// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2017,2018 NXP * Copyright 2019 Purism SPC */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Control and Status Registers(CSR) */ #define PHY_CTRL 0x00 #define CCM_MASK GENMASK(7, 5) #define CCM(n) FIELD_PREP(CCM_MASK, (n)) #define CCM_1_2V 0x5 #define CA_MASK GENMASK(4, 2) #define CA_3_51MA 0x4 #define CA(n) FIELD_PREP(CA_MASK, (n)) #define RFB BIT(1) #define LVDS_EN BIT(0) /* DPHY registers */ #define DPHY_PD_DPHY 0x00 #define DPHY_M_PRG_HS_PREPARE 0x04 #define DPHY_MC_PRG_HS_PREPARE 0x08 #define DPHY_M_PRG_HS_ZERO 0x0c #define DPHY_MC_PRG_HS_ZERO 0x10 #define DPHY_M_PRG_HS_TRAIL 0x14 #define DPHY_MC_PRG_HS_TRAIL 0x18 #define DPHY_PD_PLL 0x1c #define DPHY_TST 0x20 #define DPHY_CN 0x24 #define DPHY_CM 0x28 #define DPHY_CO 0x2c #define DPHY_LOCK 0x30 #define DPHY_LOCK_BYP 0x34 #define DPHY_REG_BYPASS_PLL 0x4C #define MBPS(x) ((x) * 1000000) #define DATA_RATE_MAX_SPEED MBPS(1500) #define DATA_RATE_MIN_SPEED MBPS(80) #define PLL_LOCK_SLEEP 10 #define PLL_LOCK_TIMEOUT 1000 #define CN_BUF 0xcb7a89c0 #define CO_BUF 0x63 #define CM(x) ( \ ((x) < 32) ? 0xe0 | ((x) - 16) : \ ((x) < 64) ? 0xc0 | ((x) - 32) : \ ((x) < 128) ? 0x80 | ((x) - 64) : \ ((x) - 128)) #define CN(x) (((x) == 1) ? 0x1f : (((CN_BUF) >> ((x) - 1)) & 0x1f)) #define CO(x) ((CO_BUF) >> (8 - (x)) & 0x03) /* PHY power on is active low */ #define PWR_ON 0 #define PWR_OFF 1 #define MIN_VCO_FREQ 640000000 #define MAX_VCO_FREQ 1500000000 #define MIN_LVDS_REFCLK_FREQ 24000000 #define MAX_LVDS_REFCLK_FREQ 150000000 enum mixel_dphy_devtype { MIXEL_IMX8MQ, MIXEL_IMX8QXP, }; struct mixel_dphy_devdata { u8 reg_tx_rcal; u8 reg_auto_pd_en; u8 reg_rxlprp; u8 reg_rxcdrp; u8 reg_rxhs_settle; bool is_combo; /* MIPI DPHY and LVDS PHY combo */ }; static const struct mixel_dphy_devdata mixel_dphy_devdata[] = { [MIXEL_IMX8MQ] = { .reg_tx_rcal = 0x38, .reg_auto_pd_en = 0x3c, .reg_rxlprp = 0x40, .reg_rxcdrp = 0x44, .reg_rxhs_settle = 0x48, .is_combo = false, }, [MIXEL_IMX8QXP] = { .is_combo = true, }, }; struct mixel_dphy_cfg { /* DPHY PLL parameters */ u32 cm; u32 cn; u32 co; /* DPHY register values */ u8 mc_prg_hs_prepare; u8 m_prg_hs_prepare; u8 mc_prg_hs_zero; u8 m_prg_hs_zero; u8 mc_prg_hs_trail; u8 m_prg_hs_trail; u8 rxhs_settle; }; struct mixel_dphy_priv { struct mixel_dphy_cfg cfg; struct regmap *regmap; struct regmap *lvds_regmap; struct clk *phy_ref_clk; const struct mixel_dphy_devdata *devdata; struct imx_sc_ipc *ipc_handle; bool is_slave; int id; }; static const struct regmap_config mixel_dphy_regmap_config = { .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = DPHY_REG_BYPASS_PLL, .name = "mipi-dphy", }; static int phy_write(struct phy *phy, u32 value, unsigned int reg) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = regmap_write(priv->regmap, reg, value); if (ret < 0) dev_err(&phy->dev, "Failed to write DPHY reg %d: %d\n", reg, ret); return ret; } /* * Find a ratio close to the desired one using continued fraction * approximation ending either at exact match or maximum allowed * nominator, denominator. */ static void get_best_ratio(u32 *pnum, u32 *pdenom, u32 max_n, u32 max_d) { u32 a = *pnum; u32 b = *pdenom; u32 c; u32 n[] = {0, 1}; u32 d[] = {1, 0}; u32 whole; unsigned int i = 1; while (b) { i ^= 1; whole = a / b; n[i] += (n[i ^ 1] * whole); d[i] += (d[i ^ 1] * whole); if ((n[i] > max_n) || (d[i] > max_d)) { i ^= 1; break; } c = a - (b * whole); a = b; b = c; } *pnum = n[i]; *pdenom = d[i]; } static int mixel_dphy_config_from_opts(struct phy *phy, struct phy_configure_opts_mipi_dphy *dphy_opts, struct mixel_dphy_cfg *cfg) { struct mixel_dphy_priv *priv = dev_get_drvdata(phy->dev.parent); unsigned long ref_clk = clk_get_rate(priv->phy_ref_clk); u32 lp_t, numerator, denominator; unsigned long long tmp; u32 n; int i; if (dphy_opts->hs_clk_rate > DATA_RATE_MAX_SPEED || dphy_opts->hs_clk_rate < DATA_RATE_MIN_SPEED) return -EINVAL; numerator = dphy_opts->hs_clk_rate; denominator = ref_clk; get_best_ratio(&numerator, &denominator, 255, 256); if (!numerator || !denominator) { dev_err(&phy->dev, "Invalid %d/%d for %ld/%ld\n", numerator, denominator, dphy_opts->hs_clk_rate, ref_clk); return -EINVAL; } while ((numerator < 16) && (denominator <= 128)) { numerator <<= 1; denominator <<= 1; } /* * CM ranges between 16 and 255 * CN ranges between 1 and 32 * CO is power of 2: 1, 2, 4, 8 */ i = __ffs(denominator); if (i > 3) i = 3; cfg->cn = denominator >> i; cfg->co = 1 << i; cfg->cm = numerator; if (cfg->cm < 16 || cfg->cm > 255 || cfg->cn < 1 || cfg->cn > 32 || cfg->co < 1 || cfg->co > 8) { dev_err(&phy->dev, "Invalid CM/CN/CO values: %u/%u/%u\n", cfg->cm, cfg->cn, cfg->co); dev_err(&phy->dev, "for hs_clk/ref_clk=%ld/%ld ~ %d/%d\n", dphy_opts->hs_clk_rate, ref_clk, numerator, denominator); return -EINVAL; } dev_dbg(&phy->dev, "hs_clk/ref_clk=%ld/%ld ~ %d/%d\n", dphy_opts->hs_clk_rate, ref_clk, numerator, denominator); /* LP clock period */ tmp = 1000000000000LL; do_div(tmp, dphy_opts->lp_clk_rate); /* ps */ if (tmp > ULONG_MAX) return -EINVAL; lp_t = tmp; dev_dbg(&phy->dev, "LP clock %lu, period: %u ps\n", dphy_opts->lp_clk_rate, lp_t); /* hs_prepare: in lp clock periods */ if (2 * dphy_opts->hs_prepare > 5 * lp_t) { dev_err(&phy->dev, "hs_prepare (%u) > 2.5 * lp clock period (%u)\n", dphy_opts->hs_prepare, lp_t); return -EINVAL; } /* 00: lp_t, 01: 1.5 * lp_t, 10: 2 * lp_t, 11: 2.5 * lp_t */ if (dphy_opts->hs_prepare < lp_t) { n = 0; } else { tmp = 2 * (dphy_opts->hs_prepare - lp_t); do_div(tmp, lp_t); n = tmp; } cfg->m_prg_hs_prepare = n; /* clk_prepare: in lp clock periods */ if (2 * dphy_opts->clk_prepare > 3 * lp_t) { dev_err(&phy->dev, "clk_prepare (%u) > 1.5 * lp clock period (%u)\n", dphy_opts->clk_prepare, lp_t); return -EINVAL; } /* 00: lp_t, 01: 1.5 * lp_t */ cfg->mc_prg_hs_prepare = dphy_opts->clk_prepare > lp_t ? 1 : 0; /* hs_zero: formula from NXP BSP */ n = (144 * (dphy_opts->hs_clk_rate / 1000000) - 47500) / 10000; cfg->m_prg_hs_zero = n < 1 ? 1 : n; /* clk_zero: formula from NXP BSP */ n = (34 * (dphy_opts->hs_clk_rate / 1000000) - 2500) / 1000; cfg->mc_prg_hs_zero = n < 1 ? 1 : n; /* clk_trail, hs_trail: formula from NXP BSP */ n = (103 * (dphy_opts->hs_clk_rate / 1000000) + 10000) / 10000; if (n > 15) n = 15; if (n < 1) n = 1; cfg->m_prg_hs_trail = n; cfg->mc_prg_hs_trail = n; /* rxhs_settle: formula from NXP BSP */ if (dphy_opts->hs_clk_rate < MBPS(80)) cfg->rxhs_settle = 0x0d; else if (dphy_opts->hs_clk_rate < MBPS(90)) cfg->rxhs_settle = 0x0c; else if (dphy_opts->hs_clk_rate < MBPS(125)) cfg->rxhs_settle = 0x0b; else if (dphy_opts->hs_clk_rate < MBPS(150)) cfg->rxhs_settle = 0x0a; else if (dphy_opts->hs_clk_rate < MBPS(225)) cfg->rxhs_settle = 0x09; else if (dphy_opts->hs_clk_rate < MBPS(500)) cfg->rxhs_settle = 0x08; else cfg->rxhs_settle = 0x07; dev_dbg(&phy->dev, "phy_config: %u %u %u %u %u %u %u\n", cfg->m_prg_hs_prepare, cfg->mc_prg_hs_prepare, cfg->m_prg_hs_zero, cfg->mc_prg_hs_zero, cfg->m_prg_hs_trail, cfg->mc_prg_hs_trail, cfg->rxhs_settle); return 0; } static void mixel_phy_set_hs_timings(struct phy *phy) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); phy_write(phy, priv->cfg.m_prg_hs_prepare, DPHY_M_PRG_HS_PREPARE); phy_write(phy, priv->cfg.mc_prg_hs_prepare, DPHY_MC_PRG_HS_PREPARE); phy_write(phy, priv->cfg.m_prg_hs_zero, DPHY_M_PRG_HS_ZERO); phy_write(phy, priv->cfg.mc_prg_hs_zero, DPHY_MC_PRG_HS_ZERO); phy_write(phy, priv->cfg.m_prg_hs_trail, DPHY_M_PRG_HS_TRAIL); phy_write(phy, priv->cfg.mc_prg_hs_trail, DPHY_MC_PRG_HS_TRAIL); phy_write(phy, priv->cfg.rxhs_settle, priv->devdata->reg_rxhs_settle); } static int mixel_dphy_set_pll_params(struct phy *phy) { struct mixel_dphy_priv *priv = dev_get_drvdata(phy->dev.parent); if (priv->cfg.cm < 16 || priv->cfg.cm > 255 || priv->cfg.cn < 1 || priv->cfg.cn > 32 || priv->cfg.co < 1 || priv->cfg.co > 8) { dev_err(&phy->dev, "Invalid CM/CN/CO values! (%u/%u/%u)\n", priv->cfg.cm, priv->cfg.cn, priv->cfg.co); return -EINVAL; } dev_dbg(&phy->dev, "Using CM:%u CN:%u CO:%u\n", priv->cfg.cm, priv->cfg.cn, priv->cfg.co); phy_write(phy, CM(priv->cfg.cm), DPHY_CM); phy_write(phy, CN(priv->cfg.cn), DPHY_CN); phy_write(phy, CO(priv->cfg.co), DPHY_CO); return 0; } static int mixel_dphy_configure_mipi_dphy(struct phy *phy, union phy_configure_opts *opts) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); struct mixel_dphy_cfg cfg = { 0 }; int ret; ret = mixel_dphy_config_from_opts(phy, &opts->mipi_dphy, &cfg); if (ret) return ret; /* Update the configuration */ memcpy(&priv->cfg, &cfg, sizeof(struct mixel_dphy_cfg)); phy_write(phy, 0x00, DPHY_LOCK_BYP); phy_write(phy, 0x01, priv->devdata->reg_tx_rcal); phy_write(phy, 0x00, priv->devdata->reg_auto_pd_en); phy_write(phy, 0x02, priv->devdata->reg_rxlprp); phy_write(phy, 0x02, priv->devdata->reg_rxcdrp); phy_write(phy, 0x25, DPHY_TST); mixel_phy_set_hs_timings(phy); ret = mixel_dphy_set_pll_params(phy); if (ret < 0) return ret; return 0; } static int mixel_dphy_configure_lvds_phy(struct phy *phy, union phy_configure_opts *opts) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); struct phy_configure_opts_lvds *lvds_opts = &opts->lvds; unsigned long data_rate; unsigned long fvco; u32 rsc; u32 co; int ret; priv->is_slave = lvds_opts->is_slave; /* LVDS interface pins */ regmap_write(priv->lvds_regmap, PHY_CTRL, CCM(CCM_1_2V) | CA(CA_3_51MA) | RFB); /* enable MODE8 only for slave LVDS PHY */ rsc = priv->id ? IMX_SC_R_MIPI_1 : IMX_SC_R_MIPI_0; ret = imx_sc_misc_set_control(priv->ipc_handle, rsc, IMX_SC_C_DUAL_MODE, lvds_opts->is_slave); if (ret) { dev_err(&phy->dev, "Failed to configure MODE8: %d\n", ret); return ret; } /* * Choose an appropriate divider ratio to meet the requirement of * PLL VCO frequency range. * * ----- 640MHz ~ 1500MHz ------------ --------------- * | VCO | ----------------> | CO divider | -> | LVDS data rate| * ----- FVCO ------------ --------------- * 1/2/4/8 div 7 * differential_clk_rate */ data_rate = 7 * lvds_opts->differential_clk_rate; for (co = 1; co <= 8; co *= 2) { fvco = data_rate * co; if (fvco >= MIN_VCO_FREQ) break; } if (fvco < MIN_VCO_FREQ || fvco > MAX_VCO_FREQ) { dev_err(&phy->dev, "VCO frequency %lu is out of range\n", fvco); return -ERANGE; } /* * CO is configurable, while CN and CM are not, * as fixed ratios 1 and 7 are applied respectively. */ phy_write(phy, __ffs(co), DPHY_CO); /* set reference clock rate */ clk_set_rate(priv->phy_ref_clk, lvds_opts->differential_clk_rate); return ret; } static int mixel_dphy_configure(struct phy *phy, union phy_configure_opts *opts) { if (!opts) { dev_err(&phy->dev, "No configuration options\n"); return -EINVAL; } if (phy->attrs.mode == PHY_MODE_MIPI_DPHY) return mixel_dphy_configure_mipi_dphy(phy, opts); else if (phy->attrs.mode == PHY_MODE_LVDS) return mixel_dphy_configure_lvds_phy(phy, opts); dev_err(&phy->dev, "Failed to configure PHY with invalid PHY mode: %d\n", phy->attrs.mode); return -EINVAL; } static int mixel_dphy_validate_lvds_phy(struct phy *phy, union phy_configure_opts *opts) { struct phy_configure_opts_lvds *lvds_cfg = &opts->lvds; if (lvds_cfg->bits_per_lane_and_dclk_cycle != 7) { dev_err(&phy->dev, "Invalid bits per LVDS data lane: %u\n", lvds_cfg->bits_per_lane_and_dclk_cycle); return -EINVAL; } if (lvds_cfg->lanes != 4) { dev_err(&phy->dev, "Invalid LVDS data lanes: %u\n", lvds_cfg->lanes); return -EINVAL; } if (lvds_cfg->differential_clk_rate < MIN_LVDS_REFCLK_FREQ || lvds_cfg->differential_clk_rate > MAX_LVDS_REFCLK_FREQ) { dev_err(&phy->dev, "Invalid LVDS differential clock rate: %lu\n", lvds_cfg->differential_clk_rate); return -EINVAL; } return 0; } static int mixel_dphy_validate(struct phy *phy, enum phy_mode mode, int submode, union phy_configure_opts *opts) { if (mode == PHY_MODE_MIPI_DPHY) { struct mixel_dphy_cfg mipi_dphy_cfg = { 0 }; return mixel_dphy_config_from_opts(phy, &opts->mipi_dphy, &mipi_dphy_cfg); } else if (mode == PHY_MODE_LVDS) { return mixel_dphy_validate_lvds_phy(phy, opts); } dev_err(&phy->dev, "Failed to validate PHY with invalid PHY mode: %d\n", mode); return -EINVAL; } static int mixel_dphy_init(struct phy *phy) { phy_write(phy, PWR_OFF, DPHY_PD_PLL); phy_write(phy, PWR_OFF, DPHY_PD_DPHY); return 0; } static int mixel_dphy_exit(struct phy *phy) { phy_write(phy, 0, DPHY_CM); phy_write(phy, 0, DPHY_CN); phy_write(phy, 0, DPHY_CO); return 0; } static int mixel_dphy_power_on_mipi_dphy(struct phy *phy) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); u32 locked; int ret; phy_write(phy, PWR_ON, DPHY_PD_PLL); ret = regmap_read_poll_timeout(priv->regmap, DPHY_LOCK, locked, locked, PLL_LOCK_SLEEP, PLL_LOCK_TIMEOUT); if (ret < 0) { dev_err(&phy->dev, "Could not get DPHY lock (%d)!\n", ret); return ret; } phy_write(phy, PWR_ON, DPHY_PD_DPHY); return 0; } static int mixel_dphy_power_on_lvds_phy(struct phy *phy) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); u32 locked; int ret; regmap_update_bits(priv->lvds_regmap, PHY_CTRL, LVDS_EN, LVDS_EN); phy_write(phy, PWR_ON, DPHY_PD_DPHY); phy_write(phy, PWR_ON, DPHY_PD_PLL); /* do not wait for slave LVDS PHY being locked */ if (priv->is_slave) return 0; ret = regmap_read_poll_timeout(priv->regmap, DPHY_LOCK, locked, locked, PLL_LOCK_SLEEP, PLL_LOCK_TIMEOUT); if (ret < 0) { dev_err(&phy->dev, "Could not get LVDS PHY lock (%d)!\n", ret); return ret; } return 0; } static int mixel_dphy_power_on(struct phy *phy) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); int ret; ret = clk_prepare_enable(priv->phy_ref_clk); if (ret < 0) return ret; if (phy->attrs.mode == PHY_MODE_MIPI_DPHY) { ret = mixel_dphy_power_on_mipi_dphy(phy); } else if (phy->attrs.mode == PHY_MODE_LVDS) { ret = mixel_dphy_power_on_lvds_phy(phy); } else { dev_err(&phy->dev, "Failed to power on PHY with invalid PHY mode: %d\n", phy->attrs.mode); ret = -EINVAL; } if (ret) goto clock_disable; return 0; clock_disable: clk_disable_unprepare(priv->phy_ref_clk); return ret; } static int mixel_dphy_power_off(struct phy *phy) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); phy_write(phy, PWR_OFF, DPHY_PD_PLL); phy_write(phy, PWR_OFF, DPHY_PD_DPHY); if (phy->attrs.mode == PHY_MODE_LVDS) regmap_update_bits(priv->lvds_regmap, PHY_CTRL, LVDS_EN, 0); clk_disable_unprepare(priv->phy_ref_clk); return 0; } static int mixel_dphy_set_mode(struct phy *phy, enum phy_mode mode, int submode) { struct mixel_dphy_priv *priv = phy_get_drvdata(phy); int ret; if (priv->devdata->is_combo && mode != PHY_MODE_LVDS) { dev_err(&phy->dev, "Failed to set PHY mode for combo PHY\n"); return -EINVAL; } if (!priv->devdata->is_combo && mode != PHY_MODE_MIPI_DPHY) { dev_err(&phy->dev, "Failed to set PHY mode to MIPI DPHY\n"); return -EINVAL; } if (priv->devdata->is_combo) { u32 rsc = priv->id ? IMX_SC_R_MIPI_1 : IMX_SC_R_MIPI_0; ret = imx_sc_misc_set_control(priv->ipc_handle, rsc, IMX_SC_C_MODE, mode == PHY_MODE_LVDS); if (ret) { dev_err(&phy->dev, "Failed to set PHY mode via SCU ipc: %d\n", ret); return ret; } } return 0; } static const struct phy_ops mixel_dphy_phy_ops = { .init = mixel_dphy_init, .exit = mixel_dphy_exit, .power_on = mixel_dphy_power_on, .power_off = mixel_dphy_power_off, .set_mode = mixel_dphy_set_mode, .configure = mixel_dphy_configure, .validate = mixel_dphy_validate, .owner = THIS_MODULE, }; static const struct of_device_id mixel_dphy_of_match[] = { { .compatible = "fsl,imx8mq-mipi-dphy", .data = &mixel_dphy_devdata[MIXEL_IMX8MQ] }, { .compatible = "fsl,imx8qxp-mipi-dphy", .data = &mixel_dphy_devdata[MIXEL_IMX8QXP] }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mixel_dphy_of_match); static int mixel_dphy_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct phy_provider *phy_provider; struct mixel_dphy_priv *priv; struct phy *phy; void __iomem *base; int ret; if (!np) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->devdata = of_device_get_match_data(&pdev->dev); if (!priv->devdata) return -EINVAL; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); priv->regmap = devm_regmap_init_mmio(&pdev->dev, base, &mixel_dphy_regmap_config); if (IS_ERR(priv->regmap)) { dev_err(dev, "Couldn't create the DPHY regmap\n"); return PTR_ERR(priv->regmap); } priv->phy_ref_clk = devm_clk_get(&pdev->dev, "phy_ref"); if (IS_ERR(priv->phy_ref_clk)) { dev_err(dev, "No phy_ref clock found\n"); return PTR_ERR(priv->phy_ref_clk); } dev_dbg(dev, "phy_ref clock rate: %lu\n", clk_get_rate(priv->phy_ref_clk)); if (priv->devdata->is_combo) { priv->lvds_regmap = syscon_regmap_lookup_by_phandle(np, "fsl,syscon"); if (IS_ERR(priv->lvds_regmap)) { ret = PTR_ERR(priv->lvds_regmap); dev_err_probe(dev, ret, "Failed to get LVDS regmap\n"); return ret; } priv->id = of_alias_get_id(np, "mipi_dphy"); if (priv->id < 0) { dev_err(dev, "Failed to get phy node alias id: %d\n", priv->id); return priv->id; } ret = imx_scu_get_handle(&priv->ipc_handle); if (ret) { dev_err_probe(dev, ret, "Failed to get SCU ipc handle\n"); return ret; } } dev_set_drvdata(dev, priv); phy = devm_phy_create(dev, np, &mixel_dphy_phy_ops); if (IS_ERR(phy)) { dev_err(dev, "Failed to create phy %ld\n", PTR_ERR(phy)); return PTR_ERR(phy); } phy_set_drvdata(phy, priv); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static struct platform_driver mixel_dphy_driver = { .probe = mixel_dphy_probe, .driver = { .name = "mixel-mipi-dphy", .of_match_table = mixel_dphy_of_match, } }; module_platform_driver(mixel_dphy_driver); MODULE_AUTHOR("NXP Semiconductor"); MODULE_DESCRIPTION("Mixel MIPI-DSI PHY driver"); MODULE_LICENSE("GPL");