// SPDX-License-Identifier: GPL-2.0-only /* * Intel ThunderBay eMMC PHY driver * * Copyright (C) 2021 Intel Corporation * */ #include #include #include #include #include #include #include #include /* eMMC/SD/SDIO core/phy configuration registers */ #define CTRL_CFG_0 0x00 #define CTRL_CFG_1 0x04 #define CTRL_PRESET_0 0x08 #define CTRL_PRESET_1 0x0c #define CTRL_PRESET_2 0x10 #define CTRL_PRESET_3 0x14 #define CTRL_PRESET_4 0x18 #define CTRL_CFG_2 0x1c #define CTRL_CFG_3 0x20 #define PHY_CFG_0 0x24 #define PHY_CFG_1 0x28 #define PHY_CFG_2 0x2c #define PHYBIST_CTRL 0x30 #define SDHC_STAT3 0x34 #define PHY_STAT 0x38 #define PHYBIST_STAT_0 0x3c #define PHYBIST_STAT_1 0x40 #define EMMC_AXI 0x44 /* CTRL_PRESET_3 */ #define CTRL_PRESET3_MASK GENMASK(31, 0) #define CTRL_PRESET3_SHIFT 0 /* CTRL_CFG_0 bit fields */ #define SUPPORT_HS_MASK BIT(26) #define SUPPORT_HS_SHIFT 26 #define SUPPORT_8B_MASK BIT(24) #define SUPPORT_8B_SHIFT 24 /* CTRL_CFG_1 bit fields */ #define SUPPORT_SDR50_MASK BIT(28) #define SUPPORT_SDR50_SHIFT 28 #define SLOT_TYPE_MASK GENMASK(27, 26) #define SLOT_TYPE_OFFSET 26 #define SUPPORT_64B_MASK BIT(24) #define SUPPORT_64B_SHIFT 24 #define SUPPORT_HS400_MASK BIT(2) #define SUPPORT_HS400_SHIFT 2 #define SUPPORT_DDR50_MASK BIT(1) #define SUPPORT_DDR50_SHIFT 1 #define SUPPORT_SDR104_MASK BIT(0) #define SUPPORT_SDR104_SHIFT 0 /* PHY_CFG_0 bit fields */ #define SEL_DLY_TXCLK_MASK BIT(29) #define SEL_DLY_TXCLK_SHIFT 29 #define SEL_DLY_RXCLK_MASK BIT(28) #define SEL_DLY_RXCLK_SHIFT 28 #define OTAP_DLY_ENA_MASK BIT(27) #define OTAP_DLY_ENA_SHIFT 27 #define OTAP_DLY_SEL_MASK GENMASK(26, 23) #define OTAP_DLY_SEL_SHIFT 23 #define ITAP_CHG_WIN_MASK BIT(22) #define ITAP_CHG_WIN_SHIFT 22 #define ITAP_DLY_ENA_MASK BIT(21) #define ITAP_DLY_ENA_SHIFT 21 #define ITAP_DLY_SEL_MASK GENMASK(20, 16) #define ITAP_DLY_SEL_SHIFT 16 #define RET_ENB_MASK BIT(15) #define RET_ENB_SHIFT 15 #define RET_EN_MASK BIT(14) #define RET_EN_SHIFT 14 #define DLL_IFF_MASK GENMASK(13, 11) #define DLL_IFF_SHIFT 11 #define DLL_EN_MASK BIT(10) #define DLL_EN_SHIFT 10 #define DLL_TRIM_ICP_MASK GENMASK(9, 6) #define DLL_TRIM_ICP_SHIFT 6 #define RETRIM_EN_MASK BIT(5) #define RETRIM_EN_SHIFT 5 #define RETRIM_MASK BIT(4) #define RETRIM_SHIFT 4 #define DR_TY_MASK GENMASK(3, 1) #define DR_TY_SHIFT 1 #define PWR_DOWN_MASK BIT(0) #define PWR_DOWN_SHIFT 0 /* PHY_CFG_1 bit fields */ #define REN_DAT_MASK GENMASK(19, 12) #define REN_DAT_SHIFT 12 #define REN_CMD_MASK BIT(11) #define REN_CMD_SHIFT 11 #define REN_STRB_MASK BIT(10) #define REN_STRB_SHIFT 10 #define PU_STRB_MASK BIT(20) #define PU_STRB_SHIFT 20 /* PHY_CFG_2 bit fields */ #define CLKBUF_MASK GENMASK(24, 21) #define CLKBUF_SHIFT 21 #define SEL_STRB_MASK GENMASK(20, 13) #define SEL_STRB_SHIFT 13 #define SEL_FREQ_MASK GENMASK(12, 10) #define SEL_FREQ_SHIFT 10 /* PHY_STAT bit fields */ #define CAL_DONE BIT(6) #define DLL_RDY BIT(5) #define OTAP_DLY 0x0 #define ITAP_DLY 0x0 #define STRB 0x33 /* From ACS_eMMC51_16nFFC_RO1100_Userguide_v1p0.pdf p17 */ #define FREQSEL_200M_170M 0x0 #define FREQSEL_170M_140M 0x1 #define FREQSEL_140M_110M 0x2 #define FREQSEL_110M_80M 0x3 #define FREQSEL_80M_50M 0x4 #define FREQSEL_275M_250M 0x5 #define FREQSEL_250M_225M 0x6 #define FREQSEL_225M_200M 0x7 /* Phy power status */ #define PHY_UNINITIALIZED 0 #define PHY_INITIALIZED 1 /* * During init(400KHz) phy_settings will be called with 200MHZ clock * To avoid incorrectly setting the phy for init(400KHZ) "phy_power_sts" is used. * When actual clock is set always phy is powered off once and then powered on. * (sdhci_arasan_set_clock). That feature will be used to identify whether the * settings are for init phy_power_on or actual clock phy_power_on * 0 --> init settings * 1 --> actual settings */ struct thunderbay_emmc_phy { void __iomem *reg_base; struct clk *emmcclk; int phy_power_sts; }; static inline void update_reg(struct thunderbay_emmc_phy *tbh_phy, u32 offset, u32 mask, u32 shift, u32 val) { u32 tmp; tmp = readl(tbh_phy->reg_base + offset); tmp &= ~mask; tmp |= val << shift; writel(tmp, tbh_phy->reg_base + offset); } static int thunderbay_emmc_phy_power(struct phy *phy, bool power_on) { struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy); unsigned int freqsel = FREQSEL_200M_170M; unsigned long rate; static int lock; u32 val; int ret; /* Disable DLL */ rate = clk_get_rate(tbh_phy->emmcclk); switch (rate) { case 200000000: /* lock dll only when it is used, i.e only if SEL_DLY_TXCLK/RXCLK are 0 */ update_reg(tbh_phy, PHY_CFG_0, DLL_EN_MASK, DLL_EN_SHIFT, 0x0); break; /* dll lock not required for other frequencies */ case 50000000 ... 52000000: case 400000: default: break; } if (!power_on) return 0; rate = clk_get_rate(tbh_phy->emmcclk); switch (rate) { case 170000001 ... 200000000: freqsel = FREQSEL_200M_170M; break; case 140000001 ... 170000000: freqsel = FREQSEL_170M_140M; break; case 110000001 ... 140000000: freqsel = FREQSEL_140M_110M; break; case 80000001 ... 110000000: freqsel = FREQSEL_110M_80M; break; case 50000000 ... 80000000: freqsel = FREQSEL_80M_50M; break; case 250000001 ... 275000000: freqsel = FREQSEL_275M_250M; break; case 225000001 ... 250000000: freqsel = FREQSEL_250M_225M; break; case 200000001 ... 225000000: freqsel = FREQSEL_225M_200M; break; default: break; } /* Clock rate is checked against upper limit. It may fall low during init */ if (rate > 200000000) dev_warn(&phy->dev, "Unsupported rate: %lu\n", rate); udelay(5); if (lock == 0) { /* PDB will be done only once per boot */ update_reg(tbh_phy, PHY_CFG_0, PWR_DOWN_MASK, PWR_DOWN_SHIFT, 0x1); lock = 1; /* * According to the user manual, it asks driver to wait 5us for * calpad busy trimming. However it is documented that this value is * PVT(A.K.A. process, voltage and temperature) relevant, so some * failure cases are found which indicates we should be more tolerant * to calpad busy trimming. */ ret = readl_poll_timeout(tbh_phy->reg_base + PHY_STAT, val, (val & CAL_DONE), 10, 50); if (ret) { dev_err(&phy->dev, "caldone failed, ret=%d\n", ret); return ret; } } rate = clk_get_rate(tbh_phy->emmcclk); switch (rate) { case 200000000: /* Set frequency of the DLL operation */ update_reg(tbh_phy, PHY_CFG_2, SEL_FREQ_MASK, SEL_FREQ_SHIFT, freqsel); /* Enable DLL */ update_reg(tbh_phy, PHY_CFG_0, DLL_EN_MASK, DLL_EN_SHIFT, 0x1); /* * After enabling analog DLL circuits docs say that we need 10.2 us if * our source clock is at 50 MHz and that lock time scales linearly * with clock speed. If we are powering on the PHY and the card clock * is super slow (like 100kHz) this could take as long as 5.1 ms as * per the math: 10.2 us * (50000000 Hz / 100000 Hz) => 5.1 ms * hopefully we won't be running at 100 kHz, but we should still make * sure we wait long enough. * * NOTE: There appear to be corner cases where the DLL seems to take * extra long to lock for reasons that aren't understood. In some * extreme cases we've seen it take up to over 10ms (!). We'll be * generous and give it 50ms. */ ret = readl_poll_timeout(tbh_phy->reg_base + PHY_STAT, val, (val & DLL_RDY), 10, 50 * USEC_PER_MSEC); if (ret) { dev_err(&phy->dev, "dllrdy failed, ret=%d\n", ret); return ret; } break; default: break; } return 0; } static int thunderbay_emmc_phy_init(struct phy *phy) { struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy); tbh_phy->emmcclk = clk_get(&phy->dev, "emmcclk"); return PTR_ERR_OR_ZERO(tbh_phy->emmcclk); } static int thunderbay_emmc_phy_exit(struct phy *phy) { struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy); clk_put(tbh_phy->emmcclk); return 0; } static int thunderbay_emmc_phy_power_on(struct phy *phy) { struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy); unsigned long rate; /* Overwrite capability bits configurable in bootloader */ update_reg(tbh_phy, CTRL_CFG_0, SUPPORT_HS_MASK, SUPPORT_HS_SHIFT, 0x1); update_reg(tbh_phy, CTRL_CFG_0, SUPPORT_8B_MASK, SUPPORT_8B_SHIFT, 0x1); update_reg(tbh_phy, CTRL_CFG_1, SUPPORT_SDR50_MASK, SUPPORT_SDR50_SHIFT, 0x1); update_reg(tbh_phy, CTRL_CFG_1, SUPPORT_DDR50_MASK, SUPPORT_DDR50_SHIFT, 0x1); update_reg(tbh_phy, CTRL_CFG_1, SUPPORT_SDR104_MASK, SUPPORT_SDR104_SHIFT, 0x1); update_reg(tbh_phy, CTRL_CFG_1, SUPPORT_HS400_MASK, SUPPORT_HS400_SHIFT, 0x1); update_reg(tbh_phy, CTRL_CFG_1, SUPPORT_64B_MASK, SUPPORT_64B_SHIFT, 0x1); if (tbh_phy->phy_power_sts == PHY_UNINITIALIZED) { /* Indicates initialization, settings for init, same as 400KHZ setting */ update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK, SEL_DLY_TXCLK_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK, SEL_DLY_RXCLK_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK, ITAP_DLY_ENA_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK, ITAP_DLY_SEL_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK, OTAP_DLY_ENA_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK, OTAP_DLY_SEL_SHIFT, 0); update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK, DLL_TRIM_ICP_SHIFT, 0); update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1); } else if (tbh_phy->phy_power_sts == PHY_INITIALIZED) { /* Indicates actual clock setting */ rate = clk_get_rate(tbh_phy->emmcclk); switch (rate) { case 200000000: update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK, SEL_DLY_TXCLK_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK, SEL_DLY_RXCLK_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK, ITAP_DLY_ENA_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK, ITAP_DLY_SEL_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK, OTAP_DLY_ENA_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK, OTAP_DLY_SEL_SHIFT, 2); update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK, DLL_TRIM_ICP_SHIFT, 0x8); update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1); /* For HS400 only */ update_reg(tbh_phy, PHY_CFG_2, SEL_STRB_MASK, SEL_STRB_SHIFT, STRB); break; case 50000000 ... 52000000: /* For both HS and DDR52 this setting works */ update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK, SEL_DLY_TXCLK_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK, SEL_DLY_RXCLK_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK, ITAP_DLY_ENA_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK, ITAP_DLY_SEL_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK, OTAP_DLY_ENA_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK, OTAP_DLY_SEL_SHIFT, 4); update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK, DLL_TRIM_ICP_SHIFT, 0x8); update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1); break; case 400000: update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK, SEL_DLY_TXCLK_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK, SEL_DLY_RXCLK_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK, ITAP_DLY_ENA_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK, ITAP_DLY_SEL_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK, OTAP_DLY_ENA_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK, OTAP_DLY_SEL_SHIFT, 0); update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK, DLL_TRIM_ICP_SHIFT, 0); update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1); break; default: update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_TXCLK_MASK, SEL_DLY_TXCLK_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, SEL_DLY_RXCLK_MASK, SEL_DLY_RXCLK_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_ENA_MASK, ITAP_DLY_ENA_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, ITAP_DLY_SEL_MASK, ITAP_DLY_SEL_SHIFT, 0x0); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_ENA_MASK, OTAP_DLY_ENA_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, OTAP_DLY_SEL_MASK, OTAP_DLY_SEL_SHIFT, 2); update_reg(tbh_phy, PHY_CFG_0, DLL_TRIM_ICP_MASK, DLL_TRIM_ICP_SHIFT, 0x8); update_reg(tbh_phy, PHY_CFG_0, DR_TY_MASK, DR_TY_SHIFT, 0x1); break; } /* Reset, init seq called without phy_power_off, this indicates init seq */ tbh_phy->phy_power_sts = PHY_UNINITIALIZED; } update_reg(tbh_phy, PHY_CFG_0, RETRIM_EN_MASK, RETRIM_EN_SHIFT, 0x1); update_reg(tbh_phy, PHY_CFG_0, RETRIM_MASK, RETRIM_SHIFT, 0x0); return thunderbay_emmc_phy_power(phy, 1); } static int thunderbay_emmc_phy_power_off(struct phy *phy) { struct thunderbay_emmc_phy *tbh_phy = phy_get_drvdata(phy); tbh_phy->phy_power_sts = PHY_INITIALIZED; return thunderbay_emmc_phy_power(phy, 0); } static const struct phy_ops thunderbay_emmc_phy_ops = { .init = thunderbay_emmc_phy_init, .exit = thunderbay_emmc_phy_exit, .power_on = thunderbay_emmc_phy_power_on, .power_off = thunderbay_emmc_phy_power_off, .owner = THIS_MODULE, }; static const struct of_device_id thunderbay_emmc_phy_of_match[] = { { .compatible = "intel,thunderbay-emmc-phy", (void *)&thunderbay_emmc_phy_ops }, {} }; MODULE_DEVICE_TABLE(of, thunderbay_emmc_phy_of_match); static int thunderbay_emmc_phy_probe(struct platform_device *pdev) { struct thunderbay_emmc_phy *tbh_phy; struct phy_provider *phy_provider; struct device *dev = &pdev->dev; const struct of_device_id *id; struct phy *generic_phy; struct resource *res; if (!dev->of_node) return -ENODEV; tbh_phy = devm_kzalloc(dev, sizeof(*tbh_phy), GFP_KERNEL); if (!tbh_phy) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); tbh_phy->reg_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(tbh_phy->reg_base)) return PTR_ERR(tbh_phy->reg_base); tbh_phy->phy_power_sts = PHY_UNINITIALIZED; id = of_match_node(thunderbay_emmc_phy_of_match, pdev->dev.of_node); if (!id) { dev_err(dev, "failed to get match_node\n"); return -EINVAL; } generic_phy = devm_phy_create(dev, dev->of_node, id->data); if (IS_ERR(generic_phy)) { dev_err(dev, "failed to create PHY\n"); return PTR_ERR(generic_phy); } phy_set_drvdata(generic_phy, tbh_phy); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver thunderbay_emmc_phy_driver = { .probe = thunderbay_emmc_phy_probe, .driver = { .name = "thunderbay-emmc-phy", .of_match_table = thunderbay_emmc_phy_of_match, }, }; module_platform_driver(thunderbay_emmc_phy_driver); MODULE_AUTHOR("Nandhini S "); MODULE_AUTHOR("Rashmi A "); MODULE_DESCRIPTION("Intel Thunder Bay eMMC PHY driver"); MODULE_LICENSE("GPL v2");