/* QLogic qed NIC Driver * Copyright (c) 2015 QLogic Corporation * * This software is available under the terms of the GNU General Public License * (GPL) Version 2, available from the file COPYING in the main directory of * this source tree. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qed.h" #include "qed_cxt.h" #include "qed_dcbx.h" #include "qed_dev_api.h" #include "qed_hsi.h" #include "qed_hw.h" #include "qed_init_ops.h" #include "qed_int.h" #include "qed_mcp.h" #include "qed_reg_addr.h" #include "qed_sp.h" #include "qed_sriov.h" #include "qed_vf.h" static spinlock_t qm_lock; static bool qm_lock_init = false; /* API common to all protocols */ enum BAR_ID { BAR_ID_0, /* used for GRC */ BAR_ID_1 /* Used for doorbells */ }; static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, enum BAR_ID bar_id) { u32 bar_reg = (bar_id == BAR_ID_0 ? PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); u32 val; if (IS_VF(p_hwfn->cdev)) return 1 << 17; val = qed_rd(p_hwfn, p_hwfn->p_main_ptt, bar_reg); if (val) return 1 << (val + 15); /* Old MFW initialized above registered only conditionally */ if (p_hwfn->cdev->num_hwfns > 1) { DP_INFO(p_hwfn, "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); return BAR_ID_0 ? 256 * 1024 : 512 * 1024; } else { DP_INFO(p_hwfn, "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); return 512 * 1024; } } void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) { u32 i; cdev->dp_level = dp_level; cdev->dp_module = dp_module; for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; p_hwfn->dp_level = dp_level; p_hwfn->dp_module = dp_module; } } void qed_init_struct(struct qed_dev *cdev) { u8 i; for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; p_hwfn->cdev = cdev; p_hwfn->my_id = i; p_hwfn->b_active = false; mutex_init(&p_hwfn->dmae_info.mutex); } /* hwfn 0 is always active */ cdev->hwfns[0].b_active = true; /* set the default cache alignment to 128 */ cdev->cache_shift = 7; } static void qed_qm_info_free(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; kfree(qm_info->qm_pq_params); qm_info->qm_pq_params = NULL; kfree(qm_info->qm_vport_params); qm_info->qm_vport_params = NULL; kfree(qm_info->qm_port_params); qm_info->qm_port_params = NULL; kfree(qm_info->wfq_data); qm_info->wfq_data = NULL; } void qed_resc_free(struct qed_dev *cdev) { int i; if (IS_VF(cdev)) return; kfree(cdev->fw_data); cdev->fw_data = NULL; kfree(cdev->reset_stats); for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; kfree(p_hwfn->p_tx_cids); p_hwfn->p_tx_cids = NULL; kfree(p_hwfn->p_rx_cids); p_hwfn->p_rx_cids = NULL; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; qed_cxt_mngr_free(p_hwfn); qed_qm_info_free(p_hwfn); qed_spq_free(p_hwfn); qed_eq_free(p_hwfn, p_hwfn->p_eq); qed_consq_free(p_hwfn, p_hwfn->p_consq); qed_int_free(p_hwfn); qed_iov_free(p_hwfn); qed_dmae_info_free(p_hwfn); qed_dcbx_info_free(p_hwfn, p_hwfn->p_dcbx_info); } } static int qed_init_qm_info(struct qed_hwfn *p_hwfn, bool b_sleepable) { u8 num_vports, vf_offset = 0, i, vport_id, num_ports, curr_queue = 0; struct qed_qm_info *qm_info = &p_hwfn->qm_info; struct init_qm_port_params *p_qm_port; bool init_rdma_offload_pq = false; bool init_pure_ack_pq = false; bool init_ooo_pq = false; u16 num_pqs, multi_cos_tcs = 1; u8 pf_wfq = qm_info->pf_wfq; u32 pf_rl = qm_info->pf_rl; u16 num_pf_rls = 0; u16 num_vfs = 0; #ifdef CONFIG_QED_SRIOV if (p_hwfn->cdev->p_iov_info) num_vfs = p_hwfn->cdev->p_iov_info->total_vfs; #endif memset(qm_info, 0, sizeof(*qm_info)); num_pqs = multi_cos_tcs + num_vfs + 1; /* The '1' is for pure-LB */ num_vports = (u8)RESC_NUM(p_hwfn, QED_VPORT); if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) { num_pqs++; /* for RoCE queue */ init_rdma_offload_pq = true; /* we subtract num_vfs because each require a rate limiter, * and one default rate limiter */ if (p_hwfn->pf_params.rdma_pf_params.enable_dcqcn) num_pf_rls = RESC_NUM(p_hwfn, QED_RL) - num_vfs - 1; num_pqs += num_pf_rls; qm_info->num_pf_rls = (u8) num_pf_rls; } if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { num_pqs += 2; /* for iSCSI pure-ACK / OOO queue */ init_pure_ack_pq = true; init_ooo_pq = true; } /* Sanity checking that setup requires legal number of resources */ if (num_pqs > RESC_NUM(p_hwfn, QED_PQ)) { DP_ERR(p_hwfn, "Need too many Physical queues - 0x%04x when only %04x are available\n", num_pqs, RESC_NUM(p_hwfn, QED_PQ)); return -EINVAL; } /* PQs will be arranged as follows: First per-TC PQ then pure-LB quete. */ qm_info->qm_pq_params = kcalloc(num_pqs, sizeof(struct init_qm_pq_params), b_sleepable ? GFP_KERNEL : GFP_ATOMIC); if (!qm_info->qm_pq_params) goto alloc_err; qm_info->qm_vport_params = kcalloc(num_vports, sizeof(struct init_qm_vport_params), b_sleepable ? GFP_KERNEL : GFP_ATOMIC); if (!qm_info->qm_vport_params) goto alloc_err; qm_info->qm_port_params = kcalloc(MAX_NUM_PORTS, sizeof(struct init_qm_port_params), b_sleepable ? GFP_KERNEL : GFP_ATOMIC); if (!qm_info->qm_port_params) goto alloc_err; qm_info->wfq_data = kcalloc(num_vports, sizeof(struct qed_wfq_data), b_sleepable ? GFP_KERNEL : GFP_ATOMIC); if (!qm_info->wfq_data) goto alloc_err; vport_id = (u8)RESC_START(p_hwfn, QED_VPORT); /* First init rate limited queues */ for (curr_queue = 0; curr_queue < num_pf_rls; curr_queue++) { qm_info->qm_pq_params[curr_queue].vport_id = vport_id++; qm_info->qm_pq_params[curr_queue].tc_id = p_hwfn->hw_info.non_offload_tc; qm_info->qm_pq_params[curr_queue].wrr_group = 1; qm_info->qm_pq_params[curr_queue].rl_valid = 1; } /* First init per-TC PQs */ for (i = 0; i < multi_cos_tcs; i++) { struct init_qm_pq_params *params = &qm_info->qm_pq_params[curr_queue++]; if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE || p_hwfn->hw_info.personality == QED_PCI_ETH) { params->vport_id = vport_id; params->tc_id = p_hwfn->hw_info.non_offload_tc; params->wrr_group = 1; } else { params->vport_id = vport_id; params->tc_id = p_hwfn->hw_info.offload_tc; params->wrr_group = 1; } } /* Then init pure-LB PQ */ qm_info->pure_lb_pq = curr_queue; qm_info->qm_pq_params[curr_queue].vport_id = (u8) RESC_START(p_hwfn, QED_VPORT); qm_info->qm_pq_params[curr_queue].tc_id = PURE_LB_TC; qm_info->qm_pq_params[curr_queue].wrr_group = 1; curr_queue++; qm_info->offload_pq = 0; if (init_rdma_offload_pq) { qm_info->offload_pq = curr_queue; qm_info->qm_pq_params[curr_queue].vport_id = vport_id; qm_info->qm_pq_params[curr_queue].tc_id = p_hwfn->hw_info.offload_tc; qm_info->qm_pq_params[curr_queue].wrr_group = 1; curr_queue++; } if (init_pure_ack_pq) { qm_info->pure_ack_pq = curr_queue; qm_info->qm_pq_params[curr_queue].vport_id = vport_id; qm_info->qm_pq_params[curr_queue].tc_id = p_hwfn->hw_info.offload_tc; qm_info->qm_pq_params[curr_queue].wrr_group = 1; curr_queue++; } if (init_ooo_pq) { qm_info->ooo_pq = curr_queue; qm_info->qm_pq_params[curr_queue].vport_id = vport_id; qm_info->qm_pq_params[curr_queue].tc_id = DCBX_ISCSI_OOO_TC; qm_info->qm_pq_params[curr_queue].wrr_group = 1; curr_queue++; } /* Then init per-VF PQs */ vf_offset = curr_queue; for (i = 0; i < num_vfs; i++) { /* First vport is used by the PF */ qm_info->qm_pq_params[curr_queue].vport_id = vport_id + i + 1; qm_info->qm_pq_params[curr_queue].tc_id = p_hwfn->hw_info.non_offload_tc; qm_info->qm_pq_params[curr_queue].wrr_group = 1; qm_info->qm_pq_params[curr_queue].rl_valid = 1; curr_queue++; } qm_info->vf_queues_offset = vf_offset; qm_info->num_pqs = num_pqs; qm_info->num_vports = num_vports; /* Initialize qm port parameters */ num_ports = p_hwfn->cdev->num_ports_in_engines; for (i = 0; i < num_ports; i++) { p_qm_port = &qm_info->qm_port_params[i]; p_qm_port->active = 1; if (num_ports == 4) p_qm_port->active_phys_tcs = 0x7; else p_qm_port->active_phys_tcs = 0x9f; p_qm_port->num_pbf_cmd_lines = PBF_MAX_CMD_LINES / num_ports; p_qm_port->num_btb_blocks = BTB_MAX_BLOCKS / num_ports; } qm_info->max_phys_tcs_per_port = NUM_OF_PHYS_TCS; qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ); qm_info->num_vf_pqs = num_vfs; qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT); for (i = 0; i < qm_info->num_vports; i++) qm_info->qm_vport_params[i].vport_wfq = 1; qm_info->vport_rl_en = 1; qm_info->vport_wfq_en = 1; qm_info->pf_rl = pf_rl; qm_info->pf_wfq = pf_wfq; return 0; alloc_err: DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n"); qed_qm_info_free(p_hwfn); return -ENOMEM; } /* This function reconfigures the QM pf on the fly. * For this purpose we: * 1. reconfigure the QM database * 2. set new values to runtime arrat * 3. send an sdm_qm_cmd through the rbc interface to stop the QM * 4. activate init tool in QM_PF stage * 5. send an sdm_qm_cmd through rbc interface to release the QM */ int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; bool b_rc; int rc; /* qm_info is allocated in qed_init_qm_info() which is already called * from qed_resc_alloc() or previous call of qed_qm_reconf(). * The allocated size may change each init, so we free it before next * allocation. */ qed_qm_info_free(p_hwfn); /* initialize qed's qm data structure */ rc = qed_init_qm_info(p_hwfn, false); if (rc) return rc; /* stop PF's qm queues */ spin_lock_bh(&qm_lock); b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, qm_info->start_pq, qm_info->num_pqs); spin_unlock_bh(&qm_lock); if (!b_rc) return -EINVAL; /* clear the QM_PF runtime phase leftovers from previous init */ qed_init_clear_rt_data(p_hwfn); /* prepare QM portion of runtime array */ qed_qm_init_pf(p_hwfn); /* activate init tool on runtime array */ rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, p_hwfn->hw_info.hw_mode); if (rc) return rc; /* start PF's qm queues */ spin_lock_bh(&qm_lock); b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, qm_info->start_pq, qm_info->num_pqs); spin_unlock_bh(&qm_lock); if (!b_rc) return -EINVAL; return 0; } int qed_resc_alloc(struct qed_dev *cdev) { struct qed_consq *p_consq; struct qed_eq *p_eq; int i, rc = 0; if (IS_VF(cdev)) return rc; cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); if (!cdev->fw_data) return -ENOMEM; /* Allocate Memory for the Queue->CID mapping */ for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; int tx_size = sizeof(struct qed_hw_cid_data) * RESC_NUM(p_hwfn, QED_L2_QUEUE); int rx_size = sizeof(struct qed_hw_cid_data) * RESC_NUM(p_hwfn, QED_L2_QUEUE); p_hwfn->p_tx_cids = kzalloc(tx_size, GFP_KERNEL); if (!p_hwfn->p_tx_cids) { DP_NOTICE(p_hwfn, "Failed to allocate memory for Tx Cids\n"); goto alloc_no_mem; } p_hwfn->p_rx_cids = kzalloc(rx_size, GFP_KERNEL); if (!p_hwfn->p_rx_cids) { DP_NOTICE(p_hwfn, "Failed to allocate memory for Rx Cids\n"); goto alloc_no_mem; } } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; u32 n_eqes, num_cons; /* First allocate the context manager structure */ rc = qed_cxt_mngr_alloc(p_hwfn); if (rc) goto alloc_err; /* Set the HW cid/tid numbers (in the contest manager) * Must be done prior to any further computations. */ rc = qed_cxt_set_pf_params(p_hwfn); if (rc) goto alloc_err; /* Prepare and process QM requirements */ rc = qed_init_qm_info(p_hwfn, true); if (rc) goto alloc_err; /* Compute the ILT client partition */ rc = qed_cxt_cfg_ilt_compute(p_hwfn); if (rc) goto alloc_err; /* CID map / ILT shadow table / T2 * The talbes sizes are determined by the computations above */ rc = qed_cxt_tables_alloc(p_hwfn); if (rc) goto alloc_err; /* SPQ, must follow ILT because initializes SPQ context */ rc = qed_spq_alloc(p_hwfn); if (rc) goto alloc_err; /* SP status block allocation */ p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_DPC); rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); if (rc) goto alloc_err; rc = qed_iov_alloc(p_hwfn); if (rc) goto alloc_err; /* EQ */ n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); if (p_hwfn->hw_info.personality == QED_PCI_ETH_ROCE) { num_cons = qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ROCE, 0) * 2; n_eqes += num_cons + 2 * MAX_NUM_VFS_BB; } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { num_cons = qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI, 0); n_eqes += 2 * num_cons; } if (n_eqes > 0xFFFF) { DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", n_eqes, 0xFFFF); goto alloc_err; } p_eq = qed_eq_alloc(p_hwfn, (u16) n_eqes); if (!p_eq) goto alloc_no_mem; p_hwfn->p_eq = p_eq; p_consq = qed_consq_alloc(p_hwfn); if (!p_consq) goto alloc_no_mem; p_hwfn->p_consq = p_consq; /* DMA info initialization */ rc = qed_dmae_info_alloc(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "Failed to allocate memory for dmae_info structure\n"); goto alloc_err; } /* DCBX initialization */ rc = qed_dcbx_info_alloc(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "Failed to allocate memory for dcbx structure\n"); goto alloc_err; } } cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); if (!cdev->reset_stats) { DP_NOTICE(cdev, "Failed to allocate reset statistics\n"); rc = -ENOMEM; goto alloc_err; } return 0; alloc_no_mem: rc = -ENOMEM; alloc_err: qed_resc_free(cdev); return rc; } void qed_resc_setup(struct qed_dev *cdev) { int i; if (IS_VF(cdev)) return; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; qed_cxt_mngr_setup(p_hwfn); qed_spq_setup(p_hwfn); qed_eq_setup(p_hwfn, p_hwfn->p_eq); qed_consq_setup(p_hwfn, p_hwfn->p_consq); /* Read shadow of current MFW mailbox */ qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); memcpy(p_hwfn->mcp_info->mfw_mb_shadow, p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); qed_iov_setup(p_hwfn, p_hwfn->p_main_ptt); } } #define FINAL_CLEANUP_POLL_CNT (100) #define FINAL_CLEANUP_POLL_TIME (10) int qed_final_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 id, bool is_vf) { u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; int rc = -EBUSY; addr = GTT_BAR0_MAP_REG_USDM_RAM + USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id); if (is_vf) id += 0x10; command |= X_FINAL_CLEANUP_AGG_INT << SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; /* Make sure notification is not set before initiating final cleanup */ if (REG_RD(p_hwfn, addr)) { DP_NOTICE( p_hwfn, "Unexpected; Found final cleanup notification before initiating final cleanup\n"); REG_WR(p_hwfn, addr, 0); } DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Sending final cleanup for PFVF[%d] [Command %08x\n]", id, command); qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); /* Poll until completion */ while (!REG_RD(p_hwfn, addr) && count--) msleep(FINAL_CLEANUP_POLL_TIME); if (REG_RD(p_hwfn, addr)) rc = 0; else DP_NOTICE(p_hwfn, "Failed to receive FW final cleanup notification\n"); /* Cleanup afterwards */ REG_WR(p_hwfn, addr, 0); return rc; } static void qed_calc_hw_mode(struct qed_hwfn *p_hwfn) { int hw_mode = 0; hw_mode = (1 << MODE_BB_B0); switch (p_hwfn->cdev->num_ports_in_engines) { case 1: hw_mode |= 1 << MODE_PORTS_PER_ENG_1; break; case 2: hw_mode |= 1 << MODE_PORTS_PER_ENG_2; break; case 4: hw_mode |= 1 << MODE_PORTS_PER_ENG_4; break; default: DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", p_hwfn->cdev->num_ports_in_engines); return; } switch (p_hwfn->cdev->mf_mode) { case QED_MF_DEFAULT: case QED_MF_NPAR: hw_mode |= 1 << MODE_MF_SI; break; case QED_MF_OVLAN: hw_mode |= 1 << MODE_MF_SD; break; default: DP_NOTICE(p_hwfn, "Unsupported MF mode, init as DEFAULT\n"); hw_mode |= 1 << MODE_MF_SI; } hw_mode |= 1 << MODE_ASIC; if (p_hwfn->cdev->num_hwfns > 1) hw_mode |= 1 << MODE_100G; p_hwfn->hw_info.hw_mode = hw_mode; DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), "Configuring function for hw_mode: 0x%08x\n", p_hwfn->hw_info.hw_mode); } /* Init run time data for all PFs on an engine. */ static void qed_init_cau_rt_data(struct qed_dev *cdev) { u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; int i, sb_id; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_igu_info *p_igu_info; struct qed_igu_block *p_block; struct cau_sb_entry sb_entry; p_igu_info = p_hwfn->hw_info.p_igu_info; for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(cdev); sb_id++) { p_block = &p_igu_info->igu_map.igu_blocks[sb_id]; if (!p_block->is_pf) continue; qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_block->function_id, 0, 0); STORE_RT_REG_AGG(p_hwfn, offset + sb_id * 2, sb_entry); } } } static int qed_hw_init_common(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, int hw_mode) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; struct qed_qm_common_rt_init_params params; struct qed_dev *cdev = p_hwfn->cdev; u16 num_pfs, pf_id; u32 concrete_fid; int rc = 0; u8 vf_id; qed_init_cau_rt_data(cdev); /* Program GTT windows */ qed_gtt_init(p_hwfn); if (p_hwfn->mcp_info) { if (p_hwfn->mcp_info->func_info.bandwidth_max) qm_info->pf_rl_en = 1; if (p_hwfn->mcp_info->func_info.bandwidth_min) qm_info->pf_wfq_en = 1; } memset(¶ms, 0, sizeof(params)); params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engines; params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; params.pf_rl_en = qm_info->pf_rl_en; params.pf_wfq_en = qm_info->pf_wfq_en; params.vport_rl_en = qm_info->vport_rl_en; params.vport_wfq_en = qm_info->vport_wfq_en; params.port_params = qm_info->qm_port_params; qed_qm_common_rt_init(p_hwfn, ¶ms); qed_cxt_hw_init_common(p_hwfn); /* Close gate from NIG to BRB/Storm; By default they are open, but * we close them to prevent NIG from passing data to reset blocks. * Should have been done in the ENGINE phase, but init-tool lacks * proper port-pretend capabilities. */ qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0); qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0); qed_port_pretend(p_hwfn, p_ptt, p_hwfn->port_id ^ 1); qed_wr(p_hwfn, p_ptt, NIG_REG_RX_BRB_OUT_EN, 0); qed_wr(p_hwfn, p_ptt, NIG_REG_STORM_OUT_EN, 0); qed_port_unpretend(p_hwfn, p_ptt); rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); if (rc != 0) return rc; qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); if (QED_IS_BB(p_hwfn->cdev)) { num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); for (pf_id = 0; pf_id < num_pfs; pf_id++) { qed_fid_pretend(p_hwfn, p_ptt, pf_id); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); } /* pretend to original PF */ qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); } for (vf_id = 0; vf_id < MAX_NUM_VFS_BB; vf_id++) { concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid); qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); } /* pretend to original PF */ qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); return rc; } static int qed_hw_init_port(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, int hw_mode) { int rc = 0; rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode); if (rc != 0) return rc; if (hw_mode & (1 << MODE_MF_SI)) { u8 pf_id = 0; if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) { DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, "PF[%08x] is first eth on engine\n", pf_id); /* We should have configured BIT for ppfid, i.e., the * relative function number in the port. But there's a * bug in LLH in BB where the ppfid is actually engine * based, so we need to take this into account. */ qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_TAGMAC_DEF_PF_VECTOR, 1 << pf_id); } /* Take the protocol-based hit vector if there is a hit, * otherwise take the other vector. */ qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_CLS_TYPE_DUALMODE, 0x2); } return rc; } static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_tunn_start_params *p_tunn, int hw_mode, bool b_hw_start, enum qed_int_mode int_mode, bool allow_npar_tx_switch) { u8 rel_pf_id = p_hwfn->rel_pf_id; int rc = 0; if (p_hwfn->mcp_info) { struct qed_mcp_function_info *p_info; p_info = &p_hwfn->mcp_info->func_info; if (p_info->bandwidth_min) p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; /* Update rate limit once we'll actually have a link */ p_hwfn->qm_info.pf_rl = 100000; } qed_cxt_hw_init_pf(p_hwfn); qed_int_igu_init_rt(p_hwfn); /* Set VLAN in NIG if needed */ if (hw_mode & (1 << MODE_MF_SD)) { DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, p_hwfn->hw_info.ovlan); } /* Enable classification by MAC if needed */ if (hw_mode & (1 << MODE_MF_SI)) { DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n"); STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); } /* Protocl Configuration */ STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0); STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, 0); STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); /* Cleanup chip from previous driver if such remains exist */ rc = qed_final_cleanup(p_hwfn, p_ptt, rel_pf_id, false); if (rc != 0) return rc; /* PF Init sequence */ rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); if (rc) return rc; /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); if (rc) return rc; /* Pure runtime initializations - directly to the HW */ qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); if (hw_mode & (1 << MODE_MF_SI)) { u8 pf_id = 0; u32 val; if (!qed_hw_init_first_eth(p_hwfn, p_ptt, &pf_id)) { if (p_hwfn->rel_pf_id == pf_id) { DP_VERBOSE(p_hwfn, NETIF_MSG_IFUP, "PF[%d] is first ETH on engine\n", pf_id); val = 1; } qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, val); } } if (b_hw_start) { /* enable interrupts */ qed_int_igu_enable(p_hwfn, p_ptt, int_mode); /* send function start command */ rc = qed_sp_pf_start(p_hwfn, p_tunn, p_hwfn->cdev->mf_mode, allow_npar_tx_switch); if (rc) DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); } return rc; } static int qed_change_pci_hwfn(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 enable) { u32 delay_idx = 0, val, set_val = enable ? 1 : 0; /* Change PF in PXP */ qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); /* wait until value is set - try for 1 second every 50us */ for (delay_idx = 0; delay_idx < 20000; delay_idx++) { val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); if (val == set_val) break; usleep_range(50, 60); } if (val != set_val) { DP_NOTICE(p_hwfn, "PFID_ENABLE_MASTER wasn't changed after a second\n"); return -EAGAIN; } return 0; } static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, struct qed_ptt *p_main_ptt) { /* Read shadow of current MFW mailbox */ qed_mcp_read_mb(p_hwfn, p_main_ptt); memcpy(p_hwfn->mcp_info->mfw_mb_shadow, p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); } int qed_hw_init(struct qed_dev *cdev, struct qed_tunn_start_params *p_tunn, bool b_hw_start, enum qed_int_mode int_mode, bool allow_npar_tx_switch, const u8 *bin_fw_data) { u32 load_code, param; int rc, mfw_rc, i; if ((int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); return -EINVAL; } if (IS_PF(cdev)) { rc = qed_init_fw_data(cdev, bin_fw_data); if (rc != 0) return rc; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; if (IS_VF(cdev)) { p_hwfn->b_int_enabled = 1; continue; } /* Enable DMAE in PXP */ rc = qed_change_pci_hwfn(p_hwfn, p_hwfn->p_main_ptt, true); qed_calc_hw_mode(p_hwfn); rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_code); if (rc) { DP_NOTICE(p_hwfn, "Failed sending LOAD_REQ command\n"); return rc; } qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); DP_VERBOSE(p_hwfn, QED_MSG_SP, "Load request was sent. Resp:0x%x, Load code: 0x%x\n", rc, load_code); p_hwfn->first_on_engine = (load_code == FW_MSG_CODE_DRV_LOAD_ENGINE); if (!qm_lock_init) { spin_lock_init(&qm_lock); qm_lock_init = true; } switch (load_code) { case FW_MSG_CODE_DRV_LOAD_ENGINE: rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->hw_info.hw_mode); if (rc) break; /* Fall into */ case FW_MSG_CODE_DRV_LOAD_PORT: rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->hw_info.hw_mode); if (rc) break; /* Fall into */ case FW_MSG_CODE_DRV_LOAD_FUNCTION: rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, p_tunn, p_hwfn->hw_info.hw_mode, b_hw_start, int_mode, allow_npar_tx_switch); break; default: rc = -EINVAL; break; } if (rc) DP_NOTICE(p_hwfn, "init phase failed for loadcode 0x%x (rc %d)\n", load_code, rc); /* ACK mfw regardless of success or failure of initialization */ mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, DRV_MSG_CODE_LOAD_DONE, 0, &load_code, ¶m); if (rc) return rc; if (mfw_rc) { DP_NOTICE(p_hwfn, "Failed sending LOAD_DONE command\n"); return mfw_rc; } /* send DCBX attention request command */ DP_VERBOSE(p_hwfn, QED_MSG_DCB, "sending phony dcbx set command to trigger DCBx attention handling\n"); mfw_rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, DRV_MSG_CODE_SET_DCBX, 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, &load_code, ¶m); if (mfw_rc) { DP_NOTICE(p_hwfn, "Failed to send DCBX attention request\n"); return mfw_rc; } p_hwfn->hw_init_done = true; } return 0; } #define QED_HW_STOP_RETRY_LIMIT (10) static inline void qed_hw_timers_stop(struct qed_dev *cdev, struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { int i; /* close timers */ qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { if ((!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN)) && (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) break; /* Dependent on number of connection/tasks, possibly * 1ms sleep is required between polls */ usleep_range(1000, 2000); } if (i < QED_HW_STOP_RETRY_LIMIT) return; DP_NOTICE(p_hwfn, "Timers linear scans are not over [Connection %02x Tasks %02x]\n", (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); } void qed_hw_timers_stop_all(struct qed_dev *cdev) { int j; for_each_hwfn(cdev, j) { struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; qed_hw_timers_stop(cdev, p_hwfn, p_ptt); } } int qed_hw_stop(struct qed_dev *cdev) { int rc = 0, t_rc; int j; for_each_hwfn(cdev, j) { struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); if (IS_VF(cdev)) { qed_vf_pf_int_cleanup(p_hwfn); continue; } /* mark the hw as uninitialized... */ p_hwfn->hw_init_done = false; rc = qed_sp_pf_stop(p_hwfn); if (rc) DP_NOTICE(p_hwfn, "Failed to close PF against FW. Continue to stop HW to prevent illegal host access by the device\n"); qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); qed_hw_timers_stop(cdev, p_hwfn, p_ptt); /* Disable Attention Generation */ qed_int_igu_disable_int(p_hwfn, p_ptt); qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); /* Need to wait 1ms to guarantee SBs are cleared */ usleep_range(1000, 2000); } if (IS_PF(cdev)) { /* Disable DMAE in PXP - in CMT, this should only be done for * first hw-function, and only after all transactions have * stopped for all active hw-functions. */ t_rc = qed_change_pci_hwfn(&cdev->hwfns[0], cdev->hwfns[0].p_main_ptt, false); if (t_rc != 0) rc = t_rc; } return rc; } void qed_hw_stop_fastpath(struct qed_dev *cdev) { int j; for_each_hwfn(cdev, j) { struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; if (IS_VF(cdev)) { qed_vf_pf_int_cleanup(p_hwfn); continue; } DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); /* Need to wait 1ms to guarantee SBs are cleared */ usleep_range(1000, 2000); } } void qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) { if (IS_VF(p_hwfn->cdev)) return; /* Re-open incoming traffic */ qed_wr(p_hwfn, p_hwfn->p_main_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); } static int qed_reg_assert(struct qed_hwfn *hwfn, struct qed_ptt *ptt, u32 reg, bool expected) { u32 assert_val = qed_rd(hwfn, ptt, reg); if (assert_val != expected) { DP_NOTICE(hwfn, "Value at address 0x%x != 0x%08x\n", reg, expected); return -EINVAL; } return 0; } int qed_hw_reset(struct qed_dev *cdev) { int rc = 0; u32 unload_resp, unload_param; int i; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; if (IS_VF(cdev)) { rc = qed_vf_pf_reset(p_hwfn); if (rc) return rc; continue; } DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Resetting hw/fw\n"); /* Check for incorrect states */ qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt, QM_REG_USG_CNT_PF_TX, 0); qed_reg_assert(p_hwfn, p_hwfn->p_main_ptt, QM_REG_USG_CNT_PF_OTHER, 0); /* Disable PF in HW blocks */ qed_wr(p_hwfn, p_hwfn->p_main_ptt, DORQ_REG_PF_DB_ENABLE, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, QM_REG_PF_EN, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, TCFC_REG_STRONG_ENABLE_PF, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, CCFC_REG_STRONG_ENABLE_PF, 0); /* Send unload command to MCP */ rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, DRV_MSG_CODE_UNLOAD_REQ, DRV_MB_PARAM_UNLOAD_WOL_MCP, &unload_resp, &unload_param); if (rc) { DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_REQ failed\n"); unload_resp = FW_MSG_CODE_DRV_UNLOAD_ENGINE; } rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, DRV_MSG_CODE_UNLOAD_DONE, 0, &unload_resp, &unload_param); if (rc) { DP_NOTICE(p_hwfn, "qed_hw_reset: UNLOAD_DONE failed\n"); return rc; } } return rc; } /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) { qed_ptt_pool_free(p_hwfn); kfree(p_hwfn->hw_info.p_igu_info); } /* Setup bar access */ static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) { /* clear indirect access */ qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0, 0); /* Clean Previous errors if such exist */ qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, 1 << p_hwfn->abs_pf_id); /* enable internal target-read */ qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); } static void get_function_id(struct qed_hwfn *p_hwfn) { /* ME Register */ p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR); p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, PXP_CONCRETE_FID_PFID); p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, PXP_CONCRETE_FID_PORT); } static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) { u32 *feat_num = p_hwfn->hw_info.feat_num; int num_features = 1; feat_num[QED_PF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_SB) / num_features, RESC_NUM(p_hwfn, QED_L2_QUEUE)); DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "#PF_L2_QUEUES=%d #SBS=%d num_features=%d\n", feat_num[QED_PF_L2_QUE], RESC_NUM(p_hwfn, QED_SB), num_features); } static int qed_hw_get_resc(struct qed_hwfn *p_hwfn) { u8 enabled_func_idx = p_hwfn->enabled_func_idx; u32 *resc_start = p_hwfn->hw_info.resc_start; u8 num_funcs = p_hwfn->num_funcs_on_engine; u32 *resc_num = p_hwfn->hw_info.resc_num; struct qed_sb_cnt_info sb_cnt_info; int i, max_vf_vlan_filters; memset(&sb_cnt_info, 0, sizeof(sb_cnt_info)); #ifdef CONFIG_QED_SRIOV max_vf_vlan_filters = QED_ETH_MAX_VF_NUM_VLAN_FILTERS; #else max_vf_vlan_filters = 0; #endif qed_int_get_num_sbs(p_hwfn, &sb_cnt_info); resc_num[QED_SB] = min_t(u32, (MAX_SB_PER_PATH_BB / num_funcs), sb_cnt_info.sb_cnt); resc_num[QED_L2_QUEUE] = MAX_NUM_L2_QUEUES_BB / num_funcs; resc_num[QED_VPORT] = MAX_NUM_VPORTS_BB / num_funcs; resc_num[QED_RSS_ENG] = ETH_RSS_ENGINE_NUM_BB / num_funcs; resc_num[QED_PQ] = MAX_QM_TX_QUEUES_BB / num_funcs; resc_num[QED_RL] = min_t(u32, 64, resc_num[QED_VPORT]); resc_num[QED_MAC] = ETH_NUM_MAC_FILTERS / num_funcs; resc_num[QED_VLAN] = (ETH_NUM_VLAN_FILTERS - 1 /*For vlan0*/) / num_funcs; resc_num[QED_ILT] = PXP_NUM_ILT_RECORDS_BB / num_funcs; for (i = 0; i < QED_MAX_RESC; i++) resc_start[i] = resc_num[i] * enabled_func_idx; /* Sanity for ILT */ if (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB) { DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", RESC_START(p_hwfn, QED_ILT), RESC_END(p_hwfn, QED_ILT) - 1); return -EINVAL; } qed_hw_set_feat(p_hwfn); DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "The numbers for each resource are:\n" "SB = %d start = %d\n" "L2_QUEUE = %d start = %d\n" "VPORT = %d start = %d\n" "PQ = %d start = %d\n" "RL = %d start = %d\n" "MAC = %d start = %d\n" "VLAN = %d start = %d\n" "ILT = %d start = %d\n", p_hwfn->hw_info.resc_num[QED_SB], p_hwfn->hw_info.resc_start[QED_SB], p_hwfn->hw_info.resc_num[QED_L2_QUEUE], p_hwfn->hw_info.resc_start[QED_L2_QUEUE], p_hwfn->hw_info.resc_num[QED_VPORT], p_hwfn->hw_info.resc_start[QED_VPORT], p_hwfn->hw_info.resc_num[QED_PQ], p_hwfn->hw_info.resc_start[QED_PQ], p_hwfn->hw_info.resc_num[QED_RL], p_hwfn->hw_info.resc_start[QED_RL], p_hwfn->hw_info.resc_num[QED_MAC], p_hwfn->hw_info.resc_start[QED_MAC], p_hwfn->hw_info.resc_num[QED_VLAN], p_hwfn->hw_info.resc_start[QED_VLAN], p_hwfn->hw_info.resc_num[QED_ILT], p_hwfn->hw_info.resc_start[QED_ILT]); return 0; } static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities; struct qed_mcp_link_params *link; /* Read global nvm_cfg address */ nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); /* Verify MCP has initialized it */ if (!nvm_cfg_addr) { DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); return -EINVAL; } /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, glob) + offsetof(struct nvm_cfg1_glob, core_cfg); core_cfg = qed_rd(p_hwfn, p_ptt, addr); switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G; break; case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G; break; case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G; break; case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F; break; case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E; break; case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G; break; case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G; break; case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G; break; case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G; break; default: DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); break; } /* Read default link configuration */ link = &p_hwfn->mcp_info->link_input; port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + offsetof(struct nvm_cfg1_port, speed_cap_mask)); link->speed.advertised_speeds = link_temp & NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; p_hwfn->mcp_info->link_capabilities.speed_capabilities = link->speed.advertised_speeds; link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + offsetof(struct nvm_cfg1_port, link_settings)); switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: link->speed.autoneg = true; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: link->speed.forced_speed = 1000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: link->speed.forced_speed = 10000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: link->speed.forced_speed = 25000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: link->speed.forced_speed = 40000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: link->speed.forced_speed = 50000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: link->speed.forced_speed = 100000; break; default: DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); } link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK; link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET; link->pause.autoneg = !!(link_temp & NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); link->pause.forced_rx = !!(link_temp & NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); link->pause.forced_tx = !!(link_temp & NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); link->loopback_mode = 0; DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x\n", link->speed.forced_speed, link->speed.advertised_speeds, link->speed.autoneg, link->pause.autoneg); /* Read Multi-function information from shmem */ addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, glob) + offsetof(struct nvm_cfg1_glob, generic_cont0); generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> NVM_CFG1_GLOB_MF_MODE_OFFSET; switch (mf_mode) { case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: p_hwfn->cdev->mf_mode = QED_MF_OVLAN; break; case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: p_hwfn->cdev->mf_mode = QED_MF_NPAR; break; case NVM_CFG1_GLOB_MF_MODE_DEFAULT: p_hwfn->cdev->mf_mode = QED_MF_DEFAULT; break; } DP_INFO(p_hwfn, "Multi function mode is %08x\n", p_hwfn->cdev->mf_mode); /* Read Multi-function information from shmem */ addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, glob) + offsetof(struct nvm_cfg1_glob, device_capabilities); device_capabilities = qed_rd(p_hwfn, p_ptt, addr); if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) __set_bit(QED_DEV_CAP_ETH, &p_hwfn->hw_info.device_capabilities); if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) __set_bit(QED_DEV_CAP_ISCSI, &p_hwfn->hw_info.device_capabilities); if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) __set_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities); return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); } static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; num_funcs = MAX_NUM_PFS_BB; /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values * in the other bits are selected. * Bits 1-15 are for functions 1-15, respectively, and their value is * '0' only for enabled functions (function 0 always exists and * enabled). * In case of CMT, only the "even" functions are enabled, and thus the * number of functions for both hwfns is learnt from the same bits. */ reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); if (reg_function_hide & 0x1) { if (QED_PATH_ID(p_hwfn) && p_hwfn->cdev->num_hwfns == 1) { num_funcs = 0; eng_mask = 0xaaaa; } else { num_funcs = 1; eng_mask = 0x5554; } /* Get the number of the enabled functions on the engine */ tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; while (tmp) { if (tmp & 0x1) num_funcs++; tmp >>= 0x1; } /* Get the PF index within the enabled functions */ low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; tmp = reg_function_hide & eng_mask & low_pfs_mask; while (tmp) { if (tmp & 0x1) enabled_func_idx--; tmp >>= 0x1; } } p_hwfn->num_funcs_on_engine = num_funcs; p_hwfn->enabled_func_idx = enabled_func_idx; DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "PF [rel_id %d, abs_id %d] within the %d enabled functions on the engine\n", p_hwfn->rel_pf_id, p_hwfn->abs_pf_id, p_hwfn->num_funcs_on_engine); } static int qed_get_hw_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, enum qed_pci_personality personality) { u32 port_mode; int rc; /* Since all information is common, only first hwfns should do this */ if (IS_LEAD_HWFN(p_hwfn)) { rc = qed_iov_hw_info(p_hwfn); if (rc) return rc; } /* Read the port mode */ port_mode = qed_rd(p_hwfn, p_ptt, CNIG_REG_NW_PORT_MODE_BB_B0); if (port_mode < 3) { p_hwfn->cdev->num_ports_in_engines = 1; } else if (port_mode <= 5) { p_hwfn->cdev->num_ports_in_engines = 2; } else { DP_NOTICE(p_hwfn, "PORT MODE: %d not supported\n", p_hwfn->cdev->num_ports_in_engines); /* Default num_ports_in_engines to something */ p_hwfn->cdev->num_ports_in_engines = 1; } qed_hw_get_nvm_info(p_hwfn, p_ptt); rc = qed_int_igu_read_cam(p_hwfn, p_ptt); if (rc) return rc; if (qed_mcp_is_init(p_hwfn)) ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, p_hwfn->mcp_info->func_info.mac); else eth_random_addr(p_hwfn->hw_info.hw_mac_addr); if (qed_mcp_is_init(p_hwfn)) { if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan; qed_mcp_cmd_port_init(p_hwfn, p_ptt); } if (qed_mcp_is_init(p_hwfn)) { enum qed_pci_personality protocol; protocol = p_hwfn->mcp_info->func_info.protocol; p_hwfn->hw_info.personality = protocol; } qed_get_num_funcs(p_hwfn, p_ptt); return qed_hw_get_resc(p_hwfn); } static int qed_get_dev_info(struct qed_dev *cdev) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); u32 tmp; /* Read Vendor Id / Device Id */ pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); cdev->chip_num = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt, MISCS_REG_CHIP_NUM); cdev->chip_rev = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt, MISCS_REG_CHIP_REV); MASK_FIELD(CHIP_REV, cdev->chip_rev); cdev->type = QED_DEV_TYPE_BB; /* Learn number of HW-functions */ tmp = qed_rd(p_hwfn, p_hwfn->p_main_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); if (tmp & (1 << p_hwfn->rel_pf_id)) { DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); cdev->num_hwfns = 2; } else { cdev->num_hwfns = 1; } cdev->chip_bond_id = qed_rd(p_hwfn, p_hwfn->p_main_ptt, MISCS_REG_CHIP_TEST_REG) >> 4; MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); cdev->chip_metal = (u16)qed_rd(p_hwfn, p_hwfn->p_main_ptt, MISCS_REG_CHIP_METAL); MASK_FIELD(CHIP_METAL, cdev->chip_metal); DP_INFO(cdev->hwfns, "Chip details - Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", cdev->chip_num, cdev->chip_rev, cdev->chip_bond_id, cdev->chip_metal); if (QED_IS_BB(cdev) && CHIP_REV_IS_A0(cdev)) { DP_NOTICE(cdev->hwfns, "The chip type/rev (BB A0) is not supported!\n"); return -EINVAL; } return 0; } static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, void __iomem *p_regview, void __iomem *p_doorbells, enum qed_pci_personality personality) { int rc = 0; /* Split PCI bars evenly between hwfns */ p_hwfn->regview = p_regview; p_hwfn->doorbells = p_doorbells; if (IS_VF(p_hwfn->cdev)) return qed_vf_hw_prepare(p_hwfn); /* Validate that chip access is feasible */ if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n"); return -EINVAL; } get_function_id(p_hwfn); /* Allocate PTT pool */ rc = qed_ptt_pool_alloc(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "Failed to prepare hwfn's hw\n"); goto err0; } /* Allocate the main PTT */ p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); /* First hwfn learns basic information, e.g., number of hwfns */ if (!p_hwfn->my_id) { rc = qed_get_dev_info(p_hwfn->cdev); if (rc != 0) goto err1; } qed_hw_hwfn_prepare(p_hwfn); /* Initialize MCP structure */ rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); if (rc) { DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); goto err1; } /* Read the device configuration information from the HW and SHMEM */ rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); if (rc) { DP_NOTICE(p_hwfn, "Failed to get HW information\n"); goto err2; } /* Allocate the init RT array and initialize the init-ops engine */ rc = qed_init_alloc(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "Failed to allocate the init array\n"); goto err2; } return rc; err2: if (IS_LEAD_HWFN(p_hwfn)) qed_iov_free_hw_info(p_hwfn->cdev); qed_mcp_free(p_hwfn); err1: qed_hw_hwfn_free(p_hwfn); err0: return rc; } int qed_hw_prepare(struct qed_dev *cdev, int personality) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); int rc; /* Store the precompiled init data ptrs */ if (IS_PF(cdev)) qed_init_iro_array(cdev); /* Initialize the first hwfn - will learn number of hwfns */ rc = qed_hw_prepare_single(p_hwfn, cdev->regview, cdev->doorbells, personality); if (rc) return rc; personality = p_hwfn->hw_info.personality; /* Initialize the rest of the hwfns */ if (cdev->num_hwfns > 1) { void __iomem *p_regview, *p_doorbell; u8 __iomem *addr; /* adjust bar offset for second engine */ addr = cdev->regview + qed_hw_bar_size(p_hwfn, BAR_ID_0) / 2; p_regview = addr; /* adjust doorbell bar offset for second engine */ addr = cdev->doorbells + qed_hw_bar_size(p_hwfn, BAR_ID_1) / 2; p_doorbell = addr; /* prepare second hw function */ rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, p_doorbell, personality); /* in case of error, need to free the previously * initiliazed hwfn 0. */ if (rc) { if (IS_PF(cdev)) { qed_init_free(p_hwfn); qed_mcp_free(p_hwfn); qed_hw_hwfn_free(p_hwfn); } } } return rc; } void qed_hw_remove(struct qed_dev *cdev) { int i; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; if (IS_VF(cdev)) { qed_vf_pf_release(p_hwfn); continue; } qed_init_free(p_hwfn); qed_hw_hwfn_free(p_hwfn); qed_mcp_free(p_hwfn); } qed_iov_free_hw_info(cdev); } static void qed_chain_free_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) { void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL; dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0; struct qed_chain_next *p_next; u32 size, i; if (!p_virt) return; size = p_chain->elem_size * p_chain->usable_per_page; for (i = 0; i < p_chain->page_cnt; i++) { if (!p_virt) break; p_next = (struct qed_chain_next *)((u8 *)p_virt + size); p_virt_next = p_next->next_virt; p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys); dma_free_coherent(&cdev->pdev->dev, QED_CHAIN_PAGE_SIZE, p_virt, p_phys); p_virt = p_virt_next; p_phys = p_phys_next; } } static void qed_chain_free_single(struct qed_dev *cdev, struct qed_chain *p_chain) { if (!p_chain->p_virt_addr) return; dma_free_coherent(&cdev->pdev->dev, QED_CHAIN_PAGE_SIZE, p_chain->p_virt_addr, p_chain->p_phys_addr); } static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) { void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl; u32 page_cnt = p_chain->page_cnt, i, pbl_size; u8 *p_pbl_virt = p_chain->pbl.p_virt_table; if (!pp_virt_addr_tbl) return; if (!p_chain->pbl.p_virt_table) goto out; for (i = 0; i < page_cnt; i++) { if (!pp_virt_addr_tbl[i]) break; dma_free_coherent(&cdev->pdev->dev, QED_CHAIN_PAGE_SIZE, pp_virt_addr_tbl[i], *(dma_addr_t *)p_pbl_virt); p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; } pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; dma_free_coherent(&cdev->pdev->dev, pbl_size, p_chain->pbl.p_virt_table, p_chain->pbl.p_phys_table); out: vfree(p_chain->pbl.pp_virt_addr_tbl); } void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain) { switch (p_chain->mode) { case QED_CHAIN_MODE_NEXT_PTR: qed_chain_free_next_ptr(cdev, p_chain); break; case QED_CHAIN_MODE_SINGLE: qed_chain_free_single(cdev, p_chain); break; case QED_CHAIN_MODE_PBL: qed_chain_free_pbl(cdev, p_chain); break; } } static int qed_chain_alloc_sanity_check(struct qed_dev *cdev, enum qed_chain_cnt_type cnt_type, size_t elem_size, u32 page_cnt) { u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt; /* The actual chain size can be larger than the maximal possible value * after rounding up the requested elements number to pages, and after * taking into acount the unusuable elements (next-ptr elements). * The size of a "u16" chain can be (U16_MAX + 1) since the chain * size/capacity fields are of a u32 type. */ if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 && chain_size > 0x10000) || (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > 0x100000000ULL)) { DP_NOTICE(cdev, "The actual chain size (0x%llx) is larger than the maximal possible value\n", chain_size); return -EINVAL; } return 0; } static int qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain) { void *p_virt = NULL, *p_virt_prev = NULL; dma_addr_t p_phys = 0; u32 i; for (i = 0; i < p_chain->page_cnt; i++) { p_virt = dma_alloc_coherent(&cdev->pdev->dev, QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); if (!p_virt) { DP_NOTICE(cdev, "Failed to allocate chain memory\n"); return -ENOMEM; } if (i == 0) { qed_chain_init_mem(p_chain, p_virt, p_phys); qed_chain_reset(p_chain); } else { qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, p_virt, p_phys); } p_virt_prev = p_virt; } /* Last page's next element should point to the beginning of the * chain. */ qed_chain_init_next_ptr_elem(p_chain, p_virt_prev, p_chain->p_virt_addr, p_chain->p_phys_addr); return 0; } static int qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain) { dma_addr_t p_phys = 0; void *p_virt = NULL; p_virt = dma_alloc_coherent(&cdev->pdev->dev, QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); if (!p_virt) { DP_NOTICE(cdev, "Failed to allocate chain memory\n"); return -ENOMEM; } qed_chain_init_mem(p_chain, p_virt, p_phys); qed_chain_reset(p_chain); return 0; } static int qed_chain_alloc_pbl(struct qed_dev *cdev, struct qed_chain *p_chain) { u32 page_cnt = p_chain->page_cnt, size, i; dma_addr_t p_phys = 0, p_pbl_phys = 0; void **pp_virt_addr_tbl = NULL; u8 *p_pbl_virt = NULL; void *p_virt = NULL; size = page_cnt * sizeof(*pp_virt_addr_tbl); pp_virt_addr_tbl = vmalloc(size); if (!pp_virt_addr_tbl) { DP_NOTICE(cdev, "Failed to allocate memory for the chain virtual addresses table\n"); return -ENOMEM; } memset(pp_virt_addr_tbl, 0, size); /* The allocation of the PBL table is done with its full size, since it * is expected to be successive. * qed_chain_init_pbl_mem() is called even in a case of an allocation * failure, since pp_virt_addr_tbl was previously allocated, and it * should be saved to allow its freeing during the error flow. */ size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE; p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev, size, &p_pbl_phys, GFP_KERNEL); qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, pp_virt_addr_tbl); if (!p_pbl_virt) { DP_NOTICE(cdev, "Failed to allocate chain pbl memory\n"); return -ENOMEM; } for (i = 0; i < page_cnt; i++) { p_virt = dma_alloc_coherent(&cdev->pdev->dev, QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL); if (!p_virt) { DP_NOTICE(cdev, "Failed to allocate chain memory\n"); return -ENOMEM; } if (i == 0) { qed_chain_init_mem(p_chain, p_virt, p_phys); qed_chain_reset(p_chain); } /* Fill the PBL table with the physical address of the page */ *(dma_addr_t *)p_pbl_virt = p_phys; /* Keep the virtual address of the page */ p_chain->pbl.pp_virt_addr_tbl[i] = p_virt; p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE; } return 0; } int qed_chain_alloc(struct qed_dev *cdev, enum qed_chain_use_mode intended_use, enum qed_chain_mode mode, enum qed_chain_cnt_type cnt_type, u32 num_elems, size_t elem_size, struct qed_chain *p_chain) { u32 page_cnt; int rc = 0; if (mode == QED_CHAIN_MODE_SINGLE) page_cnt = 1; else page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode); rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt); if (rc) { DP_NOTICE(cdev, "Cannot allocate a chain with the given arguments:\n" "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n", intended_use, mode, cnt_type, num_elems, elem_size); return rc; } qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use, mode, cnt_type); switch (mode) { case QED_CHAIN_MODE_NEXT_PTR: rc = qed_chain_alloc_next_ptr(cdev, p_chain); break; case QED_CHAIN_MODE_SINGLE: rc = qed_chain_alloc_single(cdev, p_chain); break; case QED_CHAIN_MODE_PBL: rc = qed_chain_alloc_pbl(cdev, p_chain); break; } if (rc) goto nomem; return 0; nomem: qed_chain_free(cdev, p_chain); return rc; } int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) { if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { u16 min, max; min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE); max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); DP_NOTICE(p_hwfn, "l2_queue id [%d] is not valid, available indices [%d - %d]\n", src_id, min, max); return -EINVAL; } *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; return 0; } int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) { if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { u8 min, max; min = (u8)RESC_START(p_hwfn, QED_VPORT); max = min + RESC_NUM(p_hwfn, QED_VPORT); DP_NOTICE(p_hwfn, "vport id [%d] is not valid, available indices [%d - %d]\n", src_id, min, max); return -EINVAL; } *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; return 0; } int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) { if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { u8 min, max; min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); DP_NOTICE(p_hwfn, "rss_eng id [%d] is not valid, available indices [%d - %d]\n", src_id, min, max); return -EINVAL; } *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; return 0; } static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 hw_addr, void *p_eth_qzone, size_t eth_qzone_size, u8 timeset) { struct coalescing_timeset *p_coal_timeset; if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); return -EINVAL; } p_coal_timeset = p_eth_qzone; memset(p_coal_timeset, 0, eth_qzone_size); SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); return 0; } int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 coalesce, u8 qid, u16 sb_id) { struct ustorm_eth_queue_zone eth_qzone; u8 timeset, timer_res; u16 fw_qid = 0; u32 address; int rc; /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ if (coalesce <= 0x7F) { timer_res = 0; } else if (coalesce <= 0xFF) { timer_res = 1; } else if (coalesce <= 0x1FF) { timer_res = 2; } else { DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); return -EINVAL; } timeset = (u8)(coalesce >> timer_res); rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid); if (rc) return rc; rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, false); if (rc) goto out; address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid); rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, sizeof(struct ustorm_eth_queue_zone), timeset); if (rc) goto out; p_hwfn->cdev->rx_coalesce_usecs = coalesce; out: return rc; } int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 coalesce, u8 qid, u16 sb_id) { struct xstorm_eth_queue_zone eth_qzone; u8 timeset, timer_res; u16 fw_qid = 0; u32 address; int rc; /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ if (coalesce <= 0x7F) { timer_res = 0; } else if (coalesce <= 0xFF) { timer_res = 1; } else if (coalesce <= 0x1FF) { timer_res = 2; } else { DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); return -EINVAL; } timeset = (u8)(coalesce >> timer_res); rc = qed_fw_l2_queue(p_hwfn, (u16)qid, &fw_qid); if (rc) return rc; rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, sb_id, true); if (rc) goto out; address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_OFFSET(fw_qid); rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, sizeof(struct xstorm_eth_queue_zone), timeset); if (rc) goto out; p_hwfn->cdev->tx_coalesce_usecs = coalesce; out: return rc; } /* Calculate final WFQ values for all vports and configure them. * After this configuration each vport will have * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT) */ static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 min_pf_rate) { struct init_qm_vport_params *vport_params; int i; vport_params = p_hwfn->qm_info.qm_vport_params; for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; vport_params[i].vport_wfq = (wfq_speed * QED_WFQ_UNIT) / min_pf_rate; qed_init_vport_wfq(p_hwfn, p_ptt, vport_params[i].first_tx_pq_id, vport_params[i].vport_wfq); } } static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, u32 min_pf_rate) { int i; for (i = 0; i < p_hwfn->qm_info.num_vports; i++) p_hwfn->qm_info.qm_vport_params[i].vport_wfq = 1; } static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 min_pf_rate) { struct init_qm_vport_params *vport_params; int i; vport_params = p_hwfn->qm_info.qm_vport_params; for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { qed_init_wfq_default_param(p_hwfn, min_pf_rate); qed_init_vport_wfq(p_hwfn, p_ptt, vport_params[i].first_tx_pq_id, vport_params[i].vport_wfq); } } /* This function performs several validations for WFQ * configuration and required min rate for a given vport * 1. req_rate must be greater than one percent of min_pf_rate. * 2. req_rate should not cause other vports [not configured for WFQ explicitly] * rates to get less than one percent of min_pf_rate. * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. */ static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, u16 vport_id, u32 req_rate, u32 min_pf_rate) { u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; int non_requested_count = 0, req_count = 0, i, num_vports; num_vports = p_hwfn->qm_info.num_vports; /* Accounting for the vports which are configured for WFQ explicitly */ for (i = 0; i < num_vports; i++) { u32 tmp_speed; if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) { req_count++; tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; total_req_min_rate += tmp_speed; } } /* Include current vport data as well */ req_count++; total_req_min_rate += req_rate; non_requested_count = num_vports - req_count; if (req_rate < min_pf_rate / QED_WFQ_UNIT) { DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", vport_id, req_rate, min_pf_rate); return -EINVAL; } if (num_vports > QED_WFQ_UNIT) { DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Number of vports is greater than %d\n", QED_WFQ_UNIT); return -EINVAL; } if (total_req_min_rate > min_pf_rate) { DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", total_req_min_rate, min_pf_rate); return -EINVAL; } total_left_rate = min_pf_rate - total_req_min_rate; left_rate_per_vp = total_left_rate / non_requested_count; if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) { DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", left_rate_per_vp, min_pf_rate); return -EINVAL; } p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; p_hwfn->qm_info.wfq_data[vport_id].configured = true; for (i = 0; i < num_vports; i++) { if (p_hwfn->qm_info.wfq_data[i].configured) continue; p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; } return 0; } static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 vp_id, u32 rate) { struct qed_mcp_link_state *p_link; int rc = 0; p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; if (!p_link->min_pf_rate) { p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; p_hwfn->qm_info.wfq_data[vp_id].configured = true; return rc; } rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); if (rc == 0) qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, p_link->min_pf_rate); else DP_NOTICE(p_hwfn, "Validation failed while configuring min rate\n"); return rc; } static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 min_pf_rate) { bool use_wfq = false; int rc = 0; u16 i; /* Validate all pre configured vports for wfq */ for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { u32 rate; if (!p_hwfn->qm_info.wfq_data[i].configured) continue; rate = p_hwfn->qm_info.wfq_data[i].min_speed; use_wfq = true; rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); if (rc) { DP_NOTICE(p_hwfn, "WFQ validation failed while configuring min rate\n"); break; } } if (!rc && use_wfq) qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); else qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); return rc; } /* Main API for qed clients to configure vport min rate. * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] * rate - Speed in Mbps needs to be assigned to a given vport. */ int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) { int i, rc = -EINVAL; /* Currently not supported; Might change in future */ if (cdev->num_hwfns > 1) { DP_NOTICE(cdev, "WFQ configuration is not supported for this device\n"); return rc; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_ptt *p_ptt; p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EBUSY; rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); if (!rc) { qed_ptt_release(p_hwfn, p_ptt); return rc; } qed_ptt_release(p_hwfn, p_ptt); } return rc; } /* API to configure WFQ from mcp link change */ void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, u32 min_pf_rate) { int i; if (cdev->num_hwfns > 1) { DP_VERBOSE(cdev, NETIF_MSG_LINK, "WFQ configuration is not supported for this device\n"); return; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; __qed_configure_vp_wfq_on_link_change(p_hwfn, p_hwfn->p_dpc_ptt, min_pf_rate); } } int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_mcp_link_state *p_link, u8 max_bw) { int rc = 0; p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; if (!p_link->line_speed && (max_bw != 100)) return rc; p_link->speed = (p_link->line_speed * max_bw) / 100; p_hwfn->qm_info.pf_rl = p_link->speed; /* Since the limiter also affects Tx-switched traffic, we don't want it * to limit such traffic in case there's no actual limit. * In that case, set limit to imaginary high boundary. */ if (max_bw == 100) p_hwfn->qm_info.pf_rl = 100000; rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, p_hwfn->qm_info.pf_rl); DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Configured MAX bandwidth to be %08x Mb/sec\n", p_link->speed); return rc; } /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) { int i, rc = -EINVAL; if (max_bw < 1 || max_bw > 100) { DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); return rc; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); struct qed_mcp_link_state *p_link; struct qed_ptt *p_ptt; p_link = &p_lead->mcp_info->link_output; p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EBUSY; rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw); qed_ptt_release(p_hwfn, p_ptt); if (rc) break; } return rc; } int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_mcp_link_state *p_link, u8 min_bw) { int rc = 0; p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; p_hwfn->qm_info.pf_wfq = min_bw; if (!p_link->line_speed) return rc; p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Configured MIN bandwidth to be %d Mb/sec\n", p_link->min_pf_rate); return rc; } /* Main API to configure PF min bandwidth where bw range is [1-100] */ int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) { int i, rc = -EINVAL; if (min_bw < 1 || min_bw > 100) { DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); return rc; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); struct qed_mcp_link_state *p_link; struct qed_ptt *p_ptt; p_link = &p_lead->mcp_info->link_output; p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EBUSY; rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw); if (rc) { qed_ptt_release(p_hwfn, p_ptt); return rc; } if (p_link->min_pf_rate) { u32 min_rate = p_link->min_pf_rate; rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, min_rate); } qed_ptt_release(p_hwfn, p_ptt); } return rc; } void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_mcp_link_state *p_link; p_link = &p_hwfn->mcp_info->link_output; if (p_link->min_pf_rate) qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, p_link->min_pf_rate); memset(p_hwfn->qm_info.wfq_data, 0, sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); }