// SPDX-License-Identifier: GPL-2.0 /* * NVMe I/O command implementation. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include "nvmet.h" void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) { const struct queue_limits *ql = &bdev_get_queue(bdev)->limits; /* Number of logical blocks per physical block. */ const u32 lpp = ql->physical_block_size / ql->logical_block_size; /* Logical blocks per physical block, 0's based. */ const __le16 lpp0b = to0based(lpp); /* * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, * NAWUPF, and NACWU are defined for this namespace and should be * used by the host for this namespace instead of the AWUN, AWUPF, * and ACWU fields in the Identify Controller data structure. If * any of these fields are zero that means that the corresponding * field from the identify controller data structure should be used. */ id->nsfeat |= 1 << 1; id->nawun = lpp0b; id->nawupf = lpp0b; id->nacwu = lpp0b; /* * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and * NOWS are defined for this namespace and should be used by * the host for I/O optimization. */ id->nsfeat |= 1 << 4; /* NPWG = Namespace Preferred Write Granularity. 0's based */ id->npwg = lpp0b; /* NPWA = Namespace Preferred Write Alignment. 0's based */ id->npwa = id->npwg; /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ id->npdg = to0based(ql->discard_granularity / ql->logical_block_size); /* NPDG = Namespace Preferred Deallocate Alignment */ id->npda = id->npdg; /* NOWS = Namespace Optimal Write Size */ id->nows = to0based(ql->io_opt / ql->logical_block_size); } void nvmet_bdev_ns_disable(struct nvmet_ns *ns) { if (ns->bdev) { blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ); ns->bdev = NULL; } } static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns) { struct blk_integrity *bi = bdev_get_integrity(ns->bdev); if (bi) { ns->metadata_size = bi->tuple_size; if (bi->profile == &t10_pi_type1_crc) ns->pi_type = NVME_NS_DPS_PI_TYPE1; else if (bi->profile == &t10_pi_type3_crc) ns->pi_type = NVME_NS_DPS_PI_TYPE3; else /* Unsupported metadata type */ ns->metadata_size = 0; } } int nvmet_bdev_ns_enable(struct nvmet_ns *ns) { int ret; /* * When buffered_io namespace attribute is enabled that means user want * this block device to be used as a file, so block device can take * an advantage of cache. */ if (ns->buffered_io) return -ENOTBLK; ns->bdev = blkdev_get_by_path(ns->device_path, FMODE_READ | FMODE_WRITE, NULL); if (IS_ERR(ns->bdev)) { ret = PTR_ERR(ns->bdev); if (ret != -ENOTBLK) { pr_err("failed to open block device %s: (%ld)\n", ns->device_path, PTR_ERR(ns->bdev)); } ns->bdev = NULL; return ret; } ns->size = bdev_nr_bytes(ns->bdev); ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); ns->pi_type = 0; ns->metadata_size = 0; if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10)) nvmet_bdev_ns_enable_integrity(ns); if (bdev_is_zoned(ns->bdev)) { if (!nvmet_bdev_zns_enable(ns)) { nvmet_bdev_ns_disable(ns); return -EINVAL; } ns->csi = NVME_CSI_ZNS; } return 0; } void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns) { ns->size = bdev_nr_bytes(ns->bdev); } u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) { u16 status = NVME_SC_SUCCESS; if (likely(blk_sts == BLK_STS_OK)) return status; /* * Right now there exists M : 1 mapping between block layer error * to the NVMe status code (see nvme_error_status()). For consistency, * when we reverse map we use most appropriate NVMe Status code from * the group of the NVMe staus codes used in the nvme_error_status(). */ switch (blk_sts) { case BLK_STS_NOSPC: status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; req->error_loc = offsetof(struct nvme_rw_command, length); break; case BLK_STS_TARGET: status = NVME_SC_LBA_RANGE | NVME_SC_DNR; req->error_loc = offsetof(struct nvme_rw_command, slba); break; case BLK_STS_NOTSUPP: req->error_loc = offsetof(struct nvme_common_command, opcode); switch (req->cmd->common.opcode) { case nvme_cmd_dsm: case nvme_cmd_write_zeroes: status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; break; default: status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; } break; case BLK_STS_MEDIUM: status = NVME_SC_ACCESS_DENIED; req->error_loc = offsetof(struct nvme_rw_command, nsid); break; case BLK_STS_IOERR: default: status = NVME_SC_INTERNAL | NVME_SC_DNR; req->error_loc = offsetof(struct nvme_common_command, opcode); } switch (req->cmd->common.opcode) { case nvme_cmd_read: case nvme_cmd_write: req->error_slba = le64_to_cpu(req->cmd->rw.slba); break; case nvme_cmd_write_zeroes: req->error_slba = le64_to_cpu(req->cmd->write_zeroes.slba); break; default: req->error_slba = 0; } return status; } static void nvmet_bio_done(struct bio *bio) { struct nvmet_req *req = bio->bi_private; nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); nvmet_req_bio_put(req, bio); } #ifdef CONFIG_BLK_DEV_INTEGRITY static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, struct sg_mapping_iter *miter) { struct blk_integrity *bi; struct bio_integrity_payload *bip; int rc; size_t resid, len; bi = bdev_get_integrity(req->ns->bdev); if (unlikely(!bi)) { pr_err("Unable to locate bio_integrity\n"); return -ENODEV; } bip = bio_integrity_alloc(bio, GFP_NOIO, bio_max_segs(req->metadata_sg_cnt)); if (IS_ERR(bip)) { pr_err("Unable to allocate bio_integrity_payload\n"); return PTR_ERR(bip); } bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); /* virtual start sector must be in integrity interval units */ bip_set_seed(bip, bio->bi_iter.bi_sector >> (bi->interval_exp - SECTOR_SHIFT)); resid = bip->bip_iter.bi_size; while (resid > 0 && sg_miter_next(miter)) { len = min_t(size_t, miter->length, resid); rc = bio_integrity_add_page(bio, miter->page, len, offset_in_page(miter->addr)); if (unlikely(rc != len)) { pr_err("bio_integrity_add_page() failed; %d\n", rc); sg_miter_stop(miter); return -ENOMEM; } resid -= len; if (len < miter->length) miter->consumed -= miter->length - len; } sg_miter_stop(miter); return 0; } #else static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, struct sg_mapping_iter *miter) { return -EINVAL; } #endif /* CONFIG_BLK_DEV_INTEGRITY */ static void nvmet_bdev_execute_rw(struct nvmet_req *req) { unsigned int sg_cnt = req->sg_cnt; struct bio *bio; struct scatterlist *sg; struct blk_plug plug; sector_t sector; blk_opf_t opf; int i, rc; struct sg_mapping_iter prot_miter; unsigned int iter_flags; unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len; if (!nvmet_check_transfer_len(req, total_len)) return; if (!req->sg_cnt) { nvmet_req_complete(req, 0); return; } if (req->cmd->rw.opcode == nvme_cmd_write) { opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) opf |= REQ_FUA; iter_flags = SG_MITER_TO_SG; } else { opf = REQ_OP_READ; iter_flags = SG_MITER_FROM_SG; } if (is_pci_p2pdma_page(sg_page(req->sg))) opf |= REQ_NOMERGE; sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba); if (nvmet_use_inline_bvec(req)) { bio = &req->b.inline_bio; bio_init(bio, req->ns->bdev, req->inline_bvec, ARRAY_SIZE(req->inline_bvec), opf); } else { bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf, GFP_KERNEL); } bio->bi_iter.bi_sector = sector; bio->bi_private = req; bio->bi_end_io = nvmet_bio_done; blk_start_plug(&plug); if (req->metadata_len) sg_miter_start(&prot_miter, req->metadata_sg, req->metadata_sg_cnt, iter_flags); for_each_sg(req->sg, sg, req->sg_cnt, i) { while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) != sg->length) { struct bio *prev = bio; if (req->metadata_len) { rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter); if (unlikely(rc)) { bio_io_error(bio); return; } } bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf, GFP_KERNEL); bio->bi_iter.bi_sector = sector; bio_chain(bio, prev); submit_bio(prev); } sector += sg->length >> 9; sg_cnt--; } if (req->metadata_len) { rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter); if (unlikely(rc)) { bio_io_error(bio); return; } } submit_bio(bio); blk_finish_plug(&plug); } static void nvmet_bdev_execute_flush(struct nvmet_req *req) { struct bio *bio = &req->b.inline_bio; if (!bdev_write_cache(req->ns->bdev)) { nvmet_req_complete(req, NVME_SC_SUCCESS); return; } if (!nvmet_check_transfer_len(req, 0)) return; bio_init(bio, req->ns->bdev, req->inline_bvec, ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH); bio->bi_private = req; bio->bi_end_io = nvmet_bio_done; submit_bio(bio); } u16 nvmet_bdev_flush(struct nvmet_req *req) { if (!bdev_write_cache(req->ns->bdev)) return 0; if (blkdev_issue_flush(req->ns->bdev)) return NVME_SC_INTERNAL | NVME_SC_DNR; return 0; } static u16 nvmet_bdev_discard_range(struct nvmet_req *req, struct nvme_dsm_range *range, struct bio **bio) { struct nvmet_ns *ns = req->ns; int ret; ret = __blkdev_issue_discard(ns->bdev, nvmet_lba_to_sect(ns, range->slba), le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), GFP_KERNEL, bio); if (ret && ret != -EOPNOTSUPP) { req->error_slba = le64_to_cpu(range->slba); return errno_to_nvme_status(req, ret); } return NVME_SC_SUCCESS; } static void nvmet_bdev_execute_discard(struct nvmet_req *req) { struct nvme_dsm_range range; struct bio *bio = NULL; int i; u16 status; for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, sizeof(range)); if (status) break; status = nvmet_bdev_discard_range(req, &range, &bio); if (status) break; } if (bio) { bio->bi_private = req; bio->bi_end_io = nvmet_bio_done; if (status) bio_io_error(bio); else submit_bio(bio); } else { nvmet_req_complete(req, status); } } static void nvmet_bdev_execute_dsm(struct nvmet_req *req) { if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req))) return; switch (le32_to_cpu(req->cmd->dsm.attributes)) { case NVME_DSMGMT_AD: nvmet_bdev_execute_discard(req); return; case NVME_DSMGMT_IDR: case NVME_DSMGMT_IDW: default: /* Not supported yet */ nvmet_req_complete(req, 0); return; } } static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) { struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; struct bio *bio = NULL; sector_t sector; sector_t nr_sector; int ret; if (!nvmet_check_transfer_len(req, 0)) return; sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba); nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << (req->ns->blksize_shift - 9)); ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, GFP_KERNEL, &bio, 0); if (bio) { bio->bi_private = req; bio->bi_end_io = nvmet_bio_done; submit_bio(bio); } else { nvmet_req_complete(req, errno_to_nvme_status(req, ret)); } } u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) { switch (req->cmd->common.opcode) { case nvme_cmd_read: case nvme_cmd_write: req->execute = nvmet_bdev_execute_rw; if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) req->metadata_len = nvmet_rw_metadata_len(req); return 0; case nvme_cmd_flush: req->execute = nvmet_bdev_execute_flush; return 0; case nvme_cmd_dsm: req->execute = nvmet_bdev_execute_dsm; return 0; case nvme_cmd_write_zeroes: req->execute = nvmet_bdev_execute_write_zeroes; return 0; default: return nvmet_report_invalid_opcode(req); } }