// SPDX-License-Identifier: GPL-2.0-or-later /* * An RTC driver for Allwinner A31/A23 * * Copyright (c) 2014, Chen-Yu Tsai * * based on rtc-sunxi.c * * An RTC driver for Allwinner A10/A20 * * Copyright (c) 2013, Carlo Caione */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Control register */ #define SUN6I_LOSC_CTRL 0x0000 #define SUN6I_LOSC_CTRL_KEY (0x16aa << 16) #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS BIT(15) #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9) #define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8) #define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7) #define SUN6I_LOSC_CTRL_EXT_LOSC_EN BIT(4) #define SUN6I_LOSC_CTRL_EXT_OSC BIT(0) #define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7) #define SUN6I_LOSC_CLK_PRESCAL 0x0008 /* RTC */ #define SUN6I_RTC_YMD 0x0010 #define SUN6I_RTC_HMS 0x0014 /* Alarm 0 (counter) */ #define SUN6I_ALRM_COUNTER 0x0020 /* This holds the remaining alarm seconds on older SoCs (current value) */ #define SUN6I_ALRM_COUNTER_HMS 0x0024 #define SUN6I_ALRM_EN 0x0028 #define SUN6I_ALRM_EN_CNT_EN BIT(0) #define SUN6I_ALRM_IRQ_EN 0x002c #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN BIT(0) #define SUN6I_ALRM_IRQ_STA 0x0030 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND BIT(0) /* Alarm 1 (wall clock) */ #define SUN6I_ALRM1_EN 0x0044 #define SUN6I_ALRM1_IRQ_EN 0x0048 #define SUN6I_ALRM1_IRQ_STA 0x004c #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND BIT(0) /* Alarm config */ #define SUN6I_ALARM_CONFIG 0x0050 #define SUN6I_ALARM_CONFIG_WAKEUP BIT(0) #define SUN6I_LOSC_OUT_GATING 0x0060 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET 0 /* General-purpose data */ #define SUN6I_GP_DATA 0x0100 #define SUN6I_GP_DATA_SIZE 0x20 /* * Get date values */ #define SUN6I_DATE_GET_DAY_VALUE(x) ((x) & 0x0000001f) #define SUN6I_DATE_GET_MON_VALUE(x) (((x) & 0x00000f00) >> 8) #define SUN6I_DATE_GET_YEAR_VALUE(x) (((x) & 0x003f0000) >> 16) #define SUN6I_LEAP_GET_VALUE(x) (((x) & 0x00400000) >> 22) /* * Get time values */ #define SUN6I_TIME_GET_SEC_VALUE(x) ((x) & 0x0000003f) #define SUN6I_TIME_GET_MIN_VALUE(x) (((x) & 0x00003f00) >> 8) #define SUN6I_TIME_GET_HOUR_VALUE(x) (((x) & 0x001f0000) >> 16) /* * Set date values */ #define SUN6I_DATE_SET_DAY_VALUE(x) ((x) & 0x0000001f) #define SUN6I_DATE_SET_MON_VALUE(x) ((x) << 8 & 0x00000f00) #define SUN6I_DATE_SET_YEAR_VALUE(x) ((x) << 16 & 0x003f0000) #define SUN6I_LEAP_SET_VALUE(x) ((x) << 22 & 0x00400000) /* * Set time values */ #define SUN6I_TIME_SET_SEC_VALUE(x) ((x) & 0x0000003f) #define SUN6I_TIME_SET_MIN_VALUE(x) ((x) << 8 & 0x00003f00) #define SUN6I_TIME_SET_HOUR_VALUE(x) ((x) << 16 & 0x001f0000) /* * The year parameter passed to the driver is usually an offset relative to * the year 1900. This macro is used to convert this offset to another one * relative to the minimum year allowed by the hardware. * * The year range is 1970 - 2033. This range is selected to match Allwinner's * driver, even though it is somewhat limited. */ #define SUN6I_YEAR_MIN 1970 #define SUN6I_YEAR_OFF (SUN6I_YEAR_MIN - 1900) #define SECS_PER_DAY (24 * 3600ULL) /* * There are other differences between models, including: * * - number of GPIO pins that can be configured to hold a certain level * - crypto-key related registers (H5, H6) * - boot process related (super standby, secondary processor entry address) * registers (R40, H6) * - SYS power domain controls (R40) * - DCXO controls (H6) * - RC oscillator calibration (H6) * * These functions are not covered by this driver. */ struct sun6i_rtc_clk_data { unsigned long rc_osc_rate; unsigned int fixed_prescaler : 16; unsigned int has_prescaler : 1; unsigned int has_out_clk : 1; unsigned int export_iosc : 1; unsigned int has_losc_en : 1; unsigned int has_auto_swt : 1; }; #define RTC_LINEAR_DAY BIT(0) struct sun6i_rtc_dev { struct rtc_device *rtc; const struct sun6i_rtc_clk_data *data; void __iomem *base; int irq; time64_t alarm; unsigned long flags; struct clk_hw hw; struct clk_hw *int_osc; struct clk *losc; struct clk *ext_losc; spinlock_t lock; }; static struct sun6i_rtc_dev *sun6i_rtc; static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); u32 val = 0; val = readl(rtc->base + SUN6I_LOSC_CTRL); if (val & SUN6I_LOSC_CTRL_EXT_OSC) return parent_rate; if (rtc->data->fixed_prescaler) parent_rate /= rtc->data->fixed_prescaler; if (rtc->data->has_prescaler) { val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL); val &= GENMASK(4, 0); } return parent_rate / (val + 1); } static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw) { struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC; } static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index) { struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw); unsigned long flags; u32 val; if (index > 1) return -EINVAL; spin_lock_irqsave(&rtc->lock, flags); val = readl(rtc->base + SUN6I_LOSC_CTRL); val &= ~SUN6I_LOSC_CTRL_EXT_OSC; val |= SUN6I_LOSC_CTRL_KEY; val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0; if (rtc->data->has_losc_en) { val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN; val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0; } writel(val, rtc->base + SUN6I_LOSC_CTRL); spin_unlock_irqrestore(&rtc->lock, flags); return 0; } static const struct clk_ops sun6i_rtc_osc_ops = { .recalc_rate = sun6i_rtc_osc_recalc_rate, .get_parent = sun6i_rtc_osc_get_parent, .set_parent = sun6i_rtc_osc_set_parent, }; static void __init sun6i_rtc_clk_init(struct device_node *node, const struct sun6i_rtc_clk_data *data) { struct clk_hw_onecell_data *clk_data; struct sun6i_rtc_dev *rtc; struct clk_init_data init = { .ops = &sun6i_rtc_osc_ops, .name = "losc", }; const char *iosc_name = "rtc-int-osc"; const char *clkout_name = "osc32k-out"; const char *parents[2]; u32 reg; rtc = kzalloc(sizeof(*rtc), GFP_KERNEL); if (!rtc) return; rtc->data = data; clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL); if (!clk_data) { kfree(rtc); return; } spin_lock_init(&rtc->lock); rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node)); if (IS_ERR(rtc->base)) { pr_crit("Can't map RTC registers"); goto err; } reg = SUN6I_LOSC_CTRL_KEY; if (rtc->data->has_auto_swt) { /* Bypass auto-switch to int osc, on ext losc failure */ reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS; writel(reg, rtc->base + SUN6I_LOSC_CTRL); } /* Switch to the external, more precise, oscillator, if present */ if (of_get_property(node, "clocks", NULL)) { reg |= SUN6I_LOSC_CTRL_EXT_OSC; if (rtc->data->has_losc_en) reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN; } writel(reg, rtc->base + SUN6I_LOSC_CTRL); /* Yes, I know, this is ugly. */ sun6i_rtc = rtc; /* Only read IOSC name from device tree if it is exported */ if (rtc->data->export_iosc) of_property_read_string_index(node, "clock-output-names", 2, &iosc_name); rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL, iosc_name, NULL, 0, rtc->data->rc_osc_rate, 300000000); if (IS_ERR(rtc->int_osc)) { pr_crit("Couldn't register the internal oscillator\n"); goto err; } parents[0] = clk_hw_get_name(rtc->int_osc); /* If there is no external oscillator, this will be NULL and ... */ parents[1] = of_clk_get_parent_name(node, 0); rtc->hw.init = &init; init.parent_names = parents; /* ... number of clock parents will be 1. */ init.num_parents = of_clk_get_parent_count(node) + 1; of_property_read_string_index(node, "clock-output-names", 0, &init.name); rtc->losc = clk_register(NULL, &rtc->hw); if (IS_ERR(rtc->losc)) { pr_crit("Couldn't register the LOSC clock\n"); goto err_register; } of_property_read_string_index(node, "clock-output-names", 1, &clkout_name); rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name, 0, rtc->base + SUN6I_LOSC_OUT_GATING, SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0, &rtc->lock); if (IS_ERR(rtc->ext_losc)) { pr_crit("Couldn't register the LOSC external gate\n"); goto err_register; } clk_data->num = 2; clk_data->hws[0] = &rtc->hw; clk_data->hws[1] = __clk_get_hw(rtc->ext_losc); if (rtc->data->export_iosc) { clk_data->hws[2] = rtc->int_osc; clk_data->num = 3; } of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data); return; err_register: clk_hw_unregister_fixed_rate(rtc->int_osc); err: kfree(clk_data); } static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = { .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */ .has_prescaler = 1, }; static void __init sun6i_a31_rtc_clk_init(struct device_node *node) { sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data); } CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc", sun6i_a31_rtc_clk_init); static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = { .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */ .has_prescaler = 1, .has_out_clk = 1, }; static void __init sun8i_a23_rtc_clk_init(struct device_node *node) { sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data); } CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc", sun8i_a23_rtc_clk_init); static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = { .rc_osc_rate = 16000000, .fixed_prescaler = 32, .has_prescaler = 1, .has_out_clk = 1, .export_iosc = 1, }; static void __init sun8i_h3_rtc_clk_init(struct device_node *node) { sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data); } CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc", sun8i_h3_rtc_clk_init); /* As far as we are concerned, clocks for H5 are the same as H3 */ CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc", sun8i_h3_rtc_clk_init); /* * The R40 user manual is self-conflicting on whether the prescaler is * fixed or configurable. The clock diagram shows it as fixed, but there * is also a configurable divider in the RTC block. */ static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = { .rc_osc_rate = 16000000, .fixed_prescaler = 512, }; static void __init sun8i_r40_rtc_clk_init(struct device_node *node) { sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data); } CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc", sun8i_r40_rtc_clk_init); static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = { .rc_osc_rate = 32000, .has_out_clk = 1, }; static void __init sun8i_v3_rtc_clk_init(struct device_node *node) { sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data); } CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc", sun8i_v3_rtc_clk_init); static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id) { struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id; irqreturn_t ret = IRQ_NONE; u32 val; spin_lock(&chip->lock); val = readl(chip->base + SUN6I_ALRM_IRQ_STA); if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) { val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND; writel(val, chip->base + SUN6I_ALRM_IRQ_STA); rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF); ret = IRQ_HANDLED; } spin_unlock(&chip->lock); return ret; } static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip) { u32 alrm_val = 0; u32 alrm_irq_val = 0; u32 alrm_wake_val = 0; unsigned long flags; if (to) { alrm_val = SUN6I_ALRM_EN_CNT_EN; alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN; alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP; } else { writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND, chip->base + SUN6I_ALRM_IRQ_STA); } spin_lock_irqsave(&chip->lock, flags); writel(alrm_val, chip->base + SUN6I_ALRM_EN); writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN); writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG); spin_unlock_irqrestore(&chip->lock, flags); } static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm) { struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); u32 date, time; /* * read again in case it changes */ do { date = readl(chip->base + SUN6I_RTC_YMD); time = readl(chip->base + SUN6I_RTC_HMS); } while ((date != readl(chip->base + SUN6I_RTC_YMD)) || (time != readl(chip->base + SUN6I_RTC_HMS))); if (chip->flags & RTC_LINEAR_DAY) { /* * Newer chips store a linear day number, the manual * does not mandate any epoch base. The BSP driver uses * the UNIX epoch, let's just copy that, as it's the * easiest anyway. */ rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm); } else { rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date); rtc_tm->tm_mon = SUN6I_DATE_GET_MON_VALUE(date) - 1; rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date); /* * switch from (data_year->min)-relative offset to * a (1900)-relative one */ rtc_tm->tm_year += SUN6I_YEAR_OFF; } rtc_tm->tm_sec = SUN6I_TIME_GET_SEC_VALUE(time); rtc_tm->tm_min = SUN6I_TIME_GET_MIN_VALUE(time); rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time); return 0; } static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm) { struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); unsigned long flags; u32 alrm_st; u32 alrm_en; spin_lock_irqsave(&chip->lock, flags); alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN); alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA); spin_unlock_irqrestore(&chip->lock, flags); wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN); wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN); rtc_time64_to_tm(chip->alarm, &wkalrm->time); return 0; } static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm) { struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); struct rtc_time *alrm_tm = &wkalrm->time; struct rtc_time tm_now; time64_t time_set; u32 counter_val, counter_val_hms; int ret; time_set = rtc_tm_to_time64(alrm_tm); if (chip->flags & RTC_LINEAR_DAY) { /* * The alarm registers hold the actual alarm time, encoded * in the same way (linear day + HMS) as the current time. */ counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec) | SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min) | SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour); /* The division will cut off the H:M:S part of alrm_tm. */ counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY); } else { /* The alarm register holds the number of seconds left. */ time64_t time_now; ret = sun6i_rtc_gettime(dev, &tm_now); if (ret < 0) { dev_err(dev, "Error in getting time\n"); return -EINVAL; } time_now = rtc_tm_to_time64(&tm_now); if (time_set <= time_now) { dev_err(dev, "Date to set in the past\n"); return -EINVAL; } if ((time_set - time_now) > U32_MAX) { dev_err(dev, "Date too far in the future\n"); return -EINVAL; } counter_val = time_set - time_now; } sun6i_rtc_setaie(0, chip); writel(0, chip->base + SUN6I_ALRM_COUNTER); if (chip->flags & RTC_LINEAR_DAY) writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS); usleep_range(100, 300); writel(counter_val, chip->base + SUN6I_ALRM_COUNTER); if (chip->flags & RTC_LINEAR_DAY) writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS); chip->alarm = time_set; sun6i_rtc_setaie(wkalrm->enabled, chip); return 0; } static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset, unsigned int mask, unsigned int ms_timeout) { const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout); u32 reg; do { reg = readl(chip->base + offset); reg &= mask; if (!reg) return 0; } while (time_before(jiffies, timeout)); return -ETIMEDOUT; } static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) { struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); u32 date = 0; u32 time = 0; time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec) | SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min) | SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour); if (chip->flags & RTC_LINEAR_DAY) { /* The division will cut off the H:M:S part of rtc_tm. */ date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY); } else { rtc_tm->tm_year -= SUN6I_YEAR_OFF; rtc_tm->tm_mon += 1; date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) | SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon) | SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year); if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN)) date |= SUN6I_LEAP_SET_VALUE(1); } /* Check whether registers are writable */ if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, SUN6I_LOSC_CTRL_ACC_MASK, 50)) { dev_err(dev, "rtc is still busy.\n"); return -EBUSY; } writel(time, chip->base + SUN6I_RTC_HMS); /* * After writing the RTC HH-MM-SS register, the * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not * be cleared until the real writing operation is finished */ if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) { dev_err(dev, "Failed to set rtc time.\n"); return -ETIMEDOUT; } writel(date, chip->base + SUN6I_RTC_YMD); /* * After writing the RTC YY-MM-DD register, the * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not * be cleared until the real writing operation is finished */ if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL, SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) { dev_err(dev, "Failed to set rtc time.\n"); return -ETIMEDOUT; } return 0; } static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); if (!enabled) sun6i_rtc_setaie(enabled, chip); return 0; } static const struct rtc_class_ops sun6i_rtc_ops = { .read_time = sun6i_rtc_gettime, .set_time = sun6i_rtc_settime, .read_alarm = sun6i_rtc_getalarm, .set_alarm = sun6i_rtc_setalarm, .alarm_irq_enable = sun6i_rtc_alarm_irq_enable }; static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes) { struct sun6i_rtc_dev *chip = priv; u32 *val = _val; int i; for (i = 0; i < bytes / 4; ++i) val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i); return 0; } static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes) { struct sun6i_rtc_dev *chip = priv; u32 *val = _val; int i; for (i = 0; i < bytes / 4; ++i) writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i); return 0; } static struct nvmem_config sun6i_rtc_nvmem_cfg = { .type = NVMEM_TYPE_BATTERY_BACKED, .reg_read = sun6i_rtc_nvmem_read, .reg_write = sun6i_rtc_nvmem_write, .size = SUN6I_GP_DATA_SIZE, .word_size = 4, .stride = 4, }; #ifdef CONFIG_PM_SLEEP /* Enable IRQ wake on suspend, to wake up from RTC. */ static int sun6i_rtc_suspend(struct device *dev) { struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(chip->irq); return 0; } /* Disable IRQ wake on resume. */ static int sun6i_rtc_resume(struct device *dev) { struct sun6i_rtc_dev *chip = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(chip->irq); return 0; } #endif static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops, sun6i_rtc_suspend, sun6i_rtc_resume); static void sun6i_rtc_bus_clk_cleanup(void *data) { struct clk *bus_clk = data; clk_disable_unprepare(bus_clk); } static int sun6i_rtc_probe(struct platform_device *pdev) { struct sun6i_rtc_dev *chip = sun6i_rtc; struct device *dev = &pdev->dev; struct clk *bus_clk; int ret; bus_clk = devm_clk_get_optional(dev, "bus"); if (IS_ERR(bus_clk)) return PTR_ERR(bus_clk); if (bus_clk) { ret = clk_prepare_enable(bus_clk); if (ret) return ret; ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup, bus_clk); if (ret) return ret; } if (!chip) { chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; spin_lock_init(&chip->lock); chip->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(chip->base)) return PTR_ERR(chip->base); if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) { ret = sun6i_rtc_ccu_probe(dev, chip->base); if (ret) return ret; } } platform_set_drvdata(pdev, chip); chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev); chip->irq = platform_get_irq(pdev, 0); if (chip->irq < 0) return chip->irq; ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq, 0, dev_name(&pdev->dev), chip); if (ret) { dev_err(&pdev->dev, "Could not request IRQ\n"); return ret; } /* clear the alarm counter value */ writel(0, chip->base + SUN6I_ALRM_COUNTER); /* disable counter alarm */ writel(0, chip->base + SUN6I_ALRM_EN); /* disable counter alarm interrupt */ writel(0, chip->base + SUN6I_ALRM_IRQ_EN); /* disable week alarm */ writel(0, chip->base + SUN6I_ALRM1_EN); /* disable week alarm interrupt */ writel(0, chip->base + SUN6I_ALRM1_IRQ_EN); /* clear counter alarm pending interrupts */ writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND, chip->base + SUN6I_ALRM_IRQ_STA); /* clear week alarm pending interrupts */ writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND, chip->base + SUN6I_ALRM1_IRQ_STA); /* disable alarm wakeup */ writel(0, chip->base + SUN6I_ALARM_CONFIG); clk_prepare_enable(chip->losc); device_init_wakeup(&pdev->dev, 1); chip->rtc = devm_rtc_allocate_device(&pdev->dev); if (IS_ERR(chip->rtc)) return PTR_ERR(chip->rtc); chip->rtc->ops = &sun6i_rtc_ops; if (chip->flags & RTC_LINEAR_DAY) chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1; else chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */ ret = devm_rtc_register_device(chip->rtc); if (ret) return ret; sun6i_rtc_nvmem_cfg.priv = chip; ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg); if (ret) return ret; dev_info(&pdev->dev, "RTC enabled\n"); return 0; } /* * As far as RTC functionality goes, all models are the same. The * datasheets claim that different models have different number of * registers available for non-volatile storage, but experiments show * that all SoCs have 16 registers available for this purpose. */ static const struct of_device_id sun6i_rtc_dt_ids[] = { { .compatible = "allwinner,sun6i-a31-rtc" }, { .compatible = "allwinner,sun8i-a23-rtc" }, { .compatible = "allwinner,sun8i-h3-rtc" }, { .compatible = "allwinner,sun8i-r40-rtc" }, { .compatible = "allwinner,sun8i-v3-rtc" }, { .compatible = "allwinner,sun50i-h5-rtc" }, { .compatible = "allwinner,sun50i-h6-rtc" }, { .compatible = "allwinner,sun50i-h616-rtc", .data = (void *)RTC_LINEAR_DAY }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids); static struct platform_driver sun6i_rtc_driver = { .probe = sun6i_rtc_probe, .driver = { .name = "sun6i-rtc", .of_match_table = sun6i_rtc_dt_ids, .pm = &sun6i_rtc_pm_ops, }, }; builtin_platform_driver(sun6i_rtc_driver);