/* * Copyright (C) 2015-2017 Netronome Systems, Inc. * * This software is dual licensed under the GNU General License Version 2, * June 1991 as shown in the file COPYING in the top-level directory of this * source tree or the BSD 2-Clause License provided below. You have the * option to license this software under the complete terms of either license. * * The BSD 2-Clause License: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* * nfp_net_main.c * Netronome network device driver: Main entry point * Authors: Jakub Kicinski * Alejandro Lucero * Jason McMullan * Rolf Neugebauer */ #include #include #include #include #include #include #include #include "nfpcore/nfp.h" #include "nfpcore/nfp_cpp.h" #include "nfpcore/nfp_nffw.h" #include "nfpcore/nfp_nsp_eth.h" #include "nfpcore/nfp6000_pcie.h" #include "nfp_net_ctrl.h" #include "nfp_net.h" #include "nfp_main.h" #define NFP_PF_CSR_SLICE_SIZE (32 * 1024) static int nfp_is_ready(struct nfp_cpp *cpp) { const char *cp; long state; int err; cp = nfp_hwinfo_lookup(cpp, "board.state"); if (!cp) return 0; err = kstrtol(cp, 0, &state); if (err < 0) return 0; return state == 15; } /** * nfp_net_map_area() - Help function to map an area * @cpp: NFP CPP handler * @name: Name for the area * @target: CPP target * @addr: CPP address * @size: Size of the area * @area: Area handle (returned). * * This function is primarily to simplify the code in the main probe * function. To undo the effect of this functions call * @nfp_cpp_area_release_free(*area); * * Return: Pointer to memory mapped area or ERR_PTR */ static u8 __iomem *nfp_net_map_area(struct nfp_cpp *cpp, const char *name, int isl, int target, unsigned long long addr, unsigned long size, struct nfp_cpp_area **area) { u8 __iomem *res; u32 dest; int err; dest = NFP_CPP_ISLAND_ID(target, NFP_CPP_ACTION_RW, 0, isl); *area = nfp_cpp_area_alloc_with_name(cpp, dest, name, addr, size); if (!*area) { err = -EIO; goto err_area; } err = nfp_cpp_area_acquire(*area); if (err < 0) goto err_acquire; res = nfp_cpp_area_iomem(*area); if (!res) { err = -EIO; goto err_map; } return res; err_map: nfp_cpp_area_release(*area); err_acquire: nfp_cpp_area_free(*area); err_area: return (u8 __iomem *)ERR_PTR(err); } static void nfp_net_get_mac_addr_hwinfo(struct nfp_net_dp *dp, struct nfp_cpp *cpp, unsigned int id) { u8 mac_addr[ETH_ALEN]; const char *mac_str; char name[32]; snprintf(name, sizeof(name), "eth%d.mac", id); mac_str = nfp_hwinfo_lookup(cpp, name); if (!mac_str) { dev_warn(dp->dev, "Can't lookup MAC address. Generate\n"); eth_hw_addr_random(dp->netdev); return; } if (sscanf(mac_str, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", &mac_addr[0], &mac_addr[1], &mac_addr[2], &mac_addr[3], &mac_addr[4], &mac_addr[5]) != 6) { dev_warn(dp->dev, "Can't parse MAC address (%s). Generate.\n", mac_str); eth_hw_addr_random(dp->netdev); return; } ether_addr_copy(dp->netdev->dev_addr, mac_addr); ether_addr_copy(dp->netdev->perm_addr, mac_addr); } /** * nfp_net_get_mac_addr() - Get the MAC address. * @nn: NFP Network structure * @pf: NFP PF device structure * @id: NFP port id * * First try to get the MAC address from NSP ETH table. If that * fails try HWInfo. As a last resort generate a random address. */ static void nfp_net_get_mac_addr(struct nfp_net *nn, struct nfp_pf *pf, unsigned int id) { int i; for (i = 0; pf->eth_tbl && i < pf->eth_tbl->count; i++) if (pf->eth_tbl->ports[i].eth_index == id) { const u8 *mac_addr = pf->eth_tbl->ports[i].mac_addr; nn->eth_port = &pf->eth_tbl->ports[i]; ether_addr_copy(nn->dp.netdev->dev_addr, mac_addr); ether_addr_copy(nn->dp.netdev->perm_addr, mac_addr); return; } nfp_net_get_mac_addr_hwinfo(&nn->dp, pf->cpp, id); } static unsigned int nfp_net_pf_get_num_ports(struct nfp_pf *pf) { char name[256]; u16 interface; int pcie_pf; int err = 0; u64 val; interface = nfp_cpp_interface(pf->cpp); pcie_pf = NFP_CPP_INTERFACE_UNIT_of(interface); snprintf(name, sizeof(name), "nfd_cfg_pf%d_num_ports", pcie_pf); val = nfp_rtsym_read_le(pf->cpp, name, &err); /* Default to one port */ if (err) { if (err != -ENOENT) nfp_err(pf->cpp, "Unable to read adapter port count\n"); val = 1; } return val; } static unsigned int nfp_net_pf_total_qcs(struct nfp_pf *pf, void __iomem *ctrl_bar, unsigned int stride, u32 start_off, u32 num_off) { unsigned int i, min_qc, max_qc; min_qc = readl(ctrl_bar + start_off); max_qc = min_qc; for (i = 0; i < pf->num_ports; i++) { /* To make our lives simpler only accept configuration where * queues are allocated to PFs in order (queues of PFn all have * indexes lower than PFn+1). */ if (max_qc > readl(ctrl_bar + start_off)) return 0; max_qc = readl(ctrl_bar + start_off); max_qc += readl(ctrl_bar + num_off) * stride; ctrl_bar += NFP_PF_CSR_SLICE_SIZE; } return max_qc - min_qc; } static u8 __iomem *nfp_net_pf_map_ctrl_bar(struct nfp_pf *pf) { const struct nfp_rtsym *ctrl_sym; u8 __iomem *ctrl_bar; char pf_symbol[256]; u16 interface; int pcie_pf; interface = nfp_cpp_interface(pf->cpp); pcie_pf = NFP_CPP_INTERFACE_UNIT_of(interface); snprintf(pf_symbol, sizeof(pf_symbol), "_pf%d_net_bar0", pcie_pf); ctrl_sym = nfp_rtsym_lookup(pf->cpp, pf_symbol); if (!ctrl_sym) { dev_err(&pf->pdev->dev, "Failed to find PF BAR0 symbol %s\n", pf_symbol); return NULL; } if (ctrl_sym->size < pf->num_ports * NFP_PF_CSR_SLICE_SIZE) { dev_err(&pf->pdev->dev, "PF BAR0 too small to contain %d ports\n", pf->num_ports); return NULL; } ctrl_bar = nfp_net_map_area(pf->cpp, "net.ctrl", ctrl_sym->domain, ctrl_sym->target, ctrl_sym->addr, ctrl_sym->size, &pf->ctrl_area); if (IS_ERR(ctrl_bar)) { dev_err(&pf->pdev->dev, "Failed to map PF BAR0: %ld\n", PTR_ERR(ctrl_bar)); return NULL; } return ctrl_bar; } static void nfp_net_pf_free_netdevs(struct nfp_pf *pf) { struct nfp_net *nn; while (!list_empty(&pf->ports)) { nn = list_first_entry(&pf->ports, struct nfp_net, port_list); list_del(&nn->port_list); nfp_net_netdev_free(nn); } } static struct nfp_net * nfp_net_pf_alloc_port_netdev(struct nfp_pf *pf, void __iomem *ctrl_bar, void __iomem *tx_bar, void __iomem *rx_bar, int stride, struct nfp_net_fw_version *fw_ver) { u32 n_tx_rings, n_rx_rings; struct nfp_net *nn; n_tx_rings = readl(ctrl_bar + NFP_NET_CFG_MAX_TXRINGS); n_rx_rings = readl(ctrl_bar + NFP_NET_CFG_MAX_RXRINGS); /* Allocate and initialise the netdev */ nn = nfp_net_netdev_alloc(pf->pdev, n_tx_rings, n_rx_rings); if (IS_ERR(nn)) return nn; nn->cpp = pf->cpp; nn->fw_ver = *fw_ver; nn->dp.ctrl_bar = ctrl_bar; nn->tx_bar = tx_bar; nn->rx_bar = rx_bar; nn->dp.is_vf = 0; nn->stride_rx = stride; nn->stride_tx = stride; return nn; } static int nfp_net_pf_init_port_netdev(struct nfp_pf *pf, struct nfp_net *nn, unsigned int id) { int err; /* Get MAC address */ nfp_net_get_mac_addr(nn, pf, id); /* Get ME clock frequency from ctrl BAR * XXX for now frequency is hardcoded until we figure out how * to get the value from nfp-hwinfo into ctrl bar */ nn->me_freq_mhz = 1200; err = nfp_net_netdev_init(nn->dp.netdev); if (err) return err; nfp_net_debugfs_port_add(nn, pf->ddir, id); nfp_net_info(nn); return 0; } static int nfp_net_pf_alloc_netdevs(struct nfp_pf *pf, void __iomem *ctrl_bar, void __iomem *tx_bar, void __iomem *rx_bar, int stride, struct nfp_net_fw_version *fw_ver) { u32 prev_tx_base, prev_rx_base, tgt_tx_base, tgt_rx_base; struct nfp_net *nn; unsigned int i; int err; prev_tx_base = readl(ctrl_bar + NFP_NET_CFG_START_TXQ); prev_rx_base = readl(ctrl_bar + NFP_NET_CFG_START_RXQ); for (i = 0; i < pf->num_ports; i++) { tgt_tx_base = readl(ctrl_bar + NFP_NET_CFG_START_TXQ); tgt_rx_base = readl(ctrl_bar + NFP_NET_CFG_START_RXQ); tx_bar += (tgt_tx_base - prev_tx_base) * NFP_QCP_QUEUE_ADDR_SZ; rx_bar += (tgt_rx_base - prev_rx_base) * NFP_QCP_QUEUE_ADDR_SZ; prev_tx_base = tgt_tx_base; prev_rx_base = tgt_rx_base; nn = nfp_net_pf_alloc_port_netdev(pf, ctrl_bar, tx_bar, rx_bar, stride, fw_ver); if (IS_ERR(nn)) { err = PTR_ERR(nn); goto err_free_prev; } list_add_tail(&nn->port_list, &pf->ports); ctrl_bar += NFP_PF_CSR_SLICE_SIZE; } return 0; err_free_prev: nfp_net_pf_free_netdevs(pf); return err; } static int nfp_net_pf_spawn_netdevs(struct nfp_pf *pf, void __iomem *ctrl_bar, void __iomem *tx_bar, void __iomem *rx_bar, int stride, struct nfp_net_fw_version *fw_ver) { unsigned int id, wanted_irqs, num_irqs, ports_left, irqs_left; struct nfp_net *nn; int err; /* Allocate the netdevs and do basic init */ err = nfp_net_pf_alloc_netdevs(pf, ctrl_bar, tx_bar, rx_bar, stride, fw_ver); if (err) return err; /* Get MSI-X vectors */ wanted_irqs = 0; list_for_each_entry(nn, &pf->ports, port_list) wanted_irqs += NFP_NET_NON_Q_VECTORS + nn->dp.num_r_vecs; pf->irq_entries = kcalloc(wanted_irqs, sizeof(*pf->irq_entries), GFP_KERNEL); if (!pf->irq_entries) { err = -ENOMEM; goto err_nn_free; } num_irqs = nfp_net_irqs_alloc(pf->pdev, pf->irq_entries, NFP_NET_MIN_PORT_IRQS * pf->num_ports, wanted_irqs); if (!num_irqs) { nn_warn(nn, "Unable to allocate MSI-X Vectors. Exiting\n"); err = -ENOMEM; goto err_vec_free; } /* Distribute IRQs to ports */ irqs_left = num_irqs; ports_left = pf->num_ports; list_for_each_entry(nn, &pf->ports, port_list) { unsigned int n; n = DIV_ROUND_UP(irqs_left, ports_left); nfp_net_irqs_assign(nn, &pf->irq_entries[num_irqs - irqs_left], n); irqs_left -= n; ports_left--; } /* Finish netdev init and register */ id = 0; list_for_each_entry(nn, &pf->ports, port_list) { err = nfp_net_pf_init_port_netdev(pf, nn, id); if (err) goto err_prev_deinit; id++; } return 0; err_prev_deinit: list_for_each_entry_continue_reverse(nn, &pf->ports, port_list) { nfp_net_debugfs_dir_clean(&nn->debugfs_dir); nfp_net_netdev_clean(nn->dp.netdev); } nfp_net_irqs_disable(pf->pdev); err_vec_free: kfree(pf->irq_entries); err_nn_free: nfp_net_pf_free_netdevs(pf); return err; } /* * PCI device functions */ int nfp_net_pci_probe(struct nfp_pf *pf) { u8 __iomem *ctrl_bar, *tx_bar, *rx_bar; u32 total_tx_qcs, total_rx_qcs; struct nfp_net_fw_version fw_ver; u32 tx_area_sz, rx_area_sz; u32 start_q; int stride; int err; /* Verify that the board has completed initialization */ if (!nfp_is_ready(pf->cpp)) { nfp_err(pf->cpp, "NFP is not ready for NIC operation.\n"); return -EINVAL; } pf->num_ports = nfp_net_pf_get_num_ports(pf); ctrl_bar = nfp_net_pf_map_ctrl_bar(pf); if (!ctrl_bar) return pf->fw_loaded ? -EINVAL : -EPROBE_DEFER; nfp_net_get_fw_version(&fw_ver, ctrl_bar); if (fw_ver.resv || fw_ver.class != NFP_NET_CFG_VERSION_CLASS_GENERIC) { nfp_err(pf->cpp, "Unknown Firmware ABI %d.%d.%d.%d\n", fw_ver.resv, fw_ver.class, fw_ver.major, fw_ver.minor); err = -EINVAL; goto err_ctrl_unmap; } /* Determine stride */ if (nfp_net_fw_ver_eq(&fw_ver, 0, 0, 0, 1)) { stride = 2; nfp_warn(pf->cpp, "OBSOLETE Firmware detected - VF isolation not available\n"); } else { switch (fw_ver.major) { case 1 ... 4: stride = 4; break; default: nfp_err(pf->cpp, "Unsupported Firmware ABI %d.%d.%d.%d\n", fw_ver.resv, fw_ver.class, fw_ver.major, fw_ver.minor); err = -EINVAL; goto err_ctrl_unmap; } } /* Find how many QC structs need to be mapped */ total_tx_qcs = nfp_net_pf_total_qcs(pf, ctrl_bar, stride, NFP_NET_CFG_START_TXQ, NFP_NET_CFG_MAX_TXRINGS); total_rx_qcs = nfp_net_pf_total_qcs(pf, ctrl_bar, stride, NFP_NET_CFG_START_RXQ, NFP_NET_CFG_MAX_RXRINGS); if (!total_tx_qcs || !total_rx_qcs) { nfp_err(pf->cpp, "Invalid PF QC configuration [%d,%d]\n", total_tx_qcs, total_rx_qcs); err = -EINVAL; goto err_ctrl_unmap; } tx_area_sz = NFP_QCP_QUEUE_ADDR_SZ * total_tx_qcs; rx_area_sz = NFP_QCP_QUEUE_ADDR_SZ * total_rx_qcs; /* Map TX queues */ start_q = readl(ctrl_bar + NFP_NET_CFG_START_TXQ); tx_bar = nfp_net_map_area(pf->cpp, "net.tx", 0, 0, NFP_PCIE_QUEUE(start_q), tx_area_sz, &pf->tx_area); if (IS_ERR(tx_bar)) { nfp_err(pf->cpp, "Failed to map TX area.\n"); err = PTR_ERR(tx_bar); goto err_ctrl_unmap; } /* Map RX queues */ start_q = readl(ctrl_bar + NFP_NET_CFG_START_RXQ); rx_bar = nfp_net_map_area(pf->cpp, "net.rx", 0, 0, NFP_PCIE_QUEUE(start_q), rx_area_sz, &pf->rx_area); if (IS_ERR(rx_bar)) { nfp_err(pf->cpp, "Failed to map RX area.\n"); err = PTR_ERR(rx_bar); goto err_unmap_tx; } pf->ddir = nfp_net_debugfs_device_add(pf->pdev); err = nfp_net_pf_spawn_netdevs(pf, ctrl_bar, tx_bar, rx_bar, stride, &fw_ver); if (err) goto err_clean_ddir; return 0; err_clean_ddir: nfp_net_debugfs_dir_clean(&pf->ddir); nfp_cpp_area_release_free(pf->rx_area); err_unmap_tx: nfp_cpp_area_release_free(pf->tx_area); err_ctrl_unmap: nfp_cpp_area_release_free(pf->ctrl_area); return err; } void nfp_net_pci_remove(struct nfp_pf *pf) { struct nfp_net *nn; list_for_each_entry(nn, &pf->ports, port_list) { nfp_net_debugfs_dir_clean(&nn->debugfs_dir); nfp_net_netdev_clean(nn->dp.netdev); } nfp_net_pf_free_netdevs(pf); nfp_net_debugfs_dir_clean(&pf->ddir); nfp_net_irqs_disable(pf->pdev); kfree(pf->irq_entries); nfp_cpp_area_release_free(pf->rx_area); nfp_cpp_area_release_free(pf->tx_area); nfp_cpp_area_release_free(pf->ctrl_area); }