/* * JMicron JMC2x0 series PCIe Ethernet Linux Device Driver * * Copyright 2008 JMicron Technology Corporation * http://www.jmicron.com/ * Copyright (c) 2009 - 2010 Guo-Fu Tseng * * Author: Guo-Fu Tseng * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "jme.h" static int force_pseudohp = -1; static int no_pseudohp = -1; static int no_extplug = -1; module_param(force_pseudohp, int, 0); MODULE_PARM_DESC(force_pseudohp, "Enable pseudo hot-plug feature manually by driver instead of BIOS."); module_param(no_pseudohp, int, 0); MODULE_PARM_DESC(no_pseudohp, "Disable pseudo hot-plug feature."); module_param(no_extplug, int, 0); MODULE_PARM_DESC(no_extplug, "Do not use external plug signal for pseudo hot-plug."); static int jme_mdio_read(struct net_device *netdev, int phy, int reg) { struct jme_adapter *jme = netdev_priv(netdev); int i, val, again = (reg == MII_BMSR) ? 1 : 0; read_again: jwrite32(jme, JME_SMI, SMI_OP_REQ | smi_phy_addr(phy) | smi_reg_addr(reg)); wmb(); for (i = JME_PHY_TIMEOUT * 50 ; i > 0 ; --i) { udelay(20); val = jread32(jme, JME_SMI); if ((val & SMI_OP_REQ) == 0) break; } if (i == 0) { pr_err("phy(%d) read timeout : %d\n", phy, reg); return 0; } if (again--) goto read_again; return (val & SMI_DATA_MASK) >> SMI_DATA_SHIFT; } static void jme_mdio_write(struct net_device *netdev, int phy, int reg, int val) { struct jme_adapter *jme = netdev_priv(netdev); int i; jwrite32(jme, JME_SMI, SMI_OP_WRITE | SMI_OP_REQ | ((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) | smi_phy_addr(phy) | smi_reg_addr(reg)); wmb(); for (i = JME_PHY_TIMEOUT * 50 ; i > 0 ; --i) { udelay(20); if ((jread32(jme, JME_SMI) & SMI_OP_REQ) == 0) break; } if (i == 0) pr_err("phy(%d) write timeout : %d\n", phy, reg); } static inline void jme_reset_phy_processor(struct jme_adapter *jme) { u32 val; jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC250) jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_CTRL1000, ADVERTISE_1000FULL | ADVERTISE_1000HALF); val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR); jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, val | BMCR_RESET); } static void jme_setup_wakeup_frame(struct jme_adapter *jme, const u32 *mask, u32 crc, int fnr) { int i; /* * Setup CRC pattern */ jwrite32(jme, JME_WFOI, WFOI_CRC_SEL | (fnr & WFOI_FRAME_SEL)); wmb(); jwrite32(jme, JME_WFODP, crc); wmb(); /* * Setup Mask */ for (i = 0 ; i < WAKEUP_FRAME_MASK_DWNR ; ++i) { jwrite32(jme, JME_WFOI, ((i << WFOI_MASK_SHIFT) & WFOI_MASK_SEL) | (fnr & WFOI_FRAME_SEL)); wmb(); jwrite32(jme, JME_WFODP, mask[i]); wmb(); } } static inline void jme_mac_rxclk_off(struct jme_adapter *jme) { jme->reg_gpreg1 |= GPREG1_RXCLKOFF; jwrite32f(jme, JME_GPREG1, jme->reg_gpreg1); } static inline void jme_mac_rxclk_on(struct jme_adapter *jme) { jme->reg_gpreg1 &= ~GPREG1_RXCLKOFF; jwrite32f(jme, JME_GPREG1, jme->reg_gpreg1); } static inline void jme_mac_txclk_off(struct jme_adapter *jme) { jme->reg_ghc &= ~(GHC_TO_CLK_SRC | GHC_TXMAC_CLK_SRC); jwrite32f(jme, JME_GHC, jme->reg_ghc); } static inline void jme_mac_txclk_on(struct jme_adapter *jme) { u32 speed = jme->reg_ghc & GHC_SPEED; if (speed == GHC_SPEED_1000M) jme->reg_ghc |= GHC_TO_CLK_GPHY | GHC_TXMAC_CLK_GPHY; else jme->reg_ghc |= GHC_TO_CLK_PCIE | GHC_TXMAC_CLK_PCIE; jwrite32f(jme, JME_GHC, jme->reg_ghc); } static inline void jme_reset_ghc_speed(struct jme_adapter *jme) { jme->reg_ghc &= ~(GHC_SPEED | GHC_DPX); jwrite32f(jme, JME_GHC, jme->reg_ghc); } static inline void jme_reset_250A2_workaround(struct jme_adapter *jme) { jme->reg_gpreg1 &= ~(GPREG1_HALFMODEPATCH | GPREG1_RSSPATCH); jwrite32(jme, JME_GPREG1, jme->reg_gpreg1); } static inline void jme_assert_ghc_reset(struct jme_adapter *jme) { jme->reg_ghc |= GHC_SWRST; jwrite32f(jme, JME_GHC, jme->reg_ghc); } static inline void jme_clear_ghc_reset(struct jme_adapter *jme) { jme->reg_ghc &= ~GHC_SWRST; jwrite32f(jme, JME_GHC, jme->reg_ghc); } static inline void jme_reset_mac_processor(struct jme_adapter *jme) { static const u32 mask[WAKEUP_FRAME_MASK_DWNR] = {0, 0, 0, 0}; u32 crc = 0xCDCDCDCD; u32 gpreg0; int i; jme_reset_ghc_speed(jme); jme_reset_250A2_workaround(jme); jme_mac_rxclk_on(jme); jme_mac_txclk_on(jme); udelay(1); jme_assert_ghc_reset(jme); udelay(1); jme_mac_rxclk_off(jme); jme_mac_txclk_off(jme); udelay(1); jme_clear_ghc_reset(jme); udelay(1); jme_mac_rxclk_on(jme); jme_mac_txclk_on(jme); udelay(1); jme_mac_rxclk_off(jme); jme_mac_txclk_off(jme); jwrite32(jme, JME_RXDBA_LO, 0x00000000); jwrite32(jme, JME_RXDBA_HI, 0x00000000); jwrite32(jme, JME_RXQDC, 0x00000000); jwrite32(jme, JME_RXNDA, 0x00000000); jwrite32(jme, JME_TXDBA_LO, 0x00000000); jwrite32(jme, JME_TXDBA_HI, 0x00000000); jwrite32(jme, JME_TXQDC, 0x00000000); jwrite32(jme, JME_TXNDA, 0x00000000); jwrite32(jme, JME_RXMCHT_LO, 0x00000000); jwrite32(jme, JME_RXMCHT_HI, 0x00000000); for (i = 0 ; i < WAKEUP_FRAME_NR ; ++i) jme_setup_wakeup_frame(jme, mask, crc, i); if (jme->fpgaver) gpreg0 = GPREG0_DEFAULT | GPREG0_LNKINTPOLL; else gpreg0 = GPREG0_DEFAULT; jwrite32(jme, JME_GPREG0, gpreg0); } static inline void jme_clear_pm(struct jme_adapter *jme) { jwrite32(jme, JME_PMCS, PMCS_STMASK | jme->reg_pmcs); } static int jme_reload_eeprom(struct jme_adapter *jme) { u32 val; int i; val = jread32(jme, JME_SMBCSR); if (val & SMBCSR_EEPROMD) { val |= SMBCSR_CNACK; jwrite32(jme, JME_SMBCSR, val); val |= SMBCSR_RELOAD; jwrite32(jme, JME_SMBCSR, val); mdelay(12); for (i = JME_EEPROM_RELOAD_TIMEOUT; i > 0; --i) { mdelay(1); if ((jread32(jme, JME_SMBCSR) & SMBCSR_RELOAD) == 0) break; } if (i == 0) { pr_err("eeprom reload timeout\n"); return -EIO; } } return 0; } static void jme_load_macaddr(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); unsigned char macaddr[ETH_ALEN]; u32 val; spin_lock_bh(&jme->macaddr_lock); val = jread32(jme, JME_RXUMA_LO); macaddr[0] = (val >> 0) & 0xFF; macaddr[1] = (val >> 8) & 0xFF; macaddr[2] = (val >> 16) & 0xFF; macaddr[3] = (val >> 24) & 0xFF; val = jread32(jme, JME_RXUMA_HI); macaddr[4] = (val >> 0) & 0xFF; macaddr[5] = (val >> 8) & 0xFF; memcpy(netdev->dev_addr, macaddr, ETH_ALEN); spin_unlock_bh(&jme->macaddr_lock); } static inline void jme_set_rx_pcc(struct jme_adapter *jme, int p) { switch (p) { case PCC_OFF: jwrite32(jme, JME_PCCRX0, ((PCC_OFF_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) | ((PCC_OFF_CNT << PCCRX_SHIFT) & PCCRX_MASK)); break; case PCC_P1: jwrite32(jme, JME_PCCRX0, ((PCC_P1_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) | ((PCC_P1_CNT << PCCRX_SHIFT) & PCCRX_MASK)); break; case PCC_P2: jwrite32(jme, JME_PCCRX0, ((PCC_P2_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) | ((PCC_P2_CNT << PCCRX_SHIFT) & PCCRX_MASK)); break; case PCC_P3: jwrite32(jme, JME_PCCRX0, ((PCC_P3_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) | ((PCC_P3_CNT << PCCRX_SHIFT) & PCCRX_MASK)); break; default: break; } wmb(); if (!(test_bit(JME_FLAG_POLL, &jme->flags))) netif_info(jme, rx_status, jme->dev, "Switched to PCC_P%d\n", p); } static void jme_start_irq(struct jme_adapter *jme) { register struct dynpcc_info *dpi = &(jme->dpi); jme_set_rx_pcc(jme, PCC_P1); dpi->cur = PCC_P1; dpi->attempt = PCC_P1; dpi->cnt = 0; jwrite32(jme, JME_PCCTX, ((PCC_TX_TO << PCCTXTO_SHIFT) & PCCTXTO_MASK) | ((PCC_TX_CNT << PCCTX_SHIFT) & PCCTX_MASK) | PCCTXQ0_EN ); /* * Enable Interrupts */ jwrite32(jme, JME_IENS, INTR_ENABLE); } static inline void jme_stop_irq(struct jme_adapter *jme) { /* * Disable Interrupts */ jwrite32f(jme, JME_IENC, INTR_ENABLE); } static u32 jme_linkstat_from_phy(struct jme_adapter *jme) { u32 phylink, bmsr; phylink = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 17); bmsr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMSR); if (bmsr & BMSR_ANCOMP) phylink |= PHY_LINK_AUTONEG_COMPLETE; return phylink; } static inline void jme_set_phyfifo_5level(struct jme_adapter *jme) { jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0x0004); } static inline void jme_set_phyfifo_8level(struct jme_adapter *jme) { jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0x0000); } static int jme_check_link(struct net_device *netdev, int testonly) { struct jme_adapter *jme = netdev_priv(netdev); u32 phylink, cnt = JME_SPDRSV_TIMEOUT, bmcr; char linkmsg[64]; int rc = 0; linkmsg[0] = '\0'; if (jme->fpgaver) phylink = jme_linkstat_from_phy(jme); else phylink = jread32(jme, JME_PHY_LINK); if (phylink & PHY_LINK_UP) { if (!(phylink & PHY_LINK_AUTONEG_COMPLETE)) { /* * If we did not enable AN * Speed/Duplex Info should be obtained from SMI */ phylink = PHY_LINK_UP; bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR); phylink |= ((bmcr & BMCR_SPEED1000) && (bmcr & BMCR_SPEED100) == 0) ? PHY_LINK_SPEED_1000M : (bmcr & BMCR_SPEED100) ? PHY_LINK_SPEED_100M : PHY_LINK_SPEED_10M; phylink |= (bmcr & BMCR_FULLDPLX) ? PHY_LINK_DUPLEX : 0; strcat(linkmsg, "Forced: "); } else { /* * Keep polling for speed/duplex resolve complete */ while (!(phylink & PHY_LINK_SPEEDDPU_RESOLVED) && --cnt) { udelay(1); if (jme->fpgaver) phylink = jme_linkstat_from_phy(jme); else phylink = jread32(jme, JME_PHY_LINK); } if (!cnt) pr_err("Waiting speed resolve timeout\n"); strcat(linkmsg, "ANed: "); } if (jme->phylink == phylink) { rc = 1; goto out; } if (testonly) goto out; jme->phylink = phylink; /* * The speed/duplex setting of jme->reg_ghc already cleared * by jme_reset_mac_processor() */ switch (phylink & PHY_LINK_SPEED_MASK) { case PHY_LINK_SPEED_10M: jme->reg_ghc |= GHC_SPEED_10M; strcat(linkmsg, "10 Mbps, "); break; case PHY_LINK_SPEED_100M: jme->reg_ghc |= GHC_SPEED_100M; strcat(linkmsg, "100 Mbps, "); break; case PHY_LINK_SPEED_1000M: jme->reg_ghc |= GHC_SPEED_1000M; strcat(linkmsg, "1000 Mbps, "); break; default: break; } if (phylink & PHY_LINK_DUPLEX) { jwrite32(jme, JME_TXMCS, TXMCS_DEFAULT); jwrite32(jme, JME_TXTRHD, TXTRHD_FULLDUPLEX); jme->reg_ghc |= GHC_DPX; } else { jwrite32(jme, JME_TXMCS, TXMCS_DEFAULT | TXMCS_BACKOFF | TXMCS_CARRIERSENSE | TXMCS_COLLISION); jwrite32(jme, JME_TXTRHD, TXTRHD_HALFDUPLEX); } jwrite32(jme, JME_GHC, jme->reg_ghc); if (is_buggy250(jme->pdev->device, jme->chiprev)) { jme->reg_gpreg1 &= ~(GPREG1_HALFMODEPATCH | GPREG1_RSSPATCH); if (!(phylink & PHY_LINK_DUPLEX)) jme->reg_gpreg1 |= GPREG1_HALFMODEPATCH; switch (phylink & PHY_LINK_SPEED_MASK) { case PHY_LINK_SPEED_10M: jme_set_phyfifo_8level(jme); jme->reg_gpreg1 |= GPREG1_RSSPATCH; break; case PHY_LINK_SPEED_100M: jme_set_phyfifo_5level(jme); jme->reg_gpreg1 |= GPREG1_RSSPATCH; break; case PHY_LINK_SPEED_1000M: jme_set_phyfifo_8level(jme); break; default: break; } } jwrite32(jme, JME_GPREG1, jme->reg_gpreg1); strcat(linkmsg, (phylink & PHY_LINK_DUPLEX) ? "Full-Duplex, " : "Half-Duplex, "); strcat(linkmsg, (phylink & PHY_LINK_MDI_STAT) ? "MDI-X" : "MDI"); netif_info(jme, link, jme->dev, "Link is up at %s\n", linkmsg); netif_carrier_on(netdev); } else { if (testonly) goto out; netif_info(jme, link, jme->dev, "Link is down\n"); jme->phylink = 0; netif_carrier_off(netdev); } out: return rc; } static int jme_setup_tx_resources(struct jme_adapter *jme) { struct jme_ring *txring = &(jme->txring[0]); txring->alloc = dma_alloc_coherent(&(jme->pdev->dev), TX_RING_ALLOC_SIZE(jme->tx_ring_size), &(txring->dmaalloc), GFP_ATOMIC); if (!txring->alloc) goto err_set_null; /* * 16 Bytes align */ txring->desc = (void *)ALIGN((unsigned long)(txring->alloc), RING_DESC_ALIGN); txring->dma = ALIGN(txring->dmaalloc, RING_DESC_ALIGN); txring->next_to_use = 0; atomic_set(&txring->next_to_clean, 0); atomic_set(&txring->nr_free, jme->tx_ring_size); txring->bufinf = kzalloc(sizeof(struct jme_buffer_info) * jme->tx_ring_size, GFP_ATOMIC); if (unlikely(!(txring->bufinf))) goto err_free_txring; /* * Initialize Transmit Descriptors */ memset(txring->alloc, 0, TX_RING_ALLOC_SIZE(jme->tx_ring_size)); return 0; err_free_txring: dma_free_coherent(&(jme->pdev->dev), TX_RING_ALLOC_SIZE(jme->tx_ring_size), txring->alloc, txring->dmaalloc); err_set_null: txring->desc = NULL; txring->dmaalloc = 0; txring->dma = 0; txring->bufinf = NULL; return -ENOMEM; } static void jme_free_tx_resources(struct jme_adapter *jme) { int i; struct jme_ring *txring = &(jme->txring[0]); struct jme_buffer_info *txbi; if (txring->alloc) { if (txring->bufinf) { for (i = 0 ; i < jme->tx_ring_size ; ++i) { txbi = txring->bufinf + i; if (txbi->skb) { dev_kfree_skb(txbi->skb); txbi->skb = NULL; } txbi->mapping = 0; txbi->len = 0; txbi->nr_desc = 0; txbi->start_xmit = 0; } kfree(txring->bufinf); } dma_free_coherent(&(jme->pdev->dev), TX_RING_ALLOC_SIZE(jme->tx_ring_size), txring->alloc, txring->dmaalloc); txring->alloc = NULL; txring->desc = NULL; txring->dmaalloc = 0; txring->dma = 0; txring->bufinf = NULL; } txring->next_to_use = 0; atomic_set(&txring->next_to_clean, 0); atomic_set(&txring->nr_free, 0); } static inline void jme_enable_tx_engine(struct jme_adapter *jme) { /* * Select Queue 0 */ jwrite32(jme, JME_TXCS, TXCS_DEFAULT | TXCS_SELECT_QUEUE0); wmb(); /* * Setup TX Queue 0 DMA Bass Address */ jwrite32(jme, JME_TXDBA_LO, (__u64)jme->txring[0].dma & 0xFFFFFFFFUL); jwrite32(jme, JME_TXDBA_HI, (__u64)(jme->txring[0].dma) >> 32); jwrite32(jme, JME_TXNDA, (__u64)jme->txring[0].dma & 0xFFFFFFFFUL); /* * Setup TX Descptor Count */ jwrite32(jme, JME_TXQDC, jme->tx_ring_size); /* * Enable TX Engine */ wmb(); jwrite32f(jme, JME_TXCS, jme->reg_txcs | TXCS_SELECT_QUEUE0 | TXCS_ENABLE); /* * Start clock for TX MAC Processor */ jme_mac_txclk_on(jme); } static inline void jme_restart_tx_engine(struct jme_adapter *jme) { /* * Restart TX Engine */ jwrite32(jme, JME_TXCS, jme->reg_txcs | TXCS_SELECT_QUEUE0 | TXCS_ENABLE); } static inline void jme_disable_tx_engine(struct jme_adapter *jme) { int i; u32 val; /* * Disable TX Engine */ jwrite32(jme, JME_TXCS, jme->reg_txcs | TXCS_SELECT_QUEUE0); wmb(); val = jread32(jme, JME_TXCS); for (i = JME_TX_DISABLE_TIMEOUT ; (val & TXCS_ENABLE) && i > 0 ; --i) { mdelay(1); val = jread32(jme, JME_TXCS); rmb(); } if (!i) pr_err("Disable TX engine timeout\n"); /* * Stop clock for TX MAC Processor */ jme_mac_txclk_off(jme); } static void jme_set_clean_rxdesc(struct jme_adapter *jme, int i) { struct jme_ring *rxring = &(jme->rxring[0]); register struct rxdesc *rxdesc = rxring->desc; struct jme_buffer_info *rxbi = rxring->bufinf; rxdesc += i; rxbi += i; rxdesc->dw[0] = 0; rxdesc->dw[1] = 0; rxdesc->desc1.bufaddrh = cpu_to_le32((__u64)rxbi->mapping >> 32); rxdesc->desc1.bufaddrl = cpu_to_le32( (__u64)rxbi->mapping & 0xFFFFFFFFUL); rxdesc->desc1.datalen = cpu_to_le16(rxbi->len); if (jme->dev->features & NETIF_F_HIGHDMA) rxdesc->desc1.flags = RXFLAG_64BIT; wmb(); rxdesc->desc1.flags |= RXFLAG_OWN | RXFLAG_INT; } static int jme_make_new_rx_buf(struct jme_adapter *jme, int i) { struct jme_ring *rxring = &(jme->rxring[0]); struct jme_buffer_info *rxbi = rxring->bufinf + i; struct sk_buff *skb; dma_addr_t mapping; skb = netdev_alloc_skb(jme->dev, jme->dev->mtu + RX_EXTRA_LEN); if (unlikely(!skb)) return -ENOMEM; mapping = pci_map_page(jme->pdev, virt_to_page(skb->data), offset_in_page(skb->data), skb_tailroom(skb), PCI_DMA_FROMDEVICE); if (unlikely(pci_dma_mapping_error(jme->pdev, mapping))) { dev_kfree_skb(skb); return -ENOMEM; } if (likely(rxbi->mapping)) pci_unmap_page(jme->pdev, rxbi->mapping, rxbi->len, PCI_DMA_FROMDEVICE); rxbi->skb = skb; rxbi->len = skb_tailroom(skb); rxbi->mapping = mapping; return 0; } static void jme_free_rx_buf(struct jme_adapter *jme, int i) { struct jme_ring *rxring = &(jme->rxring[0]); struct jme_buffer_info *rxbi = rxring->bufinf; rxbi += i; if (rxbi->skb) { pci_unmap_page(jme->pdev, rxbi->mapping, rxbi->len, PCI_DMA_FROMDEVICE); dev_kfree_skb(rxbi->skb); rxbi->skb = NULL; rxbi->mapping = 0; rxbi->len = 0; } } static void jme_free_rx_resources(struct jme_adapter *jme) { int i; struct jme_ring *rxring = &(jme->rxring[0]); if (rxring->alloc) { if (rxring->bufinf) { for (i = 0 ; i < jme->rx_ring_size ; ++i) jme_free_rx_buf(jme, i); kfree(rxring->bufinf); } dma_free_coherent(&(jme->pdev->dev), RX_RING_ALLOC_SIZE(jme->rx_ring_size), rxring->alloc, rxring->dmaalloc); rxring->alloc = NULL; rxring->desc = NULL; rxring->dmaalloc = 0; rxring->dma = 0; rxring->bufinf = NULL; } rxring->next_to_use = 0; atomic_set(&rxring->next_to_clean, 0); } static int jme_setup_rx_resources(struct jme_adapter *jme) { int i; struct jme_ring *rxring = &(jme->rxring[0]); rxring->alloc = dma_alloc_coherent(&(jme->pdev->dev), RX_RING_ALLOC_SIZE(jme->rx_ring_size), &(rxring->dmaalloc), GFP_ATOMIC); if (!rxring->alloc) goto err_set_null; /* * 16 Bytes align */ rxring->desc = (void *)ALIGN((unsigned long)(rxring->alloc), RING_DESC_ALIGN); rxring->dma = ALIGN(rxring->dmaalloc, RING_DESC_ALIGN); rxring->next_to_use = 0; atomic_set(&rxring->next_to_clean, 0); rxring->bufinf = kzalloc(sizeof(struct jme_buffer_info) * jme->rx_ring_size, GFP_ATOMIC); if (unlikely(!(rxring->bufinf))) goto err_free_rxring; /* * Initiallize Receive Descriptors */ for (i = 0 ; i < jme->rx_ring_size ; ++i) { if (unlikely(jme_make_new_rx_buf(jme, i))) { jme_free_rx_resources(jme); return -ENOMEM; } jme_set_clean_rxdesc(jme, i); } return 0; err_free_rxring: dma_free_coherent(&(jme->pdev->dev), RX_RING_ALLOC_SIZE(jme->rx_ring_size), rxring->alloc, rxring->dmaalloc); err_set_null: rxring->desc = NULL; rxring->dmaalloc = 0; rxring->dma = 0; rxring->bufinf = NULL; return -ENOMEM; } static inline void jme_enable_rx_engine(struct jme_adapter *jme) { /* * Select Queue 0 */ jwrite32(jme, JME_RXCS, jme->reg_rxcs | RXCS_QUEUESEL_Q0); wmb(); /* * Setup RX DMA Bass Address */ jwrite32(jme, JME_RXDBA_LO, (__u64)(jme->rxring[0].dma) & 0xFFFFFFFFUL); jwrite32(jme, JME_RXDBA_HI, (__u64)(jme->rxring[0].dma) >> 32); jwrite32(jme, JME_RXNDA, (__u64)(jme->rxring[0].dma) & 0xFFFFFFFFUL); /* * Setup RX Descriptor Count */ jwrite32(jme, JME_RXQDC, jme->rx_ring_size); /* * Setup Unicast Filter */ jme_set_unicastaddr(jme->dev); jme_set_multi(jme->dev); /* * Enable RX Engine */ wmb(); jwrite32f(jme, JME_RXCS, jme->reg_rxcs | RXCS_QUEUESEL_Q0 | RXCS_ENABLE | RXCS_QST); /* * Start clock for RX MAC Processor */ jme_mac_rxclk_on(jme); } static inline void jme_restart_rx_engine(struct jme_adapter *jme) { /* * Start RX Engine */ jwrite32(jme, JME_RXCS, jme->reg_rxcs | RXCS_QUEUESEL_Q0 | RXCS_ENABLE | RXCS_QST); } static inline void jme_disable_rx_engine(struct jme_adapter *jme) { int i; u32 val; /* * Disable RX Engine */ jwrite32(jme, JME_RXCS, jme->reg_rxcs); wmb(); val = jread32(jme, JME_RXCS); for (i = JME_RX_DISABLE_TIMEOUT ; (val & RXCS_ENABLE) && i > 0 ; --i) { mdelay(1); val = jread32(jme, JME_RXCS); rmb(); } if (!i) pr_err("Disable RX engine timeout\n"); /* * Stop clock for RX MAC Processor */ jme_mac_rxclk_off(jme); } static u16 jme_udpsum(struct sk_buff *skb) { u16 csum = 0xFFFFu; if (skb->len < (ETH_HLEN + sizeof(struct iphdr))) return csum; if (skb->protocol != htons(ETH_P_IP)) return csum; skb_set_network_header(skb, ETH_HLEN); if ((ip_hdr(skb)->protocol != IPPROTO_UDP) || (skb->len < (ETH_HLEN + (ip_hdr(skb)->ihl << 2) + sizeof(struct udphdr)))) { skb_reset_network_header(skb); return csum; } skb_set_transport_header(skb, ETH_HLEN + (ip_hdr(skb)->ihl << 2)); csum = udp_hdr(skb)->check; skb_reset_transport_header(skb); skb_reset_network_header(skb); return csum; } static int jme_rxsum_ok(struct jme_adapter *jme, u16 flags, struct sk_buff *skb) { if (!(flags & (RXWBFLAG_TCPON | RXWBFLAG_UDPON | RXWBFLAG_IPV4))) return false; if (unlikely((flags & (RXWBFLAG_MF | RXWBFLAG_TCPON | RXWBFLAG_TCPCS)) == RXWBFLAG_TCPON)) { if (flags & RXWBFLAG_IPV4) netif_err(jme, rx_err, jme->dev, "TCP Checksum error\n"); return false; } if (unlikely((flags & (RXWBFLAG_MF | RXWBFLAG_UDPON | RXWBFLAG_UDPCS)) == RXWBFLAG_UDPON) && jme_udpsum(skb)) { if (flags & RXWBFLAG_IPV4) netif_err(jme, rx_err, jme->dev, "UDP Checksum error\n"); return false; } if (unlikely((flags & (RXWBFLAG_IPV4 | RXWBFLAG_IPCS)) == RXWBFLAG_IPV4)) { netif_err(jme, rx_err, jme->dev, "IPv4 Checksum error\n"); return false; } return true; } static void jme_alloc_and_feed_skb(struct jme_adapter *jme, int idx) { struct jme_ring *rxring = &(jme->rxring[0]); struct rxdesc *rxdesc = rxring->desc; struct jme_buffer_info *rxbi = rxring->bufinf; struct sk_buff *skb; int framesize; rxdesc += idx; rxbi += idx; skb = rxbi->skb; pci_dma_sync_single_for_cpu(jme->pdev, rxbi->mapping, rxbi->len, PCI_DMA_FROMDEVICE); if (unlikely(jme_make_new_rx_buf(jme, idx))) { pci_dma_sync_single_for_device(jme->pdev, rxbi->mapping, rxbi->len, PCI_DMA_FROMDEVICE); ++(NET_STAT(jme).rx_dropped); } else { framesize = le16_to_cpu(rxdesc->descwb.framesize) - RX_PREPAD_SIZE; skb_reserve(skb, RX_PREPAD_SIZE); skb_put(skb, framesize); skb->protocol = eth_type_trans(skb, jme->dev); if (jme_rxsum_ok(jme, le16_to_cpu(rxdesc->descwb.flags), skb)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); if (rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_TAGON)) { u16 vid = le16_to_cpu(rxdesc->descwb.vlan); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); NET_STAT(jme).rx_bytes += 4; } jme->jme_rx(skb); if ((rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_DEST)) == cpu_to_le16(RXWBFLAG_DEST_MUL)) ++(NET_STAT(jme).multicast); NET_STAT(jme).rx_bytes += framesize; ++(NET_STAT(jme).rx_packets); } jme_set_clean_rxdesc(jme, idx); } static int jme_process_receive(struct jme_adapter *jme, int limit) { struct jme_ring *rxring = &(jme->rxring[0]); struct rxdesc *rxdesc = rxring->desc; int i, j, ccnt, desccnt, mask = jme->rx_ring_mask; if (unlikely(!atomic_dec_and_test(&jme->rx_cleaning))) goto out_inc; if (unlikely(atomic_read(&jme->link_changing) != 1)) goto out_inc; if (unlikely(!netif_carrier_ok(jme->dev))) goto out_inc; i = atomic_read(&rxring->next_to_clean); while (limit > 0) { rxdesc = rxring->desc; rxdesc += i; if ((rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_OWN)) || !(rxdesc->descwb.desccnt & RXWBDCNT_WBCPL)) goto out; --limit; rmb(); desccnt = rxdesc->descwb.desccnt & RXWBDCNT_DCNT; if (unlikely(desccnt > 1 || rxdesc->descwb.errstat & RXWBERR_ALLERR)) { if (rxdesc->descwb.errstat & RXWBERR_CRCERR) ++(NET_STAT(jme).rx_crc_errors); else if (rxdesc->descwb.errstat & RXWBERR_OVERUN) ++(NET_STAT(jme).rx_fifo_errors); else ++(NET_STAT(jme).rx_errors); if (desccnt > 1) limit -= desccnt - 1; for (j = i, ccnt = desccnt ; ccnt-- ; ) { jme_set_clean_rxdesc(jme, j); j = (j + 1) & (mask); } } else { jme_alloc_and_feed_skb(jme, i); } i = (i + desccnt) & (mask); } out: atomic_set(&rxring->next_to_clean, i); out_inc: atomic_inc(&jme->rx_cleaning); return limit > 0 ? limit : 0; } static void jme_attempt_pcc(struct dynpcc_info *dpi, int atmp) { if (likely(atmp == dpi->cur)) { dpi->cnt = 0; return; } if (dpi->attempt == atmp) { ++(dpi->cnt); } else { dpi->attempt = atmp; dpi->cnt = 0; } } static void jme_dynamic_pcc(struct jme_adapter *jme) { register struct dynpcc_info *dpi = &(jme->dpi); if ((NET_STAT(jme).rx_bytes - dpi->last_bytes) > PCC_P3_THRESHOLD) jme_attempt_pcc(dpi, PCC_P3); else if ((NET_STAT(jme).rx_packets - dpi->last_pkts) > PCC_P2_THRESHOLD || dpi->intr_cnt > PCC_INTR_THRESHOLD) jme_attempt_pcc(dpi, PCC_P2); else jme_attempt_pcc(dpi, PCC_P1); if (unlikely(dpi->attempt != dpi->cur && dpi->cnt > 5)) { if (dpi->attempt < dpi->cur) tasklet_schedule(&jme->rxclean_task); jme_set_rx_pcc(jme, dpi->attempt); dpi->cur = dpi->attempt; dpi->cnt = 0; } } static void jme_start_pcc_timer(struct jme_adapter *jme) { struct dynpcc_info *dpi = &(jme->dpi); dpi->last_bytes = NET_STAT(jme).rx_bytes; dpi->last_pkts = NET_STAT(jme).rx_packets; dpi->intr_cnt = 0; jwrite32(jme, JME_TMCSR, TMCSR_EN | ((0xFFFFFF - PCC_INTERVAL_US) & TMCSR_CNT)); } static inline void jme_stop_pcc_timer(struct jme_adapter *jme) { jwrite32(jme, JME_TMCSR, 0); } static void jme_shutdown_nic(struct jme_adapter *jme) { u32 phylink; phylink = jme_linkstat_from_phy(jme); if (!(phylink & PHY_LINK_UP)) { /* * Disable all interrupt before issue timer */ jme_stop_irq(jme); jwrite32(jme, JME_TIMER2, TMCSR_EN | 0xFFFFFE); } } static void jme_pcc_tasklet(unsigned long arg) { struct jme_adapter *jme = (struct jme_adapter *)arg; struct net_device *netdev = jme->dev; if (unlikely(test_bit(JME_FLAG_SHUTDOWN, &jme->flags))) { jme_shutdown_nic(jme); return; } if (unlikely(!netif_carrier_ok(netdev) || (atomic_read(&jme->link_changing) != 1) )) { jme_stop_pcc_timer(jme); return; } if (!(test_bit(JME_FLAG_POLL, &jme->flags))) jme_dynamic_pcc(jme); jme_start_pcc_timer(jme); } static inline void jme_polling_mode(struct jme_adapter *jme) { jme_set_rx_pcc(jme, PCC_OFF); } static inline void jme_interrupt_mode(struct jme_adapter *jme) { jme_set_rx_pcc(jme, PCC_P1); } static inline int jme_pseudo_hotplug_enabled(struct jme_adapter *jme) { u32 apmc; apmc = jread32(jme, JME_APMC); return apmc & JME_APMC_PSEUDO_HP_EN; } static void jme_start_shutdown_timer(struct jme_adapter *jme) { u32 apmc; apmc = jread32(jme, JME_APMC) | JME_APMC_PCIE_SD_EN; apmc &= ~JME_APMC_EPIEN_CTRL; if (!no_extplug) { jwrite32f(jme, JME_APMC, apmc | JME_APMC_EPIEN_CTRL_EN); wmb(); } jwrite32f(jme, JME_APMC, apmc); jwrite32f(jme, JME_TIMER2, 0); set_bit(JME_FLAG_SHUTDOWN, &jme->flags); jwrite32(jme, JME_TMCSR, TMCSR_EN | ((0xFFFFFF - APMC_PHP_SHUTDOWN_DELAY) & TMCSR_CNT)); } static void jme_stop_shutdown_timer(struct jme_adapter *jme) { u32 apmc; jwrite32f(jme, JME_TMCSR, 0); jwrite32f(jme, JME_TIMER2, 0); clear_bit(JME_FLAG_SHUTDOWN, &jme->flags); apmc = jread32(jme, JME_APMC); apmc &= ~(JME_APMC_PCIE_SD_EN | JME_APMC_EPIEN_CTRL); jwrite32f(jme, JME_APMC, apmc | JME_APMC_EPIEN_CTRL_DIS); wmb(); jwrite32f(jme, JME_APMC, apmc); } static void jme_link_change_tasklet(unsigned long arg) { struct jme_adapter *jme = (struct jme_adapter *)arg; struct net_device *netdev = jme->dev; int rc; while (!atomic_dec_and_test(&jme->link_changing)) { atomic_inc(&jme->link_changing); netif_info(jme, intr, jme->dev, "Get link change lock failed\n"); while (atomic_read(&jme->link_changing) != 1) netif_info(jme, intr, jme->dev, "Waiting link change lock\n"); } if (jme_check_link(netdev, 1) && jme->old_mtu == netdev->mtu) goto out; jme->old_mtu = netdev->mtu; netif_stop_queue(netdev); if (jme_pseudo_hotplug_enabled(jme)) jme_stop_shutdown_timer(jme); jme_stop_pcc_timer(jme); tasklet_disable(&jme->txclean_task); tasklet_disable(&jme->rxclean_task); tasklet_disable(&jme->rxempty_task); if (netif_carrier_ok(netdev)) { jme_disable_rx_engine(jme); jme_disable_tx_engine(jme); jme_reset_mac_processor(jme); jme_free_rx_resources(jme); jme_free_tx_resources(jme); if (test_bit(JME_FLAG_POLL, &jme->flags)) jme_polling_mode(jme); netif_carrier_off(netdev); } jme_check_link(netdev, 0); if (netif_carrier_ok(netdev)) { rc = jme_setup_rx_resources(jme); if (rc) { pr_err("Allocating resources for RX error, Device STOPPED!\n"); goto out_enable_tasklet; } rc = jme_setup_tx_resources(jme); if (rc) { pr_err("Allocating resources for TX error, Device STOPPED!\n"); goto err_out_free_rx_resources; } jme_enable_rx_engine(jme); jme_enable_tx_engine(jme); netif_start_queue(netdev); if (test_bit(JME_FLAG_POLL, &jme->flags)) jme_interrupt_mode(jme); jme_start_pcc_timer(jme); } else if (jme_pseudo_hotplug_enabled(jme)) { jme_start_shutdown_timer(jme); } goto out_enable_tasklet; err_out_free_rx_resources: jme_free_rx_resources(jme); out_enable_tasklet: tasklet_enable(&jme->txclean_task); tasklet_enable(&jme->rxclean_task); tasklet_enable(&jme->rxempty_task); out: atomic_inc(&jme->link_changing); } static void jme_rx_clean_tasklet(unsigned long arg) { struct jme_adapter *jme = (struct jme_adapter *)arg; struct dynpcc_info *dpi = &(jme->dpi); jme_process_receive(jme, jme->rx_ring_size); ++(dpi->intr_cnt); } static int jme_poll(JME_NAPI_HOLDER(holder), JME_NAPI_WEIGHT(budget)) { struct jme_adapter *jme = jme_napi_priv(holder); int rest; rest = jme_process_receive(jme, JME_NAPI_WEIGHT_VAL(budget)); while (atomic_read(&jme->rx_empty) > 0) { atomic_dec(&jme->rx_empty); ++(NET_STAT(jme).rx_dropped); jme_restart_rx_engine(jme); } atomic_inc(&jme->rx_empty); if (rest) { JME_RX_COMPLETE(netdev, holder); jme_interrupt_mode(jme); } JME_NAPI_WEIGHT_SET(budget, rest); return JME_NAPI_WEIGHT_VAL(budget) - rest; } static void jme_rx_empty_tasklet(unsigned long arg) { struct jme_adapter *jme = (struct jme_adapter *)arg; if (unlikely(atomic_read(&jme->link_changing) != 1)) return; if (unlikely(!netif_carrier_ok(jme->dev))) return; netif_info(jme, rx_status, jme->dev, "RX Queue Full!\n"); jme_rx_clean_tasklet(arg); while (atomic_read(&jme->rx_empty) > 0) { atomic_dec(&jme->rx_empty); ++(NET_STAT(jme).rx_dropped); jme_restart_rx_engine(jme); } atomic_inc(&jme->rx_empty); } static void jme_wake_queue_if_stopped(struct jme_adapter *jme) { struct jme_ring *txring = &(jme->txring[0]); smp_wmb(); if (unlikely(netif_queue_stopped(jme->dev) && atomic_read(&txring->nr_free) >= (jme->tx_wake_threshold))) { netif_info(jme, tx_done, jme->dev, "TX Queue Waked\n"); netif_wake_queue(jme->dev); } } static void jme_tx_clean_tasklet(unsigned long arg) { struct jme_adapter *jme = (struct jme_adapter *)arg; struct jme_ring *txring = &(jme->txring[0]); struct txdesc *txdesc = txring->desc; struct jme_buffer_info *txbi = txring->bufinf, *ctxbi, *ttxbi; int i, j, cnt = 0, max, err, mask; tx_dbg(jme, "Into txclean\n"); if (unlikely(!atomic_dec_and_test(&jme->tx_cleaning))) goto out; if (unlikely(atomic_read(&jme->link_changing) != 1)) goto out; if (unlikely(!netif_carrier_ok(jme->dev))) goto out; max = jme->tx_ring_size - atomic_read(&txring->nr_free); mask = jme->tx_ring_mask; for (i = atomic_read(&txring->next_to_clean) ; cnt < max ; ) { ctxbi = txbi + i; if (likely(ctxbi->skb && !(txdesc[i].descwb.flags & TXWBFLAG_OWN))) { tx_dbg(jme, "txclean: %d+%d@%lu\n", i, ctxbi->nr_desc, jiffies); err = txdesc[i].descwb.flags & TXWBFLAG_ALLERR; for (j = 1 ; j < ctxbi->nr_desc ; ++j) { ttxbi = txbi + ((i + j) & (mask)); txdesc[(i + j) & (mask)].dw[0] = 0; pci_unmap_page(jme->pdev, ttxbi->mapping, ttxbi->len, PCI_DMA_TODEVICE); ttxbi->mapping = 0; ttxbi->len = 0; } dev_kfree_skb(ctxbi->skb); cnt += ctxbi->nr_desc; if (unlikely(err)) { ++(NET_STAT(jme).tx_carrier_errors); } else { ++(NET_STAT(jme).tx_packets); NET_STAT(jme).tx_bytes += ctxbi->len; } ctxbi->skb = NULL; ctxbi->len = 0; ctxbi->start_xmit = 0; } else { break; } i = (i + ctxbi->nr_desc) & mask; ctxbi->nr_desc = 0; } tx_dbg(jme, "txclean: done %d@%lu\n", i, jiffies); atomic_set(&txring->next_to_clean, i); atomic_add(cnt, &txring->nr_free); jme_wake_queue_if_stopped(jme); out: atomic_inc(&jme->tx_cleaning); } static void jme_intr_msi(struct jme_adapter *jme, u32 intrstat) { /* * Disable interrupt */ jwrite32f(jme, JME_IENC, INTR_ENABLE); if (intrstat & (INTR_LINKCH | INTR_SWINTR)) { /* * Link change event is critical * all other events are ignored */ jwrite32(jme, JME_IEVE, intrstat); tasklet_schedule(&jme->linkch_task); goto out_reenable; } if (intrstat & INTR_TMINTR) { jwrite32(jme, JME_IEVE, INTR_TMINTR); tasklet_schedule(&jme->pcc_task); } if (intrstat & (INTR_PCCTXTO | INTR_PCCTX)) { jwrite32(jme, JME_IEVE, INTR_PCCTXTO | INTR_PCCTX | INTR_TX0); tasklet_schedule(&jme->txclean_task); } if ((intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP))) { jwrite32(jme, JME_IEVE, (intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP)) | INTR_RX0); } if (test_bit(JME_FLAG_POLL, &jme->flags)) { if (intrstat & INTR_RX0EMP) atomic_inc(&jme->rx_empty); if ((intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP))) { if (likely(JME_RX_SCHEDULE_PREP(jme))) { jme_polling_mode(jme); JME_RX_SCHEDULE(jme); } } } else { if (intrstat & INTR_RX0EMP) { atomic_inc(&jme->rx_empty); tasklet_hi_schedule(&jme->rxempty_task); } else if (intrstat & (INTR_PCCRX0TO | INTR_PCCRX0)) { tasklet_hi_schedule(&jme->rxclean_task); } } out_reenable: /* * Re-enable interrupt */ jwrite32f(jme, JME_IENS, INTR_ENABLE); } static irqreturn_t jme_intr(int irq, void *dev_id) { struct net_device *netdev = dev_id; struct jme_adapter *jme = netdev_priv(netdev); u32 intrstat; intrstat = jread32(jme, JME_IEVE); /* * Check if it's really an interrupt for us */ if (unlikely((intrstat & INTR_ENABLE) == 0)) return IRQ_NONE; /* * Check if the device still exist */ if (unlikely(intrstat == ~((typeof(intrstat))0))) return IRQ_NONE; jme_intr_msi(jme, intrstat); return IRQ_HANDLED; } static irqreturn_t jme_msi(int irq, void *dev_id) { struct net_device *netdev = dev_id; struct jme_adapter *jme = netdev_priv(netdev); u32 intrstat; intrstat = jread32(jme, JME_IEVE); jme_intr_msi(jme, intrstat); return IRQ_HANDLED; } static void jme_reset_link(struct jme_adapter *jme) { jwrite32(jme, JME_TMCSR, TMCSR_SWIT); } static void jme_restart_an(struct jme_adapter *jme) { u32 bmcr; spin_lock_bh(&jme->phy_lock); bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR); bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr); spin_unlock_bh(&jme->phy_lock); } static int jme_request_irq(struct jme_adapter *jme) { int rc; struct net_device *netdev = jme->dev; irq_handler_t handler = jme_intr; int irq_flags = IRQF_SHARED; if (!pci_enable_msi(jme->pdev)) { set_bit(JME_FLAG_MSI, &jme->flags); handler = jme_msi; irq_flags = 0; } rc = request_irq(jme->pdev->irq, handler, irq_flags, netdev->name, netdev); if (rc) { netdev_err(netdev, "Unable to request %s interrupt (return: %d)\n", test_bit(JME_FLAG_MSI, &jme->flags) ? "MSI" : "INTx", rc); if (test_bit(JME_FLAG_MSI, &jme->flags)) { pci_disable_msi(jme->pdev); clear_bit(JME_FLAG_MSI, &jme->flags); } } else { netdev->irq = jme->pdev->irq; } return rc; } static void jme_free_irq(struct jme_adapter *jme) { free_irq(jme->pdev->irq, jme->dev); if (test_bit(JME_FLAG_MSI, &jme->flags)) { pci_disable_msi(jme->pdev); clear_bit(JME_FLAG_MSI, &jme->flags); jme->dev->irq = jme->pdev->irq; } } static inline void jme_new_phy_on(struct jme_adapter *jme) { u32 reg; reg = jread32(jme, JME_PHY_PWR); reg &= ~(PHY_PWR_DWN1SEL | PHY_PWR_DWN1SW | PHY_PWR_DWN2 | PHY_PWR_CLKSEL); jwrite32(jme, JME_PHY_PWR, reg); pci_read_config_dword(jme->pdev, PCI_PRIV_PE1, ®); reg &= ~PE1_GPREG0_PBG; reg |= PE1_GPREG0_ENBG; pci_write_config_dword(jme->pdev, PCI_PRIV_PE1, reg); } static inline void jme_new_phy_off(struct jme_adapter *jme) { u32 reg; reg = jread32(jme, JME_PHY_PWR); reg |= PHY_PWR_DWN1SEL | PHY_PWR_DWN1SW | PHY_PWR_DWN2 | PHY_PWR_CLKSEL; jwrite32(jme, JME_PHY_PWR, reg); pci_read_config_dword(jme->pdev, PCI_PRIV_PE1, ®); reg &= ~PE1_GPREG0_PBG; reg |= PE1_GPREG0_PDD3COLD; pci_write_config_dword(jme->pdev, PCI_PRIV_PE1, reg); } static inline void jme_phy_on(struct jme_adapter *jme) { u32 bmcr; bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR); bmcr &= ~BMCR_PDOWN; jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr); if (new_phy_power_ctrl(jme->chip_main_rev)) jme_new_phy_on(jme); } static inline void jme_phy_off(struct jme_adapter *jme) { u32 bmcr; bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR); bmcr |= BMCR_PDOWN; jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr); if (new_phy_power_ctrl(jme->chip_main_rev)) jme_new_phy_off(jme); } static int jme_phy_specreg_read(struct jme_adapter *jme, u32 specreg) { u32 phy_addr; phy_addr = JM_PHY_SPEC_REG_READ | specreg; jme_mdio_write(jme->dev, jme->mii_if.phy_id, JM_PHY_SPEC_ADDR_REG, phy_addr); return jme_mdio_read(jme->dev, jme->mii_if.phy_id, JM_PHY_SPEC_DATA_REG); } static void jme_phy_specreg_write(struct jme_adapter *jme, u32 ext_reg, u32 phy_data) { u32 phy_addr; phy_addr = JM_PHY_SPEC_REG_WRITE | ext_reg; jme_mdio_write(jme->dev, jme->mii_if.phy_id, JM_PHY_SPEC_DATA_REG, phy_data); jme_mdio_write(jme->dev, jme->mii_if.phy_id, JM_PHY_SPEC_ADDR_REG, phy_addr); } static int jme_phy_calibration(struct jme_adapter *jme) { u32 ctrl1000, phy_data; jme_phy_off(jme); jme_phy_on(jme); /* Enabel PHY test mode 1 */ ctrl1000 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_CTRL1000); ctrl1000 &= ~PHY_GAD_TEST_MODE_MSK; ctrl1000 |= PHY_GAD_TEST_MODE_1; jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_CTRL1000, ctrl1000); phy_data = jme_phy_specreg_read(jme, JM_PHY_EXT_COMM_2_REG); phy_data &= ~JM_PHY_EXT_COMM_2_CALI_MODE_0; phy_data |= JM_PHY_EXT_COMM_2_CALI_LATCH | JM_PHY_EXT_COMM_2_CALI_ENABLE; jme_phy_specreg_write(jme, JM_PHY_EXT_COMM_2_REG, phy_data); msleep(20); phy_data = jme_phy_specreg_read(jme, JM_PHY_EXT_COMM_2_REG); phy_data &= ~(JM_PHY_EXT_COMM_2_CALI_ENABLE | JM_PHY_EXT_COMM_2_CALI_MODE_0 | JM_PHY_EXT_COMM_2_CALI_LATCH); jme_phy_specreg_write(jme, JM_PHY_EXT_COMM_2_REG, phy_data); /* Disable PHY test mode */ ctrl1000 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_CTRL1000); ctrl1000 &= ~PHY_GAD_TEST_MODE_MSK; jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_CTRL1000, ctrl1000); return 0; } static int jme_phy_setEA(struct jme_adapter *jme) { u32 phy_comm0 = 0, phy_comm1 = 0; u8 nic_ctrl; pci_read_config_byte(jme->pdev, PCI_PRIV_SHARE_NICCTRL, &nic_ctrl); if ((nic_ctrl & 0x3) == JME_FLAG_PHYEA_ENABLE) return 0; switch (jme->pdev->device) { case PCI_DEVICE_ID_JMICRON_JMC250: if (((jme->chip_main_rev == 5) && ((jme->chip_sub_rev == 0) || (jme->chip_sub_rev == 1) || (jme->chip_sub_rev == 3))) || (jme->chip_main_rev >= 6)) { phy_comm0 = 0x008A; phy_comm1 = 0x4109; } if ((jme->chip_main_rev == 3) && ((jme->chip_sub_rev == 1) || (jme->chip_sub_rev == 2))) phy_comm0 = 0xE088; break; case PCI_DEVICE_ID_JMICRON_JMC260: if (((jme->chip_main_rev == 5) && ((jme->chip_sub_rev == 0) || (jme->chip_sub_rev == 1) || (jme->chip_sub_rev == 3))) || (jme->chip_main_rev >= 6)) { phy_comm0 = 0x008A; phy_comm1 = 0x4109; } if ((jme->chip_main_rev == 3) && ((jme->chip_sub_rev == 1) || (jme->chip_sub_rev == 2))) phy_comm0 = 0xE088; if ((jme->chip_main_rev == 2) && (jme->chip_sub_rev == 0)) phy_comm0 = 0x608A; if ((jme->chip_main_rev == 2) && (jme->chip_sub_rev == 2)) phy_comm0 = 0x408A; break; default: return -ENODEV; } if (phy_comm0) jme_phy_specreg_write(jme, JM_PHY_EXT_COMM_0_REG, phy_comm0); if (phy_comm1) jme_phy_specreg_write(jme, JM_PHY_EXT_COMM_1_REG, phy_comm1); return 0; } static int jme_open(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); int rc; jme_clear_pm(jme); JME_NAPI_ENABLE(jme); tasklet_init(&jme->linkch_task, jme_link_change_tasklet, (unsigned long) jme); tasklet_init(&jme->txclean_task, jme_tx_clean_tasklet, (unsigned long) jme); tasklet_init(&jme->rxclean_task, jme_rx_clean_tasklet, (unsigned long) jme); tasklet_init(&jme->rxempty_task, jme_rx_empty_tasklet, (unsigned long) jme); rc = jme_request_irq(jme); if (rc) goto err_out; jme_start_irq(jme); jme_phy_on(jme); if (test_bit(JME_FLAG_SSET, &jme->flags)) jme_set_settings(netdev, &jme->old_ecmd); else jme_reset_phy_processor(jme); jme_phy_calibration(jme); jme_phy_setEA(jme); jme_reset_link(jme); return 0; err_out: netif_stop_queue(netdev); netif_carrier_off(netdev); return rc; } static void jme_set_100m_half(struct jme_adapter *jme) { u32 bmcr, tmp; jme_phy_on(jme); bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR); tmp = bmcr & ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_FULLDPLX); tmp |= BMCR_SPEED100; if (bmcr != tmp) jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, tmp); if (jme->fpgaver) jwrite32(jme, JME_GHC, GHC_SPEED_100M | GHC_LINK_POLL); else jwrite32(jme, JME_GHC, GHC_SPEED_100M); } #define JME_WAIT_LINK_TIME 2000 /* 2000ms */ static void jme_wait_link(struct jme_adapter *jme) { u32 phylink, to = JME_WAIT_LINK_TIME; mdelay(1000); phylink = jme_linkstat_from_phy(jme); while (!(phylink & PHY_LINK_UP) && (to -= 10) > 0) { mdelay(10); phylink = jme_linkstat_from_phy(jme); } } static void jme_powersave_phy(struct jme_adapter *jme) { if (jme->reg_pmcs) { jme_set_100m_half(jme); if (jme->reg_pmcs & (PMCS_LFEN | PMCS_LREN)) jme_wait_link(jme); jme_clear_pm(jme); } else { jme_phy_off(jme); } } static int jme_close(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); netif_stop_queue(netdev); netif_carrier_off(netdev); jme_stop_irq(jme); jme_free_irq(jme); JME_NAPI_DISABLE(jme); tasklet_kill(&jme->linkch_task); tasklet_kill(&jme->txclean_task); tasklet_kill(&jme->rxclean_task); tasklet_kill(&jme->rxempty_task); jme_disable_rx_engine(jme); jme_disable_tx_engine(jme); jme_reset_mac_processor(jme); jme_free_rx_resources(jme); jme_free_tx_resources(jme); jme->phylink = 0; jme_phy_off(jme); return 0; } static int jme_alloc_txdesc(struct jme_adapter *jme, struct sk_buff *skb) { struct jme_ring *txring = &(jme->txring[0]); int idx, nr_alloc, mask = jme->tx_ring_mask; idx = txring->next_to_use; nr_alloc = skb_shinfo(skb)->nr_frags + 2; if (unlikely(atomic_read(&txring->nr_free) < nr_alloc)) return -1; atomic_sub(nr_alloc, &txring->nr_free); txring->next_to_use = (txring->next_to_use + nr_alloc) & mask; return idx; } static int jme_fill_tx_map(struct pci_dev *pdev, struct txdesc *txdesc, struct jme_buffer_info *txbi, struct page *page, u32 page_offset, u32 len, bool hidma) { dma_addr_t dmaaddr; dmaaddr = pci_map_page(pdev, page, page_offset, len, PCI_DMA_TODEVICE); if (unlikely(pci_dma_mapping_error(pdev, dmaaddr))) return -EINVAL; pci_dma_sync_single_for_device(pdev, dmaaddr, len, PCI_DMA_TODEVICE); txdesc->dw[0] = 0; txdesc->dw[1] = 0; txdesc->desc2.flags = TXFLAG_OWN; txdesc->desc2.flags |= (hidma) ? TXFLAG_64BIT : 0; txdesc->desc2.datalen = cpu_to_le16(len); txdesc->desc2.bufaddrh = cpu_to_le32((__u64)dmaaddr >> 32); txdesc->desc2.bufaddrl = cpu_to_le32( (__u64)dmaaddr & 0xFFFFFFFFUL); txbi->mapping = dmaaddr; txbi->len = len; return 0; } static void jme_drop_tx_map(struct jme_adapter *jme, int startidx, int count) { struct jme_ring *txring = &(jme->txring[0]); struct jme_buffer_info *txbi = txring->bufinf, *ctxbi; int mask = jme->tx_ring_mask; int j; for (j = 0 ; j < count ; j++) { ctxbi = txbi + ((startidx + j + 2) & (mask)); pci_unmap_page(jme->pdev, ctxbi->mapping, ctxbi->len, PCI_DMA_TODEVICE); ctxbi->mapping = 0; ctxbi->len = 0; } } static int jme_map_tx_skb(struct jme_adapter *jme, struct sk_buff *skb, int idx) { struct jme_ring *txring = &(jme->txring[0]); struct txdesc *txdesc = txring->desc, *ctxdesc; struct jme_buffer_info *txbi = txring->bufinf, *ctxbi; bool hidma = jme->dev->features & NETIF_F_HIGHDMA; int i, nr_frags = skb_shinfo(skb)->nr_frags; int mask = jme->tx_ring_mask; const struct skb_frag_struct *frag; u32 len; int ret = 0; for (i = 0 ; i < nr_frags ; ++i) { frag = &skb_shinfo(skb)->frags[i]; ctxdesc = txdesc + ((idx + i + 2) & (mask)); ctxbi = txbi + ((idx + i + 2) & (mask)); ret = jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, skb_frag_page(frag), frag->page_offset, skb_frag_size(frag), hidma); if (ret) { jme_drop_tx_map(jme, idx, i); goto out; } } len = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len; ctxdesc = txdesc + ((idx + 1) & (mask)); ctxbi = txbi + ((idx + 1) & (mask)); ret = jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, virt_to_page(skb->data), offset_in_page(skb->data), len, hidma); if (ret) jme_drop_tx_map(jme, idx, i); out: return ret; } static int jme_tx_tso(struct sk_buff *skb, __le16 *mss, u8 *flags) { *mss = cpu_to_le16(skb_shinfo(skb)->gso_size << TXDESC_MSS_SHIFT); if (*mss) { *flags |= TXFLAG_LSEN; if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *iph = ip_hdr(skb); iph->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); } else { struct ipv6hdr *ip6h = ipv6_hdr(skb); tcp_hdr(skb)->check = ~csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr, 0, IPPROTO_TCP, 0); } return 0; } return 1; } static void jme_tx_csum(struct jme_adapter *jme, struct sk_buff *skb, u8 *flags) { if (skb->ip_summed == CHECKSUM_PARTIAL) { u8 ip_proto; switch (skb->protocol) { case htons(ETH_P_IP): ip_proto = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): ip_proto = ipv6_hdr(skb)->nexthdr; break; default: ip_proto = 0; break; } switch (ip_proto) { case IPPROTO_TCP: *flags |= TXFLAG_TCPCS; break; case IPPROTO_UDP: *flags |= TXFLAG_UDPCS; break; default: netif_err(jme, tx_err, jme->dev, "Error upper layer protocol\n"); break; } } } static inline void jme_tx_vlan(struct sk_buff *skb, __le16 *vlan, u8 *flags) { if (skb_vlan_tag_present(skb)) { *flags |= TXFLAG_TAGON; *vlan = cpu_to_le16(skb_vlan_tag_get(skb)); } } static int jme_fill_tx_desc(struct jme_adapter *jme, struct sk_buff *skb, int idx) { struct jme_ring *txring = &(jme->txring[0]); struct txdesc *txdesc; struct jme_buffer_info *txbi; u8 flags; int ret = 0; txdesc = (struct txdesc *)txring->desc + idx; txbi = txring->bufinf + idx; txdesc->dw[0] = 0; txdesc->dw[1] = 0; txdesc->dw[2] = 0; txdesc->dw[3] = 0; txdesc->desc1.pktsize = cpu_to_le16(skb->len); /* * Set OWN bit at final. * When kernel transmit faster than NIC. * And NIC trying to send this descriptor before we tell * it to start sending this TX queue. * Other fields are already filled correctly. */ wmb(); flags = TXFLAG_OWN | TXFLAG_INT; /* * Set checksum flags while not tso */ if (jme_tx_tso(skb, &txdesc->desc1.mss, &flags)) jme_tx_csum(jme, skb, &flags); jme_tx_vlan(skb, &txdesc->desc1.vlan, &flags); ret = jme_map_tx_skb(jme, skb, idx); if (ret) return ret; txdesc->desc1.flags = flags; /* * Set tx buffer info after telling NIC to send * For better tx_clean timing */ wmb(); txbi->nr_desc = skb_shinfo(skb)->nr_frags + 2; txbi->skb = skb; txbi->len = skb->len; txbi->start_xmit = jiffies; if (!txbi->start_xmit) txbi->start_xmit = (0UL-1); return 0; } static void jme_stop_queue_if_full(struct jme_adapter *jme) { struct jme_ring *txring = &(jme->txring[0]); struct jme_buffer_info *txbi = txring->bufinf; int idx = atomic_read(&txring->next_to_clean); txbi += idx; smp_wmb(); if (unlikely(atomic_read(&txring->nr_free) < (MAX_SKB_FRAGS+2))) { netif_stop_queue(jme->dev); netif_info(jme, tx_queued, jme->dev, "TX Queue Paused\n"); smp_wmb(); if (atomic_read(&txring->nr_free) >= (jme->tx_wake_threshold)) { netif_wake_queue(jme->dev); netif_info(jme, tx_queued, jme->dev, "TX Queue Fast Waked\n"); } } if (unlikely(txbi->start_xmit && (jiffies - txbi->start_xmit) >= TX_TIMEOUT && txbi->skb)) { netif_stop_queue(jme->dev); netif_info(jme, tx_queued, jme->dev, "TX Queue Stopped %d@%lu\n", idx, jiffies); } } /* * This function is already protected by netif_tx_lock() */ static netdev_tx_t jme_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); int idx; if (unlikely(skb_is_gso(skb) && skb_cow_head(skb, 0))) { dev_kfree_skb_any(skb); ++(NET_STAT(jme).tx_dropped); return NETDEV_TX_OK; } idx = jme_alloc_txdesc(jme, skb); if (unlikely(idx < 0)) { netif_stop_queue(netdev); netif_err(jme, tx_err, jme->dev, "BUG! Tx ring full when queue awake!\n"); return NETDEV_TX_BUSY; } if (jme_fill_tx_desc(jme, skb, idx)) return NETDEV_TX_OK; jwrite32(jme, JME_TXCS, jme->reg_txcs | TXCS_SELECT_QUEUE0 | TXCS_QUEUE0S | TXCS_ENABLE); tx_dbg(jme, "xmit: %d+%d@%lu\n", idx, skb_shinfo(skb)->nr_frags + 2, jiffies); jme_stop_queue_if_full(jme); return NETDEV_TX_OK; } static void jme_set_unicastaddr(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); u32 val; val = (netdev->dev_addr[3] & 0xff) << 24 | (netdev->dev_addr[2] & 0xff) << 16 | (netdev->dev_addr[1] & 0xff) << 8 | (netdev->dev_addr[0] & 0xff); jwrite32(jme, JME_RXUMA_LO, val); val = (netdev->dev_addr[5] & 0xff) << 8 | (netdev->dev_addr[4] & 0xff); jwrite32(jme, JME_RXUMA_HI, val); } static int jme_set_macaddr(struct net_device *netdev, void *p) { struct jme_adapter *jme = netdev_priv(netdev); struct sockaddr *addr = p; if (netif_running(netdev)) return -EBUSY; spin_lock_bh(&jme->macaddr_lock); memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); jme_set_unicastaddr(netdev); spin_unlock_bh(&jme->macaddr_lock); return 0; } static void jme_set_multi(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); u32 mc_hash[2] = {}; spin_lock_bh(&jme->rxmcs_lock); jme->reg_rxmcs |= RXMCS_BRDFRAME | RXMCS_UNIFRAME; if (netdev->flags & IFF_PROMISC) { jme->reg_rxmcs |= RXMCS_ALLFRAME; } else if (netdev->flags & IFF_ALLMULTI) { jme->reg_rxmcs |= RXMCS_ALLMULFRAME; } else if (netdev->flags & IFF_MULTICAST) { struct netdev_hw_addr *ha; int bit_nr; jme->reg_rxmcs |= RXMCS_MULFRAME | RXMCS_MULFILTERED; netdev_for_each_mc_addr(ha, netdev) { bit_nr = ether_crc(ETH_ALEN, ha->addr) & 0x3F; mc_hash[bit_nr >> 5] |= 1 << (bit_nr & 0x1F); } jwrite32(jme, JME_RXMCHT_LO, mc_hash[0]); jwrite32(jme, JME_RXMCHT_HI, mc_hash[1]); } wmb(); jwrite32(jme, JME_RXMCS, jme->reg_rxmcs); spin_unlock_bh(&jme->rxmcs_lock); } static int jme_change_mtu(struct net_device *netdev, int new_mtu) { struct jme_adapter *jme = netdev_priv(netdev); if (new_mtu == jme->old_mtu) return 0; if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) || ((new_mtu) < IPV6_MIN_MTU)) return -EINVAL; netdev->mtu = new_mtu; netdev_update_features(netdev); jme_restart_rx_engine(jme); jme_reset_link(jme); return 0; } static void jme_tx_timeout(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); jme->phylink = 0; jme_reset_phy_processor(jme); if (test_bit(JME_FLAG_SSET, &jme->flags)) jme_set_settings(netdev, &jme->old_ecmd); /* * Force to Reset the link again */ jme_reset_link(jme); } static inline void jme_pause_rx(struct jme_adapter *jme) { atomic_dec(&jme->link_changing); jme_set_rx_pcc(jme, PCC_OFF); if (test_bit(JME_FLAG_POLL, &jme->flags)) { JME_NAPI_DISABLE(jme); } else { tasklet_disable(&jme->rxclean_task); tasklet_disable(&jme->rxempty_task); } } static inline void jme_resume_rx(struct jme_adapter *jme) { struct dynpcc_info *dpi = &(jme->dpi); if (test_bit(JME_FLAG_POLL, &jme->flags)) { JME_NAPI_ENABLE(jme); } else { tasklet_enable(&jme->rxclean_task); tasklet_enable(&jme->rxempty_task); } dpi->cur = PCC_P1; dpi->attempt = PCC_P1; dpi->cnt = 0; jme_set_rx_pcc(jme, PCC_P1); atomic_inc(&jme->link_changing); } static void jme_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct jme_adapter *jme = netdev_priv(netdev); strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); strlcpy(info->bus_info, pci_name(jme->pdev), sizeof(info->bus_info)); } static int jme_get_regs_len(struct net_device *netdev) { return JME_REG_LEN; } static void mmapio_memcpy(struct jme_adapter *jme, u32 *p, u32 reg, int len) { int i; for (i = 0 ; i < len ; i += 4) p[i >> 2] = jread32(jme, reg + i); } static void mdio_memcpy(struct jme_adapter *jme, u32 *p, int reg_nr) { int i; u16 *p16 = (u16 *)p; for (i = 0 ; i < reg_nr ; ++i) p16[i] = jme_mdio_read(jme->dev, jme->mii_if.phy_id, i); } static void jme_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct jme_adapter *jme = netdev_priv(netdev); u32 *p32 = (u32 *)p; memset(p, 0xFF, JME_REG_LEN); regs->version = 1; mmapio_memcpy(jme, p32, JME_MAC, JME_MAC_LEN); p32 += 0x100 >> 2; mmapio_memcpy(jme, p32, JME_PHY, JME_PHY_LEN); p32 += 0x100 >> 2; mmapio_memcpy(jme, p32, JME_MISC, JME_MISC_LEN); p32 += 0x100 >> 2; mmapio_memcpy(jme, p32, JME_RSS, JME_RSS_LEN); p32 += 0x100 >> 2; mdio_memcpy(jme, p32, JME_PHY_REG_NR); } static int jme_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd) { struct jme_adapter *jme = netdev_priv(netdev); ecmd->tx_coalesce_usecs = PCC_TX_TO; ecmd->tx_max_coalesced_frames = PCC_TX_CNT; if (test_bit(JME_FLAG_POLL, &jme->flags)) { ecmd->use_adaptive_rx_coalesce = false; ecmd->rx_coalesce_usecs = 0; ecmd->rx_max_coalesced_frames = 0; return 0; } ecmd->use_adaptive_rx_coalesce = true; switch (jme->dpi.cur) { case PCC_P1: ecmd->rx_coalesce_usecs = PCC_P1_TO; ecmd->rx_max_coalesced_frames = PCC_P1_CNT; break; case PCC_P2: ecmd->rx_coalesce_usecs = PCC_P2_TO; ecmd->rx_max_coalesced_frames = PCC_P2_CNT; break; case PCC_P3: ecmd->rx_coalesce_usecs = PCC_P3_TO; ecmd->rx_max_coalesced_frames = PCC_P3_CNT; break; default: break; } return 0; } static int jme_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd) { struct jme_adapter *jme = netdev_priv(netdev); struct dynpcc_info *dpi = &(jme->dpi); if (netif_running(netdev)) return -EBUSY; if (ecmd->use_adaptive_rx_coalesce && test_bit(JME_FLAG_POLL, &jme->flags)) { clear_bit(JME_FLAG_POLL, &jme->flags); jme->jme_rx = netif_rx; dpi->cur = PCC_P1; dpi->attempt = PCC_P1; dpi->cnt = 0; jme_set_rx_pcc(jme, PCC_P1); jme_interrupt_mode(jme); } else if (!(ecmd->use_adaptive_rx_coalesce) && !(test_bit(JME_FLAG_POLL, &jme->flags))) { set_bit(JME_FLAG_POLL, &jme->flags); jme->jme_rx = netif_receive_skb; jme_interrupt_mode(jme); } return 0; } static void jme_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *ecmd) { struct jme_adapter *jme = netdev_priv(netdev); u32 val; ecmd->tx_pause = (jme->reg_txpfc & TXPFC_PF_EN) != 0; ecmd->rx_pause = (jme->reg_rxmcs & RXMCS_FLOWCTRL) != 0; spin_lock_bh(&jme->phy_lock); val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE); spin_unlock_bh(&jme->phy_lock); ecmd->autoneg = (val & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) != 0; } static int jme_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *ecmd) { struct jme_adapter *jme = netdev_priv(netdev); u32 val; if (((jme->reg_txpfc & TXPFC_PF_EN) != 0) ^ (ecmd->tx_pause != 0)) { if (ecmd->tx_pause) jme->reg_txpfc |= TXPFC_PF_EN; else jme->reg_txpfc &= ~TXPFC_PF_EN; jwrite32(jme, JME_TXPFC, jme->reg_txpfc); } spin_lock_bh(&jme->rxmcs_lock); if (((jme->reg_rxmcs & RXMCS_FLOWCTRL) != 0) ^ (ecmd->rx_pause != 0)) { if (ecmd->rx_pause) jme->reg_rxmcs |= RXMCS_FLOWCTRL; else jme->reg_rxmcs &= ~RXMCS_FLOWCTRL; jwrite32(jme, JME_RXMCS, jme->reg_rxmcs); } spin_unlock_bh(&jme->rxmcs_lock); spin_lock_bh(&jme->phy_lock); val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE); if (((val & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) != 0) ^ (ecmd->autoneg != 0)) { if (ecmd->autoneg) val |= (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); else val &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE, val); } spin_unlock_bh(&jme->phy_lock); return 0; } static void jme_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct jme_adapter *jme = netdev_priv(netdev); wol->supported = WAKE_MAGIC | WAKE_PHY; wol->wolopts = 0; if (jme->reg_pmcs & (PMCS_LFEN | PMCS_LREN)) wol->wolopts |= WAKE_PHY; if (jme->reg_pmcs & PMCS_MFEN) wol->wolopts |= WAKE_MAGIC; } static int jme_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct jme_adapter *jme = netdev_priv(netdev); if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_ARP)) return -EOPNOTSUPP; jme->reg_pmcs = 0; if (wol->wolopts & WAKE_PHY) jme->reg_pmcs |= PMCS_LFEN | PMCS_LREN; if (wol->wolopts & WAKE_MAGIC) jme->reg_pmcs |= PMCS_MFEN; jwrite32(jme, JME_PMCS, jme->reg_pmcs); device_set_wakeup_enable(&jme->pdev->dev, !!(jme->reg_pmcs)); return 0; } static int jme_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) { struct jme_adapter *jme = netdev_priv(netdev); int rc; spin_lock_bh(&jme->phy_lock); rc = mii_ethtool_gset(&(jme->mii_if), ecmd); spin_unlock_bh(&jme->phy_lock); return rc; } static int jme_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) { struct jme_adapter *jme = netdev_priv(netdev); int rc, fdc = 0; if (ethtool_cmd_speed(ecmd) == SPEED_1000 && ecmd->autoneg != AUTONEG_ENABLE) return -EINVAL; /* * Check If user changed duplex only while force_media. * Hardware would not generate link change interrupt. */ if (jme->mii_if.force_media && ecmd->autoneg != AUTONEG_ENABLE && (jme->mii_if.full_duplex != ecmd->duplex)) fdc = 1; spin_lock_bh(&jme->phy_lock); rc = mii_ethtool_sset(&(jme->mii_if), ecmd); spin_unlock_bh(&jme->phy_lock); if (!rc) { if (fdc) jme_reset_link(jme); jme->old_ecmd = *ecmd; set_bit(JME_FLAG_SSET, &jme->flags); } return rc; } static int jme_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { int rc; struct jme_adapter *jme = netdev_priv(netdev); struct mii_ioctl_data *mii_data = if_mii(rq); unsigned int duplex_chg; if (cmd == SIOCSMIIREG) { u16 val = mii_data->val_in; if (!(val & (BMCR_RESET|BMCR_ANENABLE)) && (val & BMCR_SPEED1000)) return -EINVAL; } spin_lock_bh(&jme->phy_lock); rc = generic_mii_ioctl(&jme->mii_if, mii_data, cmd, &duplex_chg); spin_unlock_bh(&jme->phy_lock); if (!rc && (cmd == SIOCSMIIREG)) { if (duplex_chg) jme_reset_link(jme); jme_get_settings(netdev, &jme->old_ecmd); set_bit(JME_FLAG_SSET, &jme->flags); } return rc; } static u32 jme_get_link(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); return jread32(jme, JME_PHY_LINK) & PHY_LINK_UP; } static u32 jme_get_msglevel(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); return jme->msg_enable; } static void jme_set_msglevel(struct net_device *netdev, u32 value) { struct jme_adapter *jme = netdev_priv(netdev); jme->msg_enable = value; } static netdev_features_t jme_fix_features(struct net_device *netdev, netdev_features_t features) { if (netdev->mtu > 1900) features &= ~(NETIF_F_ALL_TSO | NETIF_F_CSUM_MASK); return features; } static int jme_set_features(struct net_device *netdev, netdev_features_t features) { struct jme_adapter *jme = netdev_priv(netdev); spin_lock_bh(&jme->rxmcs_lock); if (features & NETIF_F_RXCSUM) jme->reg_rxmcs |= RXMCS_CHECKSUM; else jme->reg_rxmcs &= ~RXMCS_CHECKSUM; jwrite32(jme, JME_RXMCS, jme->reg_rxmcs); spin_unlock_bh(&jme->rxmcs_lock); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void jme_netpoll(struct net_device *dev) { unsigned long flags; local_irq_save(flags); jme_intr(dev->irq, dev); local_irq_restore(flags); } #endif static int jme_nway_reset(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); jme_restart_an(jme); return 0; } static u8 jme_smb_read(struct jme_adapter *jme, unsigned int addr) { u32 val; int to; val = jread32(jme, JME_SMBCSR); to = JME_SMB_BUSY_TIMEOUT; while ((val & SMBCSR_BUSY) && --to) { msleep(1); val = jread32(jme, JME_SMBCSR); } if (!to) { netif_err(jme, hw, jme->dev, "SMB Bus Busy\n"); return 0xFF; } jwrite32(jme, JME_SMBINTF, ((addr << SMBINTF_HWADDR_SHIFT) & SMBINTF_HWADDR) | SMBINTF_HWRWN_READ | SMBINTF_HWCMD); val = jread32(jme, JME_SMBINTF); to = JME_SMB_BUSY_TIMEOUT; while ((val & SMBINTF_HWCMD) && --to) { msleep(1); val = jread32(jme, JME_SMBINTF); } if (!to) { netif_err(jme, hw, jme->dev, "SMB Bus Busy\n"); return 0xFF; } return (val & SMBINTF_HWDATR) >> SMBINTF_HWDATR_SHIFT; } static void jme_smb_write(struct jme_adapter *jme, unsigned int addr, u8 data) { u32 val; int to; val = jread32(jme, JME_SMBCSR); to = JME_SMB_BUSY_TIMEOUT; while ((val & SMBCSR_BUSY) && --to) { msleep(1); val = jread32(jme, JME_SMBCSR); } if (!to) { netif_err(jme, hw, jme->dev, "SMB Bus Busy\n"); return; } jwrite32(jme, JME_SMBINTF, ((data << SMBINTF_HWDATW_SHIFT) & SMBINTF_HWDATW) | ((addr << SMBINTF_HWADDR_SHIFT) & SMBINTF_HWADDR) | SMBINTF_HWRWN_WRITE | SMBINTF_HWCMD); val = jread32(jme, JME_SMBINTF); to = JME_SMB_BUSY_TIMEOUT; while ((val & SMBINTF_HWCMD) && --to) { msleep(1); val = jread32(jme, JME_SMBINTF); } if (!to) { netif_err(jme, hw, jme->dev, "SMB Bus Busy\n"); return; } mdelay(2); } static int jme_get_eeprom_len(struct net_device *netdev) { struct jme_adapter *jme = netdev_priv(netdev); u32 val; val = jread32(jme, JME_SMBCSR); return (val & SMBCSR_EEPROMD) ? JME_SMB_LEN : 0; } static int jme_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *data) { struct jme_adapter *jme = netdev_priv(netdev); int i, offset = eeprom->offset, len = eeprom->len; /* * ethtool will check the boundary for us */ eeprom->magic = JME_EEPROM_MAGIC; for (i = 0 ; i < len ; ++i) data[i] = jme_smb_read(jme, i + offset); return 0; } static int jme_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *data) { struct jme_adapter *jme = netdev_priv(netdev); int i, offset = eeprom->offset, len = eeprom->len; if (eeprom->magic != JME_EEPROM_MAGIC) return -EINVAL; /* * ethtool will check the boundary for us */ for (i = 0 ; i < len ; ++i) jme_smb_write(jme, i + offset, data[i]); return 0; } static const struct ethtool_ops jme_ethtool_ops = { .get_drvinfo = jme_get_drvinfo, .get_regs_len = jme_get_regs_len, .get_regs = jme_get_regs, .get_coalesce = jme_get_coalesce, .set_coalesce = jme_set_coalesce, .get_pauseparam = jme_get_pauseparam, .set_pauseparam = jme_set_pauseparam, .get_wol = jme_get_wol, .set_wol = jme_set_wol, .get_settings = jme_get_settings, .set_settings = jme_set_settings, .get_link = jme_get_link, .get_msglevel = jme_get_msglevel, .set_msglevel = jme_set_msglevel, .nway_reset = jme_nway_reset, .get_eeprom_len = jme_get_eeprom_len, .get_eeprom = jme_get_eeprom, .set_eeprom = jme_set_eeprom, }; static int jme_pci_dma64(struct pci_dev *pdev) { if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250 && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) return 1; if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250 && !pci_set_dma_mask(pdev, DMA_BIT_MASK(40))) if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40))) return 1; if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) return 0; return -1; } static inline void jme_phy_init(struct jme_adapter *jme) { u16 reg26; reg26 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 26); jme_mdio_write(jme->dev, jme->mii_if.phy_id, 26, reg26 | 0x1000); } static inline void jme_check_hw_ver(struct jme_adapter *jme) { u32 chipmode; chipmode = jread32(jme, JME_CHIPMODE); jme->fpgaver = (chipmode & CM_FPGAVER_MASK) >> CM_FPGAVER_SHIFT; jme->chiprev = (chipmode & CM_CHIPREV_MASK) >> CM_CHIPREV_SHIFT; jme->chip_main_rev = jme->chiprev & 0xF; jme->chip_sub_rev = (jme->chiprev >> 4) & 0xF; } static const struct net_device_ops jme_netdev_ops = { .ndo_open = jme_open, .ndo_stop = jme_close, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = jme_ioctl, .ndo_start_xmit = jme_start_xmit, .ndo_set_mac_address = jme_set_macaddr, .ndo_set_rx_mode = jme_set_multi, .ndo_change_mtu = jme_change_mtu, .ndo_tx_timeout = jme_tx_timeout, .ndo_fix_features = jme_fix_features, .ndo_set_features = jme_set_features, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = jme_netpoll, #endif }; static int jme_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int rc = 0, using_dac, i; struct net_device *netdev; struct jme_adapter *jme; u16 bmcr, bmsr; u32 apmc; /* * set up PCI device basics */ pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); rc = pci_enable_device(pdev); if (rc) { pr_err("Cannot enable PCI device\n"); goto err_out; } using_dac = jme_pci_dma64(pdev); if (using_dac < 0) { pr_err("Cannot set PCI DMA Mask\n"); rc = -EIO; goto err_out_disable_pdev; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { pr_err("No PCI resource region found\n"); rc = -ENOMEM; goto err_out_disable_pdev; } rc = pci_request_regions(pdev, DRV_NAME); if (rc) { pr_err("Cannot obtain PCI resource region\n"); goto err_out_disable_pdev; } pci_set_master(pdev); /* * alloc and init net device */ netdev = alloc_etherdev(sizeof(*jme)); if (!netdev) { rc = -ENOMEM; goto err_out_release_regions; } netdev->netdev_ops = &jme_netdev_ops; netdev->ethtool_ops = &jme_ethtool_ops; netdev->watchdog_timeo = TX_TIMEOUT; netdev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_RXCSUM; netdev->features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; if (using_dac) netdev->features |= NETIF_F_HIGHDMA; SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); /* * init adapter info */ jme = netdev_priv(netdev); jme->pdev = pdev; jme->dev = netdev; jme->jme_rx = netif_rx; jme->old_mtu = netdev->mtu = 1500; jme->phylink = 0; jme->tx_ring_size = 1 << 10; jme->tx_ring_mask = jme->tx_ring_size - 1; jme->tx_wake_threshold = 1 << 9; jme->rx_ring_size = 1 << 9; jme->rx_ring_mask = jme->rx_ring_size - 1; jme->msg_enable = JME_DEF_MSG_ENABLE; jme->regs = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!(jme->regs)) { pr_err("Mapping PCI resource region error\n"); rc = -ENOMEM; goto err_out_free_netdev; } if (no_pseudohp) { apmc = jread32(jme, JME_APMC) & ~JME_APMC_PSEUDO_HP_EN; jwrite32(jme, JME_APMC, apmc); } else if (force_pseudohp) { apmc = jread32(jme, JME_APMC) | JME_APMC_PSEUDO_HP_EN; jwrite32(jme, JME_APMC, apmc); } NETIF_NAPI_SET(netdev, &jme->napi, jme_poll, NAPI_POLL_WEIGHT) spin_lock_init(&jme->phy_lock); spin_lock_init(&jme->macaddr_lock); spin_lock_init(&jme->rxmcs_lock); atomic_set(&jme->link_changing, 1); atomic_set(&jme->rx_cleaning, 1); atomic_set(&jme->tx_cleaning, 1); atomic_set(&jme->rx_empty, 1); tasklet_init(&jme->pcc_task, jme_pcc_tasklet, (unsigned long) jme); jme->dpi.cur = PCC_P1; jme->reg_ghc = 0; jme->reg_rxcs = RXCS_DEFAULT; jme->reg_rxmcs = RXMCS_DEFAULT; jme->reg_txpfc = 0; jme->reg_pmcs = PMCS_MFEN; jme->reg_gpreg1 = GPREG1_DEFAULT; if (jme->reg_rxmcs & RXMCS_CHECKSUM) netdev->features |= NETIF_F_RXCSUM; /* * Get Max Read Req Size from PCI Config Space */ pci_read_config_byte(pdev, PCI_DCSR_MRRS, &jme->mrrs); jme->mrrs &= PCI_DCSR_MRRS_MASK; switch (jme->mrrs) { case MRRS_128B: jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_128B; break; case MRRS_256B: jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_256B; break; default: jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_512B; break; } /* * Must check before reset_mac_processor */ jme_check_hw_ver(jme); jme->mii_if.dev = netdev; if (jme->fpgaver) { jme->mii_if.phy_id = 0; for (i = 1 ; i < 32 ; ++i) { bmcr = jme_mdio_read(netdev, i, MII_BMCR); bmsr = jme_mdio_read(netdev, i, MII_BMSR); if (bmcr != 0xFFFFU && (bmcr != 0 || bmsr != 0)) { jme->mii_if.phy_id = i; break; } } if (!jme->mii_if.phy_id) { rc = -EIO; pr_err("Can not find phy_id\n"); goto err_out_unmap; } jme->reg_ghc |= GHC_LINK_POLL; } else { jme->mii_if.phy_id = 1; } if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250) jme->mii_if.supports_gmii = true; else jme->mii_if.supports_gmii = false; jme->mii_if.phy_id_mask = 0x1F; jme->mii_if.reg_num_mask = 0x1F; jme->mii_if.mdio_read = jme_mdio_read; jme->mii_if.mdio_write = jme_mdio_write; jme_clear_pm(jme); device_set_wakeup_enable(&pdev->dev, true); jme_set_phyfifo_5level(jme); jme->pcirev = pdev->revision; if (!jme->fpgaver) jme_phy_init(jme); jme_phy_off(jme); /* * Reset MAC processor and reload EEPROM for MAC Address */ jme_reset_mac_processor(jme); rc = jme_reload_eeprom(jme); if (rc) { pr_err("Reload eeprom for reading MAC Address error\n"); goto err_out_unmap; } jme_load_macaddr(netdev); /* * Tell stack that we are not ready to work until open() */ netif_carrier_off(netdev); rc = register_netdev(netdev); if (rc) { pr_err("Cannot register net device\n"); goto err_out_unmap; } netif_info(jme, probe, jme->dev, "%s%s chiprev:%x pcirev:%x macaddr:%pM\n", (jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC250) ? "JMC250 Gigabit Ethernet" : (jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC260) ? "JMC260 Fast Ethernet" : "Unknown", (jme->fpgaver != 0) ? " (FPGA)" : "", (jme->fpgaver != 0) ? jme->fpgaver : jme->chiprev, jme->pcirev, netdev->dev_addr); return 0; err_out_unmap: iounmap(jme->regs); err_out_free_netdev: free_netdev(netdev); err_out_release_regions: pci_release_regions(pdev); err_out_disable_pdev: pci_disable_device(pdev); err_out: return rc; } static void jme_remove_one(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct jme_adapter *jme = netdev_priv(netdev); unregister_netdev(netdev); iounmap(jme->regs); free_netdev(netdev); pci_release_regions(pdev); pci_disable_device(pdev); } static void jme_shutdown(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct jme_adapter *jme = netdev_priv(netdev); jme_powersave_phy(jme); pci_pme_active(pdev, true); } #ifdef CONFIG_PM_SLEEP static int jme_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct jme_adapter *jme = netdev_priv(netdev); if (!netif_running(netdev)) return 0; atomic_dec(&jme->link_changing); netif_device_detach(netdev); netif_stop_queue(netdev); jme_stop_irq(jme); tasklet_disable(&jme->txclean_task); tasklet_disable(&jme->rxclean_task); tasklet_disable(&jme->rxempty_task); if (netif_carrier_ok(netdev)) { if (test_bit(JME_FLAG_POLL, &jme->flags)) jme_polling_mode(jme); jme_stop_pcc_timer(jme); jme_disable_rx_engine(jme); jme_disable_tx_engine(jme); jme_reset_mac_processor(jme); jme_free_rx_resources(jme); jme_free_tx_resources(jme); netif_carrier_off(netdev); jme->phylink = 0; } tasklet_enable(&jme->txclean_task); tasklet_enable(&jme->rxclean_task); tasklet_enable(&jme->rxempty_task); jme_powersave_phy(jme); return 0; } static int jme_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct jme_adapter *jme = netdev_priv(netdev); if (!netif_running(netdev)) return 0; jme_clear_pm(jme); jme_phy_on(jme); if (test_bit(JME_FLAG_SSET, &jme->flags)) jme_set_settings(netdev, &jme->old_ecmd); else jme_reset_phy_processor(jme); jme_phy_calibration(jme); jme_phy_setEA(jme); netif_device_attach(netdev); atomic_inc(&jme->link_changing); jme_reset_link(jme); jme_start_irq(jme); return 0; } static SIMPLE_DEV_PM_OPS(jme_pm_ops, jme_suspend, jme_resume); #define JME_PM_OPS (&jme_pm_ops) #else #define JME_PM_OPS NULL #endif static const struct pci_device_id jme_pci_tbl[] = { { PCI_VDEVICE(JMICRON, PCI_DEVICE_ID_JMICRON_JMC250) }, { PCI_VDEVICE(JMICRON, PCI_DEVICE_ID_JMICRON_JMC260) }, { } }; static struct pci_driver jme_driver = { .name = DRV_NAME, .id_table = jme_pci_tbl, .probe = jme_init_one, .remove = jme_remove_one, .shutdown = jme_shutdown, .driver.pm = JME_PM_OPS, }; static int __init jme_init_module(void) { pr_info("JMicron JMC2XX ethernet driver version %s\n", DRV_VERSION); return pci_register_driver(&jme_driver); } static void __exit jme_cleanup_module(void) { pci_unregister_driver(&jme_driver); } module_init(jme_init_module); module_exit(jme_cleanup_module); MODULE_AUTHOR("Guo-Fu Tseng "); MODULE_DESCRIPTION("JMicron JMC2x0 PCI Express Ethernet driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, jme_pci_tbl);