF_RPP_ERR, /* 0x202 */ DMA_TX_DATA_SGL_OVERFLOW, /* 0x203 */ DMA_TX_DIF_SGL_OVERFLOW, /* 0x204 */ DMA_TX_UNEXP_XFER_ERR, /* 0x205 */ DMA_TX_UNEXP_RETRANS_ERR, /* 0x206 */ DMA_TX_XFER_LEN_OVERFLOW, /* 0x207 */ DMA_TX_XFER_OFFSET_ERR, /* 0x208 */ DMA_TX_RAM_ECC_ERR, /* 0x209 */ DMA_TX_DIF_LEN_ALIGN_ERR, /* 0x20a */ /* sipc rx */ SIPC_RX_FIS_STATUS_ERR_BIT_VLD = SIPC_RX_ERR_BASE, /* 0x300 */ SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR, /* 0x301 */ SIPC_RX_FIS_STATUS_BSY_BIT_ERR, /* 0x302 */ SIPC_RX_WRSETUP_LEN_ODD_ERR, /* 0x303 */ SIPC_RX_WRSETUP_LEN_ZERO_ERR, /* 0x304 */ SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR, /* 0x305 */ SIPC_RX_NCQ_WRSETUP_OFFSET_ERR, /* 0x306 */ SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR, /* 0x307 */ SIPC_RX_SATA_UNEXP_FIS_ERR, /* 0x308 */ SIPC_RX_WRSETUP_ESTATUS_ERR, /* 0x309 */ SIPC_RX_DATA_UNDERFLOW_ERR, /* 0x30a */ /* dma rx */ DMA_RX_DIF_CRC_ERR = DMA_RX_ERR_BASE, /* 0x400 */ DMA_RX_DIF_APP_ERR, /* 0x401 */ DMA_RX_DIF_RPP_ERR, /* 0x402 */ DMA_RX_DATA_SGL_OVERFLOW, /* 0x403 */ DMA_RX_DIF_SGL_OVERFLOW, /* 0x404 */ DMA_RX_DATA_LEN_OVERFLOW, /* 0x405 */ DMA_RX_DATA_LEN_UNDERFLOW, /* 0x406 */ DMA_RX_DATA_OFFSET_ERR, /* 0x407 */ RESERVED10, /* 0x408 */ DMA_RX_SATA_FRAME_TYPE_ERR, /* 0x409 */ DMA_RX_RESP_BUF_OVERFLOW, /* 0x40a */ DMA_RX_UNEXP_RETRANS_RESP_ERR, /* 0x40b */ DMA_RX_UNEXP_NORM_RESP_ERR, /* 0x40c */ DMA_RX_UNEXP_RDFRAME_ERR, /* 0x40d */ DMA_RX_PIO_DATA_LEN_ERR, /* 0x40e */ DMA_RX_RDSETUP_STATUS_ERR, /* 0x40f */ DMA_RX_RDSETUP_STATUS_DRQ_ERR, /* 0x410 */ DMA_RX_RDSETUP_STATUS_BSY_ERR, /* 0x411 */ DMA_RX_RDSETUP_LEN_ODD_ERR, /* 0x412 */ DMA_RX_RDSETUP_LEN_ZERO_ERR, /* 0x413 */ DMA_RX_RDSETUP_LEN_OVER_ERR, /* 0x414 */ DMA_RX_RDSETUP_OFFSET_ERR, /* 0x415 */ DMA_RX_RDSETUP_ACTIVE_ERR, /* 0x416 */ DMA_RX_RDSETUP_ESTATUS_ERR, /* 0x417 */ DMA_RX_RAM_ECC_ERR, /* 0x418 */ DMA_RX_UNKNOWN_FRM_ERR, /* 0x419 */ }; #define HISI_SAS_COMMAND_ENTRIES_V2_HW 4096 #define DIR_NO_DATA 0 #define DIR_TO_INI 1 #define DIR_TO_DEVICE 2 #define DIR_RESERVED 3 #define SATA_PROTOCOL_NONDATA 0x1 #define SATA_PROTOCOL_PIO 0x2 #define SATA_PROTOCOL_DMA 0x4 #define SATA_PROTOCOL_FPDMA 0x8 #define SATA_PROTOCOL_ATAPI 0x10 static void hisi_sas_link_timeout_disable_link(unsigned long data); static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off) { void __iomem *regs = hisi_hba->regs + off; return readl(regs); } static u32 hisi_sas_read32_relaxed(struct hisi_hba *hisi_hba, u32 off) { void __iomem *regs = hisi_hba->regs + off; return readl_relaxed(regs); } static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val) { void __iomem *regs = hisi_hba->regs + off; writel(val, regs); } static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no, u32 off, u32 val) { void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; writel(val, regs); } static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba, int phy_no, u32 off) { void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off; return readl(regs); } /* This function needs to be protected from pre-emption. */ static int slot_index_alloc_quirk_v2_hw(struct hisi_hba *hisi_hba, int *slot_idx, struct domain_device *device) { unsigned int index = 0; void *bitmap = hisi_hba->slot_index_tags; int sata_dev = dev_is_sata(device); while (1) { index = find_next_zero_bit(bitmap, hisi_hba->slot_index_count, index); if (index >= hisi_hba->slot_index_count) return -SAS_QUEUE_FULL; /* * SAS IPTT bit0 should be 1 */ if (sata_dev || (index & 1)) break; index++; } set_bit(index, bitmap); *slot_idx = index; return 0; } static struct hisi_sas_device *alloc_dev_quirk_v2_hw(struct domain_device *device) { struct hisi_hba *hisi_hba = device->port->ha->lldd_ha; struct hisi_sas_device *sas_dev = NULL; int i, sata_dev = dev_is_sata(device); spin_lock(&hisi_hba->lock); for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) { /* * SATA device id bit0 should be 0 */ if (sata_dev && (i & 1)) continue; if (hisi_hba->devices[i].dev_type == SAS_PHY_UNUSED) { hisi_hba->devices[i].device_id = i; sas_dev = &hisi_hba->devices[i]; sas_dev->dev_status = HISI_SAS_DEV_NORMAL; sas_dev->dev_type = device->dev_type; sas_dev->hisi_hba = hisi_hba; sas_dev->sas_device = device; break; } } spin_unlock(&hisi_hba->lock); return sas_dev; } static void config_phy_opt_mode_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg &= ~PHY_CFG_DC_OPT_MSK; cfg |= 1 << PHY_CFG_DC_OPT_OFF; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void config_id_frame_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { struct sas_identify_frame identify_frame; u32 *identify_buffer; memset(&identify_frame, 0, sizeof(identify_frame)); identify_frame.dev_type = SAS_END_DEVICE; identify_frame.frame_type = 0; identify_frame._un1 = 1; identify_frame.initiator_bits = SAS_PROTOCOL_ALL; identify_frame.target_bits = SAS_PROTOCOL_NONE; memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE); identify_frame.phy_id = phy_no; identify_buffer = (u32 *)(&identify_frame); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0, __swab32(identify_buffer[0])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1, __swab32(identify_buffer[1])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2, __swab32(identify_buffer[2])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3, __swab32(identify_buffer[3])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4, __swab32(identify_buffer[4])); hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5, __swab32(identify_buffer[5])); } static void setup_itct_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_device *sas_dev) { struct domain_device *device = sas_dev->sas_device; struct device *dev = &hisi_hba->pdev->dev; u64 qw0, device_id = sas_dev->device_id; struct hisi_sas_itct *itct = &hisi_hba->itct[device_id]; struct domain_device *parent_dev = device->parent; struct asd_sas_port *sas_port = device->port; struct hisi_sas_port *port = to_hisi_sas_port(sas_port); memset(itct, 0, sizeof(*itct)); /* qw0 */ qw0 = 0; switch (sas_dev->dev_type) { case SAS_END_DEVICE: case SAS_EDGE_EXPANDER_DEVICE: case SAS_FANOUT_EXPANDER_DEVICE: qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF; break; case SAS_SATA_DEV: case SAS_SATA_PENDING: if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF; else qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF; break; default: dev_warn(dev, "setup itct: unsupported dev type (%d)\n", sas_dev->dev_type); } qw0 |= ((1 << ITCT_HDR_VALID_OFF) | (device->linkrate << ITCT_HDR_MCR_OFF) | (1 << ITCT_HDR_VLN_OFF) | (ITCT_HDR_SMP_TIMEOUT << ITCT_HDR_SMP_TIMEOUT_OFF) | (1 << ITCT_HDR_AWT_CONTINUE_OFF) | (port->id << ITCT_HDR_PORT_ID_OFF)); itct->qw0 = cpu_to_le64(qw0); /* qw1 */ memcpy(&itct->sas_addr, device->sas_addr, SAS_ADDR_SIZE); itct->sas_addr = __swab64(itct->sas_addr); /* qw2 */ if (!dev_is_sata(device)) itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) | (0x1ULL << ITCT_HDR_BITLT_OFF) | (0x32ULL << ITCT_HDR_MCTLT_OFF) | (0x1ULL << ITCT_HDR_RTOLT_OFF)); } static void free_device_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_device *sas_dev) { u64 dev_id = sas_dev->device_id; struct device *dev = &hisi_hba->pdev->dev; struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id]; u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); int i; /* clear the itct interrupt state */ if (ENT_INT_SRC3_ITC_INT_MSK & reg_val) hisi_sas_write32(hisi_hba, ENT_INT_SRC3, ENT_INT_SRC3_ITC_INT_MSK); /* clear the itct int*/ for (i = 0; i < 2; i++) { /* clear the itct table*/ reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR); reg_val |= ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK); hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val); udelay(10); reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); if (ENT_INT_SRC3_ITC_INT_MSK & reg_val) { dev_dbg(dev, "got clear ITCT done interrupt\n"); /* invalid the itct state*/ memset(itct, 0, sizeof(struct hisi_sas_itct)); hisi_sas_write32(hisi_hba, ENT_INT_SRC3, ENT_INT_SRC3_ITC_INT_MSK); /* clear the itct */ hisi_sas_write32(hisi_hba, ITCT_CLR, 0); dev_dbg(dev, "clear ITCT ok\n"); break; } } } static int reset_hw_v2_hw(struct hisi_hba *hisi_hba) { int i, reset_val; u32 val; unsigned long end_time; struct device *dev = &hisi_hba->pdev->dev; /* The mask needs to be set depending on the number of phys */ if (hisi_hba->n_phy == 9) reset_val = 0x1fffff; else reset_val = 0x7ffff; hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0); /* Disable all of the PHYs */ for (i = 0; i < hisi_hba->n_phy; i++) { u32 phy_cfg = hisi_sas_phy_read32(hisi_hba, i, PHY_CFG); phy_cfg &= ~PHY_CTRL_RESET_MSK; hisi_sas_phy_write32(hisi_hba, i, PHY_CFG, phy_cfg); } udelay(50); /* Ensure DMA tx & rx idle */ for (i = 0; i < hisi_hba->n_phy; i++) { u32 dma_tx_status, dma_rx_status; end_time = jiffies + msecs_to_jiffies(1000); while (1) { dma_tx_status = hisi_sas_phy_read32(hisi_hba, i, DMA_TX_STATUS); dma_rx_status = hisi_sas_phy_read32(hisi_hba, i, DMA_RX_STATUS); if (!(dma_tx_status & DMA_TX_STATUS_BUSY_MSK) && !(dma_rx_status & DMA_RX_STATUS_BUSY_MSK)) break; msleep(20); if (time_after(jiffies, end_time)) return -EIO; } } /* Ensure axi bus idle */ end_time = jiffies + msecs_to_jiffies(1000); while (1) { u32 axi_status = hisi_sas_read32(hisi_hba, AXI_CFG); if (axi_status == 0) break; msleep(20); if (time_after(jiffies, end_time)) return -EIO; } if (ACPI_HANDLE(dev)) { acpi_status s; s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL); if (ACPI_FAILURE(s)) { dev_err(dev, "Reset failed\n"); return -EIO; } } else if (hisi_hba->ctrl) { /* reset and disable clock*/ regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg, reset_val); regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg + 4, reset_val); msleep(1); regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val); if (reset_val != (val & reset_val)) { dev_err(dev, "SAS reset fail.\n"); return -EIO; } /* De-reset and enable clock*/ regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg + 4, reset_val); regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg, reset_val); msleep(1); regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val); if (val & reset_val) { dev_err(dev, "SAS de-reset fail.\n"); return -EIO; } } else dev_warn(dev, "no reset method\n"); return 0; } static void init_reg_v2_hw(struct hisi_hba *hisi_hba) { struct device *dev = &hisi_hba->pdev->dev; int i; /* Global registers init */ /* Deal with am-max-transmissions quirk */ if (device_property_present(dev, "hip06-sas-v2-quirk-amt")) { hisi_sas_write32(hisi_hba, AM_CFG_MAX_TRANS, 0x2020); hisi_sas_write32(hisi_hba, AM_CFG_SINGLE_PORT_MAX_TRANS, 0x2020); } /* Else, use defaults -> do nothing */ hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, (u32)((1ULL << hisi_hba->queue_count) - 1)); hisi_sas_write32(hisi_hba, AXI_USER1, 0xc0000000); hisi_sas_write32(hisi_hba, AXI_USER2, 0x10000); hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x108); hisi_sas_write32(hisi_hba, HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL, 0x7FF); hisi_sas_write32(hisi_hba, OPENA_WT_CONTI_TIME, 0x1); hisi_sas_write32(hisi_hba, I_T_NEXUS_LOSS_TIME, 0x1F4); hisi_sas_write32(hisi_hba, MAX_CON_TIME_LIMIT_TIME, 0x32); hisi_sas_write32(hisi_hba, BUS_INACTIVE_LIMIT_TIME, 0x1); hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x1); hisi_sas_write32(hisi_hba, HGC_ERR_STAT_EN, 0x1); hisi_sas_write32(hisi_hba, HGC_GET_ITV_TIME, 0x1); hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x1); hisi_sas_write32(hisi_hba, ENT_INT_COAL_TIME, 0x1); hisi_sas_write32(hisi_hba, ENT_INT_COAL_CNT, 0x1); hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0x0); hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0x7efefefe); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0x7efefefe); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0x7ffffffe); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xfff00c30); for (i = 0; i < hisi_hba->queue_count; i++) hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK+0x4*i, 0); hisi_sas_write32(hisi_hba, AXI_AHB_CLK_CFG, 1); hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1); for (i = 0; i < hisi_hba->n_phy; i++) { hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE, 0x855); hisi_sas_phy_write32(hisi_hba, i, SAS_PHY_CTRL, 0x30b9908); hisi_sas_phy_write32(hisi_hba, i, SL_TOUT_CFG, 0x7d7d7d7d); hisi_sas_phy_write32(hisi_hba, i, SL_CONTROL, 0x0); hisi_sas_phy_write32(hisi_hba, i, TXID_AUTO, 0x2); hisi_sas_phy_write32(hisi_hba, i, DONE_RECEIVED_TIME, 0x10); hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xfff87fff); hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000); hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x8ffffbff); hisi_sas_phy_write32(hisi_hba, i, SL_CFG, 0x23f801fc); hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0); hisi_sas_phy_write32(hisi_hba, i, CHL_INT_COAL_EN, 0x0); hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x0); if (hisi_hba->refclk_frequency_mhz == 66) hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL, 0x199B694); /* else, do nothing -> leave it how you found it */ } for (i = 0; i < hisi_hba->queue_count; i++) { /* Delivery queue */ hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14), upper_32_bits(hisi_hba->cmd_hdr_dma[i])); hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14), lower_32_bits(hisi_hba->cmd_hdr_dma[i])); hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14), HISI_SAS_QUEUE_SLOTS); /* Completion queue */ hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14), upper_32_bits(hisi_hba->complete_hdr_dma[i])); hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14), lower_32_bits(hisi_hba->complete_hdr_dma[i])); hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14), HISI_SAS_QUEUE_SLOTS); } /* itct */ hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO, lower_32_bits(hisi_hba->itct_dma)); hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI, upper_32_bits(hisi_hba->itct_dma)); /* iost */ hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO, lower_32_bits(hisi_hba->iost_dma)); hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI, upper_32_bits(hisi_hba->iost_dma)); /* breakpoint */ hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO, lower_32_bits(hisi_hba->breakpoint_dma)); hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI, upper_32_bits(hisi_hba->breakpoint_dma)); /* SATA broken msg */ hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO, lower_32_bits(hisi_hba->sata_breakpoint_dma)); hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI, upper_32_bits(hisi_hba->sata_breakpoint_dma)); /* SATA initial fis */ hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO, lower_32_bits(hisi_hba->initial_fis_dma)); hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI, upper_32_bits(hisi_hba->initial_fis_dma)); } static void hisi_sas_link_timeout_enable_link(unsigned long data) { struct hisi_hba *hisi_hba = (struct hisi_hba *)data; int i, reg_val; for (i = 0; i < hisi_hba->n_phy; i++) { reg_val = hisi_sas_phy_read32(hisi_hba, i, CON_CONTROL); if (!(reg_val & BIT(0))) { hisi_sas_phy_write32(hisi_hba, i, CON_CONTROL, 0x7); break; } } hisi_hba->timer.function = hisi_sas_link_timeout_disable_link; mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(900)); } static void hisi_sas_link_timeout_disable_link(unsigned long data) { struct hisi_hba *hisi_hba = (struct hisi_hba *)data; int i, reg_val; reg_val = hisi_sas_read32(hisi_hba, PHY_STATE); for (i = 0; i < hisi_hba->n_phy && reg_val; i++) { if (reg_val & BIT(i)) { hisi_sas_phy_write32(hisi_hba, i, CON_CONTROL, 0x6); break; } } hisi_hba->timer.function = hisi_sas_link_timeout_enable_link; mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(100)); } static void set_link_timer_quirk(struct hisi_hba *hisi_hba) { hisi_hba->timer.data = (unsigned long)hisi_hba; hisi_hba->timer.function = hisi_sas_link_timeout_disable_link; hisi_hba->timer.expires = jiffies + msecs_to_jiffies(1000); add_timer(&hisi_hba->timer); } static int hw_init_v2_hw(struct hisi_hba *hisi_hba) { struct device *dev = &hisi_hba->pdev->dev; int rc; rc = reset_hw_v2_hw(hisi_hba); if (rc) { dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc); return rc; } msleep(100); init_reg_v2_hw(hisi_hba); return 0; } static void enable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg |= PHY_CFG_ENA_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG); cfg &= ~PHY_CFG_ENA_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg); } static void start_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { config_id_frame_v2_hw(hisi_hba, phy_no); config_phy_opt_mode_v2_hw(hisi_hba, phy_no); enable_phy_v2_hw(hisi_hba, phy_no); } static void stop_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { disable_phy_v2_hw(hisi_hba, phy_no); } static void stop_phys_v2_hw(struct hisi_hba *hisi_hba) { int i; for (i = 0; i < hisi_hba->n_phy; i++) stop_phy_v2_hw(hisi_hba, i); } static void phy_hard_reset_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; u32 txid_auto; stop_phy_v2_hw(hisi_hba, phy_no); if (phy->identify.device_type == SAS_END_DEVICE) { txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, txid_auto | TX_HARDRST_MSK); } msleep(100); start_phy_v2_hw(hisi_hba, phy_no); } static void start_phys_v2_hw(struct hisi_hba *hisi_hba) { int i; for (i = 0; i < hisi_hba->n_phy; i++) start_phy_v2_hw(hisi_hba, i); } static void phys_init_v2_hw(struct hisi_hba *hisi_hba) { start_phys_v2_hw(hisi_hba); } static void sl_notify_v2_hw(struct hisi_hba *hisi_hba, int phy_no) { u32 sl_control; sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); sl_control |= SL_CONTROL_NOTIFY_EN_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); msleep(1); sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK; hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control); } static enum sas_linkrate phy_get_max_linkrate_v2_hw(void) { return SAS_LINK_RATE_12_0_GBPS; } static void phy_set_linkrate_v2_hw(struct hisi_hba *hisi_hba, int phy_no, struct sas_phy_linkrates *r) { u32 prog_phy_link_rate = hisi_sas_phy_read32(hisi_hba, phy_no, PROG_PHY_LINK_RATE); struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; int i; enum sas_linkrate min, max; u32 rate_mask = 0; if (r->maximum_linkrate == SAS_LINK_RATE_UNKNOWN) { max = sas_phy->phy->maximum_linkrate; min = r->minimum_linkrate; } else if (r->minimum_linkrate == SAS_LINK_RATE_UNKNOWN) { max = r->maximum_linkrate; min = sas_phy->phy->minimum_linkrate; } else return; sas_phy->phy->maximum_linkrate = max; sas_phy->phy->minimum_linkrate = min; min -= SAS_LINK_RATE_1_5_GBPS; max -= SAS_LINK_RATE_1_5_GBPS; for (i = 0; i <= max; i++) rate_mask |= 1 << (i * 2); prog_phy_link_rate &= ~0xff; prog_phy_link_rate |= rate_mask; hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE, prog_phy_link_rate); phy_hard_reset_v2_hw(hisi_hba, phy_no); } static int get_wideport_bitmap_v2_hw(struct hisi_hba *hisi_hba, int port_id) { int i, bitmap = 0; u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); for (i = 0; i < (hisi_hba->n_phy < 9 ? hisi_hba->n_phy : 8); i++) if (phy_state & 1 << i) if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id) bitmap |= 1 << i; if (hisi_hba->n_phy == 9) { u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); if (phy_state & 1 << 8) if (((port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> PORT_STATE_PHY8_PORT_NUM_OFF) == port_id) bitmap |= 1 << 9; } return bitmap; } /** * This function allocates across all queues to load balance. * Slots are allocated from queues in a round-robin fashion. * * The callpath to this function and upto writing the write * queue pointer should be safe from interruption. */ static int get_free_slot_v2_hw(struct hisi_hba *hisi_hba, u32 dev_id, int *q, int *s) { struct device *dev = &hisi_hba->pdev->dev; struct hisi_sas_dq *dq; u32 r, w; int queue = dev_id % hisi_hba->queue_count; dq = &hisi_hba->dq[queue]; w = dq->wr_point; r = hisi_sas_read32_relaxed(hisi_hba, DLVRY_Q_0_RD_PTR + (queue * 0x14)); if (r == (w+1) % HISI_SAS_QUEUE_SLOTS) { dev_warn(dev, "full queue=%d r=%d w=%d\n\n", queue, r, w); return -EAGAIN; } *q = queue; *s = w; return 0; } static void start_delivery_v2_hw(struct hisi_hba *hisi_hba) { int dlvry_queue = hisi_hba->slot_prep->dlvry_queue; int dlvry_queue_slot = hisi_hba->slot_prep->dlvry_queue_slot; struct hisi_sas_dq *dq = &hisi_hba->dq[dlvry_queue]; dq->wr_point = ++dlvry_queue_slot % HISI_SAS_QUEUE_SLOTS; hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), dq->wr_point); } static int prep_prd_sge_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, struct hisi_sas_cmd_hdr *hdr, struct scatterlist *scatter, int n_elem) { struct device *dev = &hisi_hba->pdev->dev; struct scatterlist *sg; int i; if (n_elem > HISI_SAS_SGE_PAGE_CNT) { dev_err(dev, "prd err: n_elem(%d) > HISI_SAS_SGE_PAGE_CNT", n_elem); return -EINVAL; } slot->sge_page = dma_pool_alloc(hisi_hba->sge_page_pool, GFP_ATOMIC, &slot->sge_page_dma); if (!slot->sge_page) return -ENOMEM; for_each_sg(scatter, sg, n_elem, i) { struct hisi_sas_sge *entry = &slot->sge_page->sge[i]; entry->addr = cpu_to_le64(sg_dma_address(sg)); entry->page_ctrl_0 = entry->page_ctrl_1 = 0; entry->data_len = cpu_to_le32(sg_dma_len(sg)); entry->data_off = 0; } hdr->prd_table_addr = cpu_to_le64(slot->sge_page_dma); hdr->sg_len = cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF); return 0; } static int prep_smp_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct domain_device *device = task->dev; struct device *dev = &hisi_hba->pdev->dev; struct hisi_sas_port *port = slot->port; struct scatterlist *sg_req, *sg_resp; struct hisi_sas_device *sas_dev = device->lldd_dev; dma_addr_t req_dma_addr; unsigned int req_len, resp_len; int elem, rc; /* * DMA-map SMP request, response buffers */ /* req */ sg_req = &task->smp_task.smp_req; elem = dma_map_sg(dev, sg_req, 1, DMA_TO_DEVICE); if (!elem) return -ENOMEM; req_len = sg_dma_len(sg_req); req_dma_addr = sg_dma_address(sg_req); /* resp */ sg_resp = &task->smp_task.smp_resp; elem = dma_map_sg(dev, sg_resp, 1, DMA_FROM_DEVICE); if (!elem) { rc = -ENOMEM; goto err_out_req; } resp_len = sg_dma_len(sg_resp); if ((req_len & 0x3) || (resp_len & 0x3)) { rc = -EINVAL; goto err_out_resp; } /* create header */ /* dw0 */ hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) | (1 << CMD_HDR_PRIORITY_OFF) | /* high pri */ (2 << CMD_HDR_CMD_OFF)); /* smp */ /* map itct entry */ hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) | (1 << CMD_HDR_FRAME_TYPE_OFF) | (DIR_NO_DATA << CMD_HDR_DIR_OFF)); /* dw2 */ hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) | (HISI_SAS_MAX_SMP_RESP_SZ / 4 << CMD_HDR_MRFL_OFF)); hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF); hdr->cmd_table_addr = cpu_to_le64(req_dma_addr); hdr->sts_buffer_addr = cpu_to_le64(slot->status_buffer_dma); return 0; err_out_resp: dma_unmap_sg(dev, &slot->task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); err_out_req: dma_unmap_sg(dev, &slot->task->smp_task.smp_req, 1, DMA_TO_DEVICE); return rc; } static int prep_ssp_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, int is_tmf, struct hisi_sas_tmf_task *tmf) { struct sas_task *task = slot->task; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct domain_device *device = task->dev; struct hisi_sas_device *sas_dev = device->lldd_dev; struct hisi_sas_port *port = slot->port; struct sas_ssp_task *ssp_task = &task->ssp_task; struct scsi_cmnd *scsi_cmnd = ssp_task->cmd; int has_data = 0, rc, priority = is_tmf; u8 *buf_cmd; u32 dw1 = 0, dw2 = 0; hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) | (2 << CMD_HDR_TLR_CTRL_OFF) | (port->id << CMD_HDR_PORT_OFF) | (priority << CMD_HDR_PRIORITY_OFF) | (1 << CMD_HDR_CMD_OFF)); /* ssp */ dw1 = 1 << CMD_HDR_VDTL_OFF; if (is_tmf) { dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF; dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF; } else { dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF; switch (scsi_cmnd->sc_data_direction) { case DMA_TO_DEVICE: has_data = 1; dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF; break; case DMA_FROM_DEVICE: has_data = 1; dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF; break; default: dw1 &= ~CMD_HDR_DIR_MSK; } } /* map itct entry */ dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF; hdr->dw1 = cpu_to_le32(dw1); dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr) + 3) / 4) << CMD_HDR_CFL_OFF) | ((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) | (2 << CMD_HDR_SG_MOD_OFF); hdr->dw2 = cpu_to_le32(dw2); hdr->transfer_tags = cpu_to_le32(slot->idx); if (has_data) { rc = prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter, slot->n_elem); if (rc) return rc; } hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len); hdr->cmd_table_addr = cpu_to_le64(slot->command_table_dma); hdr->sts_buffer_addr = cpu_to_le64(slot->status_buffer_dma); buf_cmd = slot->command_table + sizeof(struct ssp_frame_hdr); memcpy(buf_cmd, &task->ssp_task.LUN, 8); if (!is_tmf) { buf_cmd[9] = task->ssp_task.task_attr | (task->ssp_task.task_prio << 3); memcpy(buf_cmd + 12, task->ssp_task.cmd->cmnd, task->ssp_task.cmd->cmd_len); } else { buf_cmd[10] = tmf->tmf; switch (tmf->tmf) { case TMF_ABORT_TASK: case TMF_QUERY_TASK: buf_cmd[12] = (tmf->tag_of_task_to_be_managed >> 8) & 0xff; buf_cmd[13] = tmf->tag_of_task_to_be_managed & 0xff; break; default: break; } } return 0; } static void sata_done_v2_hw(struct hisi_hba *hisi_hba, struct sas_task *task, struct hisi_sas_slot *slot) { struct task_status_struct *ts = &task->task_status; struct ata_task_resp *resp = (struct ata_task_resp *)ts->buf; struct dev_to_host_fis *d2h = slot->status_buffer + sizeof(struct hisi_sas_err_record); resp->frame_len = sizeof(struct dev_to_host_fis); memcpy(&resp->ending_fis[0], d2h, sizeof(struct dev_to_host_fis)); ts->buf_valid_size = sizeof(*resp); } /* by default, task resp is complete */ static void slot_err_v2_hw(struct hisi_hba *hisi_hba, struct sas_task *task, struct hisi_sas_slot *slot) { struct task_status_struct *ts = &task->task_status; struct hisi_sas_err_record_v2 *err_record = slot->status_buffer; u32 trans_tx_fail_type = cpu_to_le32(err_record->trans_tx_fail_type); u32 trans_rx_fail_type = cpu_to_le32(err_record->trans_rx_fail_type); u16 dma_tx_err_type = cpu_to_le16(err_record->dma_tx_err_type); u16 sipc_rx_err_type = cpu_to_le16(err_record->sipc_rx_err_type); u32 dma_rx_err_type = cpu_to_le32(err_record->dma_rx_err_type); int error = -1; if (dma_rx_err_type) { error = ffs(dma_rx_err_type) - 1 + DMA_RX_ERR_BASE; } else if (sipc_rx_err_type) { error = ffs(sipc_rx_err_type) - 1 + SIPC_RX_ERR_BASE; } else if (dma_tx_err_type) { error = ffs(dma_tx_err_type) - 1 + DMA_TX_ERR_BASE; } else if (trans_rx_fail_type) { error = ffs(trans_rx_fail_type) - 1 + TRANS_RX_FAIL_BASE; } else if (trans_tx_fail_type) { error = ffs(trans_tx_fail_type) - 1 + TRANS_TX_FAIL_BASE; } switch (task->task_proto) { case SAS_PROTOCOL_SSP: { switch (error) { case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_NO_DEST; break; } case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_PATH_BLOCKED; break; } case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_EPROTO; break; } case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_CONN_RATE; break; } case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_BAD_DEST; break; } case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; break; } case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_WRONG_DEST; break; } case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; } case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER: { /* not sure */ ts->stat = SAS_DEV_NO_RESPONSE; break; } case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE: { ts->stat = SAS_PHY_DOWN; break; } case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT: { ts->stat = SAS_OPEN_TO; break; } case DMA_RX_DATA_LEN_OVERFLOW: { ts->stat = SAS_DATA_OVERRUN; ts->residual = 0; break; } case DMA_RX_DATA_LEN_UNDERFLOW: case SIPC_RX_DATA_UNDERFLOW_ERR: { ts->residual = trans_tx_fail_type; ts->stat = SAS_DATA_UNDERRUN; break; } case TRANS_TX_ERR_FRAME_TXED: { /* This will request a retry */ ts->stat = SAS_QUEUE_FULL; slot->abort = 1; break; } case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS: case TRANS_TX_ERR_PHY_NOT_ENABLE: case TRANS_TX_OPEN_CNX_ERR_BY_OTHER: case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT: case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED: case TRANS_TX_ERR_WITH_BREAK_TIMEOUT: case TRANS_TX_ERR_WITH_BREAK_REQUEST: case TRANS_TX_ERR_WITH_BREAK_RECEVIED: case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT: case TRANS_TX_ERR_WITH_CLOSE_NORMAL: case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT: case TRANS_TX_ERR_WITH_CLOSE_COMINIT: case TRANS_TX_ERR_WITH_NAK_RECEVIED: case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT: case TRANS_TX_ERR_WITH_IPTT_CONFLICT: case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT: case TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR: case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR: case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM: case TRANS_RX_ERR_WITH_BREAK_TIMEOUT: case TRANS_RX_ERR_WITH_BREAK_REQUEST: case TRANS_RX_ERR_WITH_BREAK_RECEVIED: case TRANS_RX_ERR_WITH_CLOSE_NORMAL: case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT: case TRANS_RX_ERR_WITH_CLOSE_COMINIT: case TRANS_RX_ERR_WITH_DATA_LEN0: case TRANS_RX_ERR_WITH_BAD_HASH: case TRANS_RX_XRDY_WLEN_ZERO_ERR: case TRANS_RX_SSP_FRM_LEN_ERR: case TRANS_RX_ERR_WITH_BAD_FRM_TYPE: case DMA_TX_UNEXP_XFER_ERR: case DMA_TX_UNEXP_RETRANS_ERR: case DMA_TX_XFER_LEN_OVERFLOW: case DMA_TX_XFER_OFFSET_ERR: case DMA_RX_DATA_OFFSET_ERR: case DMA_RX_UNEXP_NORM_RESP_ERR: case DMA_RX_UNEXP_RDFRAME_ERR: case DMA_RX_UNKNOWN_FRM_ERR: { ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_UNKNOWN; break; } default: break; } } break; case SAS_PROTOCOL_SMP: ts->stat = SAM_STAT_CHECK_CONDITION; break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: { switch (error) { case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER: case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED: case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION: { ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_DEV_NO_RESPONSE; break; } case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED: case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED: case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION: case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD: case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION: case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION: case TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY: { ts->stat = SAS_OPEN_REJECT; break; } case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT: { ts->stat = SAS_OPEN_TO; break; } case DMA_RX_DATA_LEN_OVERFLOW: { ts->stat = SAS_DATA_OVERRUN; break; } case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS: case TRANS_TX_ERR_PHY_NOT_ENABLE: case TRANS_TX_OPEN_CNX_ERR_BY_OTHER: case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT: case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED: case TRANS_TX_ERR_WITH_BREAK_TIMEOUT: case TRANS_TX_ERR_WITH_BREAK_REQUEST: case TRANS_TX_ERR_WITH_BREAK_RECEVIED: case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT: case TRANS_TX_ERR_WITH_CLOSE_NORMAL: case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT: case TRANS_TX_ERR_WITH_CLOSE_COMINIT: case TRANS_TX_ERR_WITH_NAK_RECEVIED: case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT: case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT: case TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT: case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR: case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM: case TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR: case TRANS_RX_ERR_WITH_RXFIS_CRC_ERR: case TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN: case TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP: case TRANS_RX_ERR_WITH_CLOSE_NORMAL: case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE: case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT: case TRANS_RX_ERR_WITH_CLOSE_COMINIT: case TRANS_RX_ERR_WITH_DATA_LEN0: case TRANS_RX_ERR_WITH_BAD_HASH: case TRANS_RX_XRDY_WLEN_ZERO_ERR: case TRANS_RX_SSP_FRM_LEN_ERR: case SIPC_RX_FIS_STATUS_ERR_BIT_VLD: case SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR: case SIPC_RX_FIS_STATUS_BSY_BIT_ERR: case SIPC_RX_WRSETUP_LEN_ODD_ERR: case SIPC_RX_WRSETUP_LEN_ZERO_ERR: case SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR: case SIPC_RX_SATA_UNEXP_FIS_ERR: case DMA_RX_SATA_FRAME_TYPE_ERR: case DMA_RX_UNEXP_RDFRAME_ERR: case DMA_RX_PIO_DATA_LEN_ERR: case DMA_RX_RDSETUP_STATUS_ERR: case DMA_RX_RDSETUP_STATUS_DRQ_ERR: case DMA_RX_RDSETUP_STATUS_BSY_ERR: case DMA_RX_RDSETUP_LEN_ODD_ERR: case DMA_RX_RDSETUP_LEN_ZERO_ERR: case DMA_RX_RDSETUP_LEN_OVER_ERR: case DMA_RX_RDSETUP_OFFSET_ERR: case DMA_RX_RDSETUP_ACTIVE_ERR: case DMA_RX_RDSETUP_ESTATUS_ERR: case DMA_RX_UNKNOWN_FRM_ERR: { ts->stat = SAS_OPEN_REJECT; break; } default: { ts->stat = SAS_PROTO_RESPONSE; break; } } sata_done_v2_hw(hisi_hba, task, slot); } break; default: break; } } static int slot_complete_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, int abort) { struct sas_task *task = slot->task; struct hisi_sas_device *sas_dev; struct device *dev = &hisi_hba->pdev->dev; struct task_status_struct *ts; struct domain_device *device; enum exec_status sts; struct hisi_sas_complete_v2_hdr *complete_queue = hisi_hba->complete_hdr[slot->cmplt_queue]; struct hisi_sas_complete_v2_hdr *complete_hdr = &complete_queue[slot->cmplt_queue_slot]; if (unlikely(!task || !task->lldd_task || !task->dev)) return -EINVAL; ts = &task->task_status; device = task->dev; sas_dev = device->lldd_dev; task->task_state_flags &= ~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR); task->task_state_flags |= SAS_TASK_STATE_DONE; memset(ts, 0, sizeof(*ts)); ts->resp = SAS_TASK_COMPLETE; if (unlikely(!sas_dev || abort)) { if (!sas_dev) dev_dbg(dev, "slot complete: port has not device\n"); ts->stat = SAS_PHY_DOWN; goto out; } /* Use SAS+TMF status codes */ switch ((complete_hdr->dw0 & CMPLT_HDR_ABORT_STAT_MSK) >> CMPLT_HDR_ABORT_STAT_OFF) { case STAT_IO_ABORTED: /* this io has been aborted by abort command */ ts->stat = SAS_ABORTED_TASK; goto out; case STAT_IO_COMPLETE: /* internal abort command complete */ ts->stat = TMF_RESP_FUNC_COMPLETE; goto out; case STAT_IO_NO_DEVICE: ts->stat = TMF_RESP_FUNC_COMPLETE; goto out; case STAT_IO_NOT_VALID: /* abort single io, controller don't find * the io need to abort */ ts->stat = TMF_RESP_FUNC_FAILED; goto out; default: break; } if ((complete_hdr->dw0 & CMPLT_HDR_ERX_MSK) && (!(complete_hdr->dw0 & CMPLT_HDR_RSPNS_XFRD_MSK))) { slot_err_v2_hw(hisi_hba, task, slot); if (unlikely(slot->abort)) { queue_work(hisi_hba->wq, &slot->abort_slot); /* immediately return and do not complete */ return ts->stat; } goto out; } switch (task->task_proto) { case SAS_PROTOCOL_SSP: { struct ssp_response_iu *iu = slot->status_buffer + sizeof(struct hisi_sas_err_record); sas_ssp_task_response(dev, task, iu); break; } case SAS_PROTOCOL_SMP: { struct scatterlist *sg_resp = &task->smp_task.smp_resp; void *to; ts->stat = SAM_STAT_GOOD; to = kmap_atomic(sg_page(sg_resp)); dma_unmap_sg(dev, &task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); dma_unmap_sg(dev, &task->smp_task.smp_req, 1, DMA_TO_DEVICE); memcpy(to + sg_resp->offset, slot->status_buffer + sizeof(struct hisi_sas_err_record), sg_dma_len(sg_resp)); kunmap_atomic(to); break; } case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: { ts->stat = SAM_STAT_GOOD; sata_done_v2_hw(hisi_hba, task, slot); break; } default: ts->stat = SAM_STAT_CHECK_CONDITION; break; } if (!slot->port->port_attached) { dev_err(dev, "slot complete: port %d has removed\n", slot->port->sas_port.id); ts->stat = SAS_PHY_DOWN; } out: hisi_sas_slot_task_free(hisi_hba, task, slot); sts = ts->stat; if (task->task_done) task->task_done(task); return sts; } static u8 get_ata_protocol(u8 cmd, int direction) { switch (cmd) { case ATA_CMD_FPDMA_WRITE: case ATA_CMD_FPDMA_READ: case ATA_CMD_FPDMA_RECV: case ATA_CMD_FPDMA_SEND: case ATA_CMD_NCQ_NON_DATA: return SATA_PROTOCOL_FPDMA; case ATA_CMD_DOWNLOAD_MICRO: case ATA_CMD_ID_ATA: case ATA_CMD_PMP_READ: case ATA_CMD_READ_LOG_EXT: case ATA_CMD_PIO_READ: case ATA_CMD_PIO_READ_EXT: case ATA_CMD_PMP_WRITE: case ATA_CMD_WRITE_LOG_EXT: case ATA_CMD_PIO_WRITE: case ATA_CMD_PIO_WRITE_EXT: return SATA_PROTOCOL_PIO; case ATA_CMD_DSM: case ATA_CMD_DOWNLOAD_MICRO_DMA: case ATA_CMD_PMP_READ_DMA: case ATA_CMD_PMP_WRITE_DMA: case ATA_CMD_READ: case ATA_CMD_READ_EXT: case ATA_CMD_READ_LOG_DMA_EXT: case ATA_CMD_READ_STREAM_DMA_EXT: case ATA_CMD_TRUSTED_RCV_DMA: case ATA_CMD_TRUSTED_SND_DMA: case ATA_CMD_WRITE: case ATA_CMD_WRITE_EXT: case ATA_CMD_WRITE_FUA_EXT: case ATA_CMD_WRITE_QUEUED: case ATA_CMD_WRITE_LOG_DMA_EXT: case ATA_CMD_WRITE_STREAM_DMA_EXT: return SATA_PROTOCOL_DMA; case ATA_CMD_CHK_POWER: case ATA_CMD_DEV_RESET: case ATA_CMD_EDD: case ATA_CMD_FLUSH: case ATA_CMD_FLUSH_EXT: case ATA_CMD_VERIFY: case ATA_CMD_VERIFY_EXT: case ATA_CMD_SET_FEATURES: case ATA_CMD_STANDBY: case ATA_CMD_STANDBYNOW1: return SATA_PROTOCOL_NONDATA; default: if (direction == DMA_NONE) return SATA_PROTOCOL_NONDATA; return SATA_PROTOCOL_PIO; } } static int get_ncq_tag_v2_hw(struct sas_task *task, u32 *tag) { struct ata_queued_cmd *qc = task->uldd_task; if (qc) { if (qc->tf.command == ATA_CMD_FPDMA_WRITE || qc->tf.command == ATA_CMD_FPDMA_READ) { *tag = qc->tag; return 1; } } return 0; } static int prep_ata_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot) { struct sas_task *task = slot->task; struct domain_device *device = task->dev; struct domain_device *parent_dev = device->parent; struct hisi_sas_device *sas_dev = device->lldd_dev; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct asd_sas_port *sas_port = device->port; struct hisi_sas_port *port = to_hisi_sas_port(sas_port); u8 *buf_cmd; int has_data = 0, rc = 0, hdr_tag = 0; u32 dw1 = 0, dw2 = 0; /* create header */ /* dw0 */ hdr->dw0 = cpu_to_le32(port->id << CMD_HDR_PORT_OFF); if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) hdr->dw0 |= cpu_to_le32(3 << CMD_HDR_CMD_OFF); else hdr->dw0 |= cpu_to_le32(4 << CMD_HDR_CMD_OFF); /* dw1 */ switch (task->data_dir) { case DMA_TO_DEVICE: has_data = 1; dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF; break; case DMA_FROM_DEVICE: has_data = 1; dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF; break; default: dw1 &= ~CMD_HDR_DIR_MSK; } if (0 == task->ata_task.fis.command) dw1 |= 1 << CMD_HDR_RESET_OFF; dw1 |= (get_ata_protocol(task->ata_task.fis.command, task->data_dir)) << CMD_HDR_FRAME_TYPE_OFF; dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF; hdr->dw1 = cpu_to_le32(dw1); /* dw2 */ if (task->ata_task.use_ncq && get_ncq_tag_v2_hw(task, &hdr_tag)) { task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF; } dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF | 2 << CMD_HDR_SG_MOD_OFF; hdr->dw2 = cpu_to_le32(dw2); /* dw3 */ hdr->transfer_tags = cpu_to_le32(slot->idx); if (has_data) { rc = prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter, slot->n_elem); if (rc) return rc; } hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len); hdr->cmd_table_addr = cpu_to_le64(slot->command_table_dma); hdr->sts_buffer_addr = cpu_to_le64(slot->status_buffer_dma); buf_cmd = slot->command_table; if (likely(!task->ata_task.device_control_reg_update)) task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */ /* fill in command FIS */ memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis)); return 0; } static int prep_abort_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot, int device_id, int abort_flag, int tag_to_abort) { struct sas_task *task = slot->task; struct domain_device *dev = task->dev; struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr; struct hisi_sas_port *port = slot->port; /* dw0 */ hdr->dw0 = cpu_to_le32((5 << CMD_HDR_CMD_OFF) | /*abort*/ (port->id << CMD_HDR_PORT_OFF) | ((dev_is_sata(dev) ? 1:0) << CMD_HDR_ABORT_DEVICE_TYPE_OFF) | (abort_flag << CMD_HDR_ABORT_FLAG_OFF)); /* dw1 */ hdr->dw1 = cpu_to_le32(device_id << CMD_HDR_DEV_ID_OFF); /* dw7 */ hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF); hdr->transfer_tags = cpu_to_le32(slot->idx); return 0; } static int phy_up_v2_hw(int phy_no, struct hisi_hba *hisi_hba) { int i, res = 0; u32 context, port_id, link_rate, hard_phy_linkrate; struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct device *dev = &hisi_hba->pdev->dev; u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd; struct sas_identify_frame *id = (struct sas_identify_frame *)frame_rcvd; hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1); /* Check for SATA dev */ context = hisi_sas_read32(hisi_hba, PHY_CONTEXT); if (context & (1 << phy_no)) goto end; if (phy_no == 8) { u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> PORT_STATE_PHY8_PORT_NUM_OFF; link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >> PORT_STATE_PHY8_CONN_RATE_OFF; } else { port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); port_id = (port_id >> (4 * phy_no)) & 0xf; link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE); link_rate = (link_rate >> (phy_no * 4)) & 0xf; } if (port_id == 0xf) { dev_err(dev, "phyup: phy%d invalid portid\n", phy_no); res = IRQ_NONE; goto end; } for (i = 0; i < 6; i++) { u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no, RX_IDAF_DWORD0 + (i * 4)); frame_rcvd[i] = __swab32(idaf); } sas_phy->linkrate = link_rate; hard_phy_linkrate = hisi_sas_phy_read32(hisi_hba, phy_no, HARD_PHY_LINKRATE); phy->maximum_linkrate = hard_phy_linkrate & 0xf; phy->minimum_linkrate = (hard_phy_linkrate >> 4) & 0xf; sas_phy->oob_mode = SAS_OOB_MODE; memcpy(sas_phy->attached_sas_addr, &id->sas_addr, SAS_ADDR_SIZE); dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate); phy->port_id = port_id; phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); phy->phy_type |= PORT_TYPE_SAS; phy->phy_attached = 1; phy->identify.device_type = id->dev_type; phy->frame_rcvd_size = sizeof(struct sas_identify_frame); if (phy->identify.device_type == SAS_END_DEVICE) phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; else if (phy->identify.device_type != SAS_PHY_UNUSED) { phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; if (!timer_pending(&hisi_hba->timer)) set_link_timer_quirk(hisi_hba); } queue_work(hisi_hba->wq, &phy->phyup_ws); end: hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_SL_PHY_ENABLE_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0); return res; } static bool check_any_wideports_v2_hw(struct hisi_hba *hisi_hba) { u32 port_state; port_state = hisi_sas_read32(hisi_hba, PORT_STATE); if (port_state & 0x1ff) return true; return false; } static int phy_down_v2_hw(int phy_no, struct hisi_hba *hisi_hba) { int res = 0; u32 phy_state, sl_ctrl, txid_auto; struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct hisi_sas_port *port = phy->port; hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1); phy_state = hisi_sas_read32(hisi_hba, PHY_STATE); hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0); sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL); hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_ctrl & ~SL_CONTROL_CTA_MSK); if (port && !get_wideport_bitmap_v2_hw(hisi_hba, port->id)) if (!check_any_wideports_v2_hw(hisi_hba) && timer_pending(&hisi_hba->timer)) del_timer(&hisi_hba->timer); txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO); hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO, txid_auto | TXID_AUTO_CT3_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0); return res; } static irqreturn_t int_phy_updown_v2_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; u32 irq_msk; int phy_no = 0; irqreturn_t res = IRQ_HANDLED; irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO) >> HGC_INVLD_DQE_INFO_FB_CH0_OFF) & 0x1ff; while (irq_msk) { if (irq_msk & 1) { u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0); if (irq_value & CHL_INT0_SL_PHY_ENABLE_MSK) /* phy up */ if (phy_up_v2_hw(phy_no, hisi_hba)) { res = IRQ_NONE; goto end; } if (irq_value & CHL_INT0_NOT_RDY_MSK) /* phy down */ if (phy_down_v2_hw(phy_no, hisi_hba)) { res = IRQ_NONE; goto end; } } irq_msk >>= 1; phy_no++; } end: return res; } static void phy_bcast_v2_hw(int phy_no, struct hisi_hba *hisi_hba) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct sas_ha_struct *sas_ha = &hisi_hba->sha; u32 bcast_status; hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1); bcast_status = hisi_sas_phy_read32(hisi_hba, phy_no, RX_PRIMS_STATUS); if (bcast_status & RX_BCAST_CHG_MSK) sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_SL_RX_BCST_ACK_MSK); hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0); } static irqreturn_t int_chnl_int_v2_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; struct device *dev = &hisi_hba->pdev->dev; u32 ent_msk, ent_tmp, irq_msk; int phy_no = 0; ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3); ent_tmp = ent_msk; ent_msk |= ENT_INT_SRC_MSK3_ENT95_MSK_MSK; hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_msk); irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO) >> HGC_INVLD_DQE_INFO_FB_CH3_OFF) & 0x1ff; while (irq_msk) { if (irq_msk & (1 << phy_no)) { u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0); u32 irq_value1 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT1); u32 irq_value2 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2); if (irq_value1) { if (irq_value1 & (CHL_INT1_DMAC_RX_ECC_ERR_MSK | CHL_INT1_DMAC_TX_ECC_ERR_MSK)) panic("%s: DMAC RX/TX ecc bad error!\ (0x%x)", dev_name(dev), irq_value1); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT1, irq_value1); } if (irq_value2) hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, irq_value2); if (irq_value0) { if (irq_value0 & CHL_INT0_SL_RX_BCST_ACK_MSK) phy_bcast_v2_hw(phy_no, hisi_hba); hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, irq_value0 & (~CHL_INT0_HOTPLUG_TOUT_MSK) & (~CHL_INT0_SL_PHY_ENABLE_MSK) & (~CHL_INT0_NOT_RDY_MSK)); } } irq_msk &= ~(1 << phy_no); phy_no++; } hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_tmp); return IRQ_HANDLED; } static void one_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba, u32 irq_value) { struct device *dev = &hisi_hba->pdev->dev; u32 reg_val; if (irq_value & BIT(SAS_ECC_INTR_DQE_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_DQE_ECC_ADDR); dev_warn(dev, "hgc_dqe_acc1b_intr found: \ Ram address is 0x%08X\n", (reg_val & HGC_DQE_ECC_1B_ADDR_MSK) >> HGC_DQE_ECC_1B_ADDR_OFF); } if (irq_value & BIT(SAS_ECC_INTR_IOST_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_IOST_ECC_ADDR); dev_warn(dev, "hgc_iost_acc1b_intr found: \ Ram address is 0x%08X\n", (reg_val & HGC_IOST_ECC_1B_ADDR_MSK) >> HGC_IOST_ECC_1B_ADDR_OFF); } if (irq_value & BIT(SAS_ECC_INTR_ITCT_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_ITCT_ECC_ADDR); dev_warn(dev, "hgc_itct_acc1b_intr found: \ Ram address is 0x%08X\n", (reg_val & HGC_ITCT_ECC_1B_ADDR_MSK) >> HGC_ITCT_ECC_1B_ADDR_OFF); } if (irq_value & BIT(SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_LM_DFX_STATUS2); dev_warn(dev, "hgc_iostl_acc1b_intr found: \ memory address is 0x%08X\n", (reg_val & HGC_LM_DFX_STATUS2_IOSTLIST_MSK) >> HGC_LM_DFX_STATUS2_IOSTLIST_OFF); } if (irq_value & BIT(SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_LM_DFX_STATUS2); dev_warn(dev, "hgc_itctl_acc1b_intr found: \ memory address is 0x%08X\n", (reg_val & HGC_LM_DFX_STATUS2_ITCTLIST_MSK) >> HGC_LM_DFX_STATUS2_ITCTLIST_OFF); } if (irq_value & BIT(SAS_ECC_INTR_CQE_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_CQE_ECC_ADDR); dev_warn(dev, "hgc_cqe_acc1b_intr found: \ Ram address is 0x%08X\n", (reg_val & HGC_CQE_ECC_1B_ADDR_MSK) >> HGC_CQE_ECC_1B_ADDR_OFF); } if (irq_value & BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_RXM_DFX_STATUS14); dev_warn(dev, "rxm_mem0_acc1b_intr found: \ memory address is 0x%08X\n", (reg_val & HGC_RXM_DFX_STATUS14_MEM0_MSK) >> HGC_RXM_DFX_STATUS14_MEM0_OFF); } if (irq_value & BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_RXM_DFX_STATUS14); dev_warn(dev, "rxm_mem1_acc1b_intr found: \ memory address is 0x%08X\n", (reg_val & HGC_RXM_DFX_STATUS14_MEM1_MSK) >> HGC_RXM_DFX_STATUS14_MEM1_OFF); } if (irq_value & BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_RXM_DFX_STATUS14); dev_warn(dev, "rxm_mem2_acc1b_intr found: \ memory address is 0x%08X\n", (reg_val & HGC_RXM_DFX_STATUS14_MEM2_MSK) >> HGC_RXM_DFX_STATUS14_MEM2_OFF); } if (irq_value & BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_RXM_DFX_STATUS15); dev_warn(dev, "rxm_mem3_acc1b_intr found: \ memory address is 0x%08X\n", (reg_val & HGC_RXM_DFX_STATUS15_MEM3_MSK) >> HGC_RXM_DFX_STATUS15_MEM3_OFF); } } static void multi_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba, u32 irq_value) { u32 reg_val; struct device *dev = &hisi_hba->pdev->dev; if (irq_value & BIT(SAS_ECC_INTR_DQE_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_DQE_ECC_ADDR); panic("%s: hgc_dqe_accbad_intr (0x%x) found: \ Ram address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_DQE_ECC_MB_ADDR_MSK) >> HGC_DQE_ECC_MB_ADDR_OFF); } if (irq_value & BIT(SAS_ECC_INTR_IOST_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_IOST_ECC_ADDR); panic("%s: hgc_iost_accbad_intr (0x%x) found: \ Ram address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_IOST_ECC_MB_ADDR_MSK) >> HGC_IOST_ECC_MB_ADDR_OFF); } if (irq_value & BIT(SAS_ECC_INTR_ITCT_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_ITCT_ECC_ADDR); panic("%s: hgc_itct_accbad_intr (0x%x) found: \ Ram address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_ITCT_ECC_MB_ADDR_MSK) >> HGC_ITCT_ECC_MB_ADDR_OFF); } if (irq_value & BIT(SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_LM_DFX_STATUS2); panic("%s: hgc_iostl_accbad_intr (0x%x) found: \ memory address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_LM_DFX_STATUS2_IOSTLIST_MSK) >> HGC_LM_DFX_STATUS2_IOSTLIST_OFF); } if (irq_value & BIT(SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_LM_DFX_STATUS2); panic("%s: hgc_itctl_accbad_intr (0x%x) found: \ memory address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_LM_DFX_STATUS2_ITCTLIST_MSK) >> HGC_LM_DFX_STATUS2_ITCTLIST_OFF); } if (irq_value & BIT(SAS_ECC_INTR_CQE_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_CQE_ECC_ADDR); panic("%s: hgc_cqe_accbad_intr (0x%x) found: \ Ram address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_CQE_ECC_MB_ADDR_MSK) >> HGC_CQE_ECC_MB_ADDR_OFF); } if (irq_value & BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_RXM_DFX_STATUS14); panic("%s: rxm_mem0_accbad_intr (0x%x) found: \ memory address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_RXM_DFX_STATUS14_MEM0_MSK) >> HGC_RXM_DFX_STATUS14_MEM0_OFF); } if (irq_value & BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_RXM_DFX_STATUS14); panic("%s: rxm_mem1_accbad_intr (0x%x) found: \ memory address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_RXM_DFX_STATUS14_MEM1_MSK) >> HGC_RXM_DFX_STATUS14_MEM1_OFF); } if (irq_value & BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_RXM_DFX_STATUS14); panic("%s: rxm_mem2_accbad_intr (0x%x) found: \ memory address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_RXM_DFX_STATUS14_MEM2_MSK) >> HGC_RXM_DFX_STATUS14_MEM2_OFF); } if (irq_value & BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF)) { reg_val = hisi_sas_read32(hisi_hba, HGC_RXM_DFX_STATUS15); panic("%s: rxm_mem3_accbad_intr (0x%x) found: \ memory address is 0x%08X\n", dev_name(dev), irq_value, (reg_val & HGC_RXM_DFX_STATUS15_MEM3_MSK) >> HGC_RXM_DFX_STATUS15_MEM3_OFF); } } static irqreturn_t fatal_ecc_int_v2_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; u32 irq_value, irq_msk; irq_msk = hisi_sas_read32(hisi_hba, SAS_ECC_INTR_MSK); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk | 0xffffffff); irq_value = hisi_sas_read32(hisi_hba, SAS_ECC_INTR); if (irq_value) { one_bit_ecc_error_process_v2_hw(hisi_hba, irq_value); multi_bit_ecc_error_process_v2_hw(hisi_hba, irq_value); } hisi_sas_write32(hisi_hba, SAS_ECC_INTR, irq_value); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk); return IRQ_HANDLED; } #define AXI_ERR_NR 8 static const char axi_err_info[AXI_ERR_NR][32] = { "IOST_AXI_W_ERR", "IOST_AXI_R_ERR", "ITCT_AXI_W_ERR", "ITCT_AXI_R_ERR", "SATA_AXI_W_ERR", "SATA_AXI_R_ERR", "DQE_AXI_R_ERR", "CQE_AXI_W_ERR" }; #define FIFO_ERR_NR 5 static const char fifo_err_info[FIFO_ERR_NR][32] = { "CQE_WINFO_FIFO", "CQE_MSG_FIFIO", "GETDQE_FIFO", "CMDP_FIFO", "AWTCTRL_FIFO" }; static irqreturn_t fatal_axi_int_v2_hw(int irq_no, void *p) { struct hisi_hba *hisi_hba = p; u32 irq_value, irq_msk, err_value; struct device *dev = &hisi_hba->pdev->dev; irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0xfffffffe); irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3); if (irq_value) { if (irq_value & BIT(ENT_INT_SRC3_WP_DEPTH_OFF)) { hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 1 << ENT_INT_SRC3_WP_DEPTH_OFF); panic("%s: write pointer and depth error (0x%x) \ found!\n", dev_name(dev), irq_value); } if (irq_value & BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF)) { hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 1 << ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF); panic("%s: iptt no match slot error (0x%x) found!\n", dev_name(dev), irq_value); } if (irq_value & BIT(ENT_INT_SRC3_RP_DEPTH_OFF)) panic("%s: read pointer and depth error (0x%x) \ found!\n", dev_name(dev), irq_value); if (irq_value & BIT(ENT_INT_SRC3_AXI_OFF)) { int i; hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 1 << ENT_INT_SRC3_AXI_OFF); err_value = hisi_sas_read32(hisi_hba, HGC_AXI_FIFO_ERR_INFO); for (i = 0; i < AXI_ERR_NR; i++) { if (err_value & BIT(i)) panic("%s: %s (0x%x) found!\n", dev_name(dev), axi_err_info[i], irq_value); } } if (irq_value & BIT(ENT_INT_SRC3_FIFO_OFF)) { int i; hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 1 << ENT_INT_SRC3_FIFO_OFF); err_value = hisi_sas_read32(hisi_hba, HGC_AXI_FIFO_ERR_INFO); for (i = 0; i < FIFO_ERR_NR; i++) { if (err_value & BIT(AXI_ERR_NR + i)) panic("%s: %s (0x%x) found!\n", dev_name(dev), fifo_err_info[i], irq_value); } } if (irq_value & BIT(ENT_INT_SRC3_LM_OFF)) { hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 1 << ENT_INT_SRC3_LM_OFF); panic("%s: LM add/fetch list error (0x%x) found!\n", dev_name(dev), irq_value); } if (irq_value & BIT(ENT_INT_SRC3_ABT_OFF)) { hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 1 << ENT_INT_SRC3_ABT_OFF); panic("%s: SAS_HGC_ABT fetch LM list error (0x%x) found!\n", dev_name(dev), irq_value); } } hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk); return IRQ_HANDLED; } static void cq_tasklet_v2_hw(unsigned long val) { struct hisi_sas_cq *cq = (struct hisi_sas_cq *)val; struct hisi_hba *hisi_hba = cq->hisi_hba; struct hisi_sas_slot *slot; struct hisi_sas_itct *itct; struct hisi_sas_complete_v2_hdr *complete_queue; u32 rd_point = cq->rd_point, wr_point, dev_id; int queue = cq->id; complete_queue = hisi_hba->complete_hdr[queue]; spin_lock(&hisi_hba->lock); wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR + (0x14 * queue)); while (rd_point != wr_point) { struct hisi_sas_complete_v2_hdr *complete_hdr; int iptt; complete_hdr = &complete_queue[rd_point]; /* Check for NCQ completion */ if (complete_hdr->act) { u32 act_tmp = complete_hdr->act; int ncq_tag_count = ffs(act_tmp); dev_id = (complete_hdr->dw1 & CMPLT_HDR_DEV_ID_MSK) >> CMPLT_HDR_DEV_ID_OFF; itct = &hisi_hba->itct[dev_id]; /* The NCQ tags are held in the itct header */ while (ncq_tag_count) { __le64 *ncq_tag = &itct->qw4_15[0]; ncq_tag_count -= 1; iptt = (ncq_tag[ncq_tag_count / 5] >> (ncq_tag_count % 5) * 12) & 0xfff; slot = &hisi_hba->slot_info[iptt]; slot->cmplt_queue_slot = rd_point; slot->cmplt_queue = queue; slot_complete_v2_hw(hisi_hba, slot, 0); act_tmp &= ~(1 << ncq_tag_count); ncq_tag_count = ffs(act_tmp); } } else { iptt = (complete_hdr->dw1) & CMPLT_HDR_IPTT_MSK; slot = &hisi_hba->slot_info[iptt]; slot->cmplt_queue_slot = rd_point; slot->cmplt_queue = queue; slot_complete_v2_hw(hisi_hba, slot, 0); } if (++rd_point >= HISI_SAS_QUEUE_SLOTS) rd_point = 0; } /* update rd_point */ cq->rd_point = rd_point; hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point); spin_unlock(&hisi_hba->lock); } static irqreturn_t cq_interrupt_v2_hw(int irq_no, void *p) { struct hisi_sas_cq *cq = p; struct hisi_hba *hisi_hba = cq->hisi_hba; int queue = cq->id; hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue); tasklet_schedule(&cq->tasklet); return IRQ_HANDLED; } static irqreturn_t sata_int_v2_hw(int irq_no, void *p) { struct hisi_sas_phy *phy = p; struct hisi_hba *hisi_hba = phy->hisi_hba; struct asd_sas_phy *sas_phy = &phy->sas_phy; struct device *dev = &hisi_hba->pdev->dev; struct hisi_sas_initial_fis *initial_fis; struct dev_to_host_fis *fis; u32 ent_tmp, ent_msk, ent_int, port_id, link_rate, hard_phy_linkrate; irqreturn_t res = IRQ_HANDLED; u8 attached_sas_addr[SAS_ADDR_SIZE] = {0}; int phy_no, offset; phy_no = sas_phy->id; initial_fis = &hisi_hba->initial_fis[phy_no]; fis = &initial_fis->fis; offset = 4 * (phy_no / 4); ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK1 + offset); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset, ent_msk | 1 << ((phy_no % 4) * 8)); ent_int = hisi_sas_read32(hisi_hba, ENT_INT_SRC1 + offset); ent_tmp = ent_int & (1 << (ENT_INT_SRC1_D2H_FIS_CH1_OFF * (phy_no % 4))); ent_int >>= ENT_INT_SRC1_D2H_FIS_CH1_OFF * (phy_no % 4); if ((ent_int & ENT_INT_SRC1_D2H_FIS_CH0_MSK) == 0) { dev_warn(dev, "sata int: phy%d did not receive FIS\n", phy_no); res = IRQ_NONE; goto end; } /* check ERR bit of Status Register */ if (fis->status & ATA_ERR) { dev_warn(dev, "sata int: phy%d FIS status: 0x%x\n", phy_no, fis->status); disable_phy_v2_hw(hisi_hba, phy_no); enable_phy_v2_hw(hisi_hba, phy_no); res = IRQ_NONE; goto end; } if (unlikely(phy_no == 8)) { u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE); port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >> PORT_STATE_PHY8_PORT_NUM_OFF; link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >> PORT_STATE_PHY8_CONN_RATE_OFF; } else { port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA); port_id = (port_id >> (4 * phy_no)) & 0xf; link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE); link_rate = (link_rate >> (phy_no * 4)) & 0xf; } if (port_id == 0xf) { dev_err(dev, "sata int: phy%d invalid portid\n", phy_no); res = IRQ_NONE; goto end; } sas_phy->linkrate = link_rate; hard_phy_linkrate = hisi_sas_phy_read32(hisi_hba, phy_no, HARD_PHY_LINKRATE); phy->maximum_linkrate = hard_phy_linkrate & 0xf; phy->minimum_linkrate = (hard_phy_linkrate >> 4) & 0xf; sas_phy->oob_mode = SATA_OOB_MODE; /* Make up some unique SAS address */ attached_sas_addr[0] = 0x50; attached_sas_addr[7] = phy_no; memcpy(sas_phy->attached_sas_addr, attached_sas_addr, SAS_ADDR_SIZE); memcpy(sas_phy->frame_rcvd, fis, sizeof(struct dev_to_host_fis)); dev_info(dev, "sata int phyup: phy%d link_rate=%d\n", phy_no, link_rate); phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); phy->port_id = port_id; phy->phy_type |= PORT_TYPE_SATA; phy->phy_attached = 1; phy->identify.device_type = SAS_SATA_DEV; phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; queue_work(hisi_hba->wq, &phy->phyup_ws); end: hisi_sas_write32(hisi_hba, ENT_INT_SRC1 + offset, ent_tmp); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset, ent_msk); return res; } static irq_handler_t phy_interrupts[HISI_SAS_PHY_INT_NR] = { int_phy_updown_v2_hw, int_chnl_int_v2_hw, }; static irq_handler_t fatal_interrupts[HISI_SAS_FATAL_INT_NR] = { fatal_ecc_int_v2_hw, fatal_axi_int_v2_hw }; /** * There is a limitation in the hip06 chipset that we need * to map in all mbigen interrupts, even if they are not used. */ static int interrupt_init_v2_hw(struct hisi_hba *hisi_hba) { struct platform_device *pdev = hisi_hba->pdev; struct device *dev = &pdev->dev; int i, irq, rc, irq_map[128]; for (i = 0; i < 128; i++) irq_map[i] = platform_get_irq(pdev, i); for (i = 0; i < HISI_SAS_PHY_INT_NR; i++) { int idx = i; irq = irq_map[idx + 1]; /* Phy up/down is irq1 */ if (!irq) { dev_err(dev, "irq init: fail map phy interrupt %d\n", idx); return -ENOENT; } rc = devm_request_irq(dev, irq, phy_interrupts[i], 0, DRV_NAME " phy", hisi_hba); if (rc) { dev_err(dev, "irq init: could not request " "phy interrupt %d, rc=%d\n", irq, rc); return -ENOENT; } } for (i = 0; i < hisi_hba->n_phy; i++) { struct hisi_sas_phy *phy = &hisi_hba->phy[i]; int idx = i + 72; /* First SATA interrupt is irq72 */ irq = irq_map[idx]; if (!irq) { dev_err(dev, "irq init: fail map phy interrupt %d\n", idx); return -ENOENT; } rc = devm_request_irq(dev, irq, sata_int_v2_hw, 0, DRV_NAME " sata", phy); if (rc) { dev_err(dev, "irq init: could not request " "sata interrupt %d, rc=%d\n", irq, rc); return -ENOENT; } } for (i = 0; i < HISI_SAS_FATAL_INT_NR; i++) { int idx = i; irq = irq_map[idx + 81]; if (!irq) { dev_err(dev, "irq init: fail map fatal interrupt %d\n", idx); return -ENOENT; } rc = devm_request_irq(dev, irq, fatal_interrupts[i], 0, DRV_NAME " fatal", hisi_hba); if (rc) { dev_err(dev, "irq init: could not request fatal interrupt %d, rc=%d\n", irq, rc); return -ENOENT; } } for (i = 0; i < hisi_hba->queue_count; i++) { int idx = i + 96; /* First cq interrupt is irq96 */ struct hisi_sas_cq *cq = &hisi_hba->cq[i]; struct tasklet_struct *t = &cq->tasklet; irq = irq_map[idx]; if (!irq) { dev_err(dev, "irq init: could not map cq interrupt %d\n", idx); return -ENOENT; } rc = devm_request_irq(dev, irq, cq_interrupt_v2_hw, 0, DRV_NAME " cq", &hisi_hba->cq[i]); if (rc) { dev_err(dev, "irq init: could not request cq interrupt %d, rc=%d\n", irq, rc); return -ENOENT; } tasklet_init(t, cq_tasklet_v2_hw, (unsigned long)cq); } return 0; } static int hisi_sas_v2_init(struct hisi_hba *hisi_hba) { int rc; rc = hw_init_v2_hw(hisi_hba); if (rc) return rc; rc = interrupt_init_v2_hw(hisi_hba); if (rc) return rc; return 0; } static void interrupt_disable_v2_hw(struct hisi_hba *hisi_hba) { struct platform_device *pdev = hisi_hba->pdev; int i; for (i = 0; i < hisi_hba->queue_count; i++) hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff); hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff); hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff); for (i = 0; i < hisi_hba->n_phy; i++) { hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff); hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff); } for (i = 0; i < 128; i++) synchronize_irq(platform_get_irq(pdev, i)); } static int soft_reset_v2_hw(struct hisi_hba *hisi_hba) { struct device *dev = &hisi_hba->pdev->dev; u32 old_state, state; int rc, cnt; int phy_no; old_state = hisi_sas_read32(hisi_hba, PHY_STATE); interrupt_disable_v2_hw(hisi_hba); hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0); stop_phys_v2_hw(hisi_hba); mdelay(10); hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, 0x1); /* wait until bus idle */ cnt = 0; while (1) { u32 status = hisi_sas_read32_relaxed(hisi_hba, AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN); if (status == 0x3) break; udelay(10); if (cnt++ > 10) { dev_info(dev, "wait axi bus state to idle timeout!\n"); return -1; } } hisi_sas_init_mem(hisi_hba); rc = hw_init_v2_hw(hisi_hba); if (rc) return rc; /* Re-enable the PHYs */ for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) { struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no]; struct asd_sas_phy *sas_phy = &phy->sas_phy; if (sas_phy->enabled) start_phy_v2_hw(hisi_hba, phy_no); } /* Wait for the PHYs to come up and read the PHY state */ msleep(1000); state = hisi_sas_read32(hisi_hba, PHY_STATE); hisi_sas_rescan_topology(hisi_hba, old_state, state); return 0; } static const struct hisi_sas_hw hisi_sas_v2_hw = { .hw_init = hisi_sas_v2_init, .setup_itct = setup_itct_v2_hw, .slot_index_alloc = slot_index_alloc_quirk_v2_hw, .alloc_dev = alloc_dev_quirk_v2_hw, .sl_notify = sl_notify_v2_hw, .get_wideport_bitmap = get_wideport_bitmap_v2_hw, .free_device = free_device_v2_hw, .prep_smp = prep_smp_v2_hw, .prep_ssp = prep_ssp_v2_hw, .prep_stp = prep_ata_v2_hw, .prep_abort = prep_abort_v2_hw, .get_free_slot = get_free_slot_v2_hw, .start_delivery = start_delivery_v2_hw, .slot_complete = slot_complete_v2_hw, .phys_init = phys_init_v2_hw, .phy_enable = enable_phy_v2_hw, .phy_disable = disable_phy_v2_hw, .phy_hard_reset = phy_hard_reset_v2_hw, .phy_set_linkrate = phy_set_linkrate_v2_hw, .phy_get_max_linkrate = phy_get_max_linkrate_v2_hw, .max_command_entries = HISI_SAS_COMMAND_ENTRIES_V2_HW, .complete_hdr_size = sizeof(struct hisi_sas_complete_v2_hdr), .soft_reset = soft_reset_v2_hw, }; static int hisi_sas_v2_probe(struct platform_device *pdev) { /* * Check if we should defer the probe before we probe the * upper layer, as it's hard to defer later on. */ int ret = platform_get_irq(pdev, 0); if (ret < 0) { if (ret != -EPROBE_DEFER) dev_err(&pdev->dev, "cannot obtain irq\n"); return ret; } return hisi_sas_probe(pdev, &hisi_sas_v2_hw); } static int hisi_sas_v2_remove(struct platform_device *pdev) { struct sas_ha_struct *sha = platform_get_drvdata(pdev); struct hisi_hba *hisi_hba = sha->lldd_ha; if (timer_pending(&hisi_hba->timer)) del_timer(&hisi_hba->timer); return hisi_sas_remove(pdev); } static const struct of_device_id sas_v2_of_match[] = { { .compatible = "hisilicon,hip06-sas-v2",}, { .compatible = "hisilicon,hip07-sas-v2",}, {}, }; MODULE_DEVICE_TABLE(of, sas_v2_of_match); static const struct acpi_device_id sas_v2_acpi_match[] = { { "HISI0162", 0 }, { } }; MODULE_DEVICE_TABLE(acpi, sas_v2_acpi_match); static struct platform_driver hisi_sas_v2_driver = { .probe = hisi_sas_v2_probe, .remove = hisi_sas_v2_remove, .driver = { .name = DRV_NAME, .of_match_table = sas_v2_of_match, .acpi_match_table = ACPI_PTR(sas_v2_acpi_match), }, }; module_platform_driver(hisi_sas_v2_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Garry "); MODULE_DESCRIPTION("HISILICON SAS controller v2 hw driver"); MODULE_ALIAS("platform:" DRV_NAME);