/* * This file is part of the Chelsio T4 Ethernet driver for Linux. * * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cxgb4.h" #include "t4_regs.h" #include "t4_values.h" #include "t4_msg.h" #include "t4fw_api.h" #include "t4fw_version.h" #include "cxgb4_dcb.h" #include "cxgb4_debugfs.h" #include "clip_tbl.h" #include "l2t.h" char cxgb4_driver_name[] = KBUILD_MODNAME; #ifdef DRV_VERSION #undef DRV_VERSION #endif #define DRV_VERSION "2.0.0-ko" const char cxgb4_driver_version[] = DRV_VERSION; #define DRV_DESC "Chelsio T4/T5 Network Driver" /* Host shadow copy of ingress filter entry. This is in host native format * and doesn't match the ordering or bit order, etc. of the hardware of the * firmware command. The use of bit-field structure elements is purely to * remind ourselves of the field size limitations and save memory in the case * where the filter table is large. */ struct filter_entry { /* Administrative fields for filter. */ u32 valid:1; /* filter allocated and valid */ u32 locked:1; /* filter is administratively locked */ u32 pending:1; /* filter action is pending firmware reply */ u32 smtidx:8; /* Source MAC Table index for smac */ struct l2t_entry *l2t; /* Layer Two Table entry for dmac */ /* The filter itself. Most of this is a straight copy of information * provided by the extended ioctl(). Some fields are translated to * internal forms -- for instance the Ingress Queue ID passed in from * the ioctl() is translated into the Absolute Ingress Queue ID. */ struct ch_filter_specification fs; }; #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) /* Macros needed to support the PCI Device ID Table ... */ #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \ static const struct pci_device_id cxgb4_pci_tbl[] = { #define CH_PCI_DEVICE_ID_FUNCTION 0x4 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is * called for both. */ #define CH_PCI_DEVICE_ID_FUNCTION2 0x0 #define CH_PCI_ID_TABLE_ENTRY(devid) \ {PCI_VDEVICE(CHELSIO, (devid)), 4} #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \ { 0, } \ } #include "t4_pci_id_tbl.h" #define FW4_FNAME "cxgb4/t4fw.bin" #define FW5_FNAME "cxgb4/t5fw.bin" #define FW4_CFNAME "cxgb4/t4-config.txt" #define FW5_CFNAME "cxgb4/t5-config.txt" #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld" #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin" #define PHY_AQ1202_DEVICEID 0x4409 #define PHY_BCM84834_DEVICEID 0x4486 MODULE_DESCRIPTION(DRV_DESC); MODULE_AUTHOR("Chelsio Communications"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl); MODULE_FIRMWARE(FW4_FNAME); MODULE_FIRMWARE(FW5_FNAME); /* * Normally we're willing to become the firmware's Master PF but will be happy * if another PF has already become the Master and initialized the adapter. * Setting "force_init" will cause this driver to forcibly establish itself as * the Master PF and initialize the adapter. */ static uint force_init; module_param(force_init, uint, 0644); MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter"); /* * Normally if the firmware we connect to has Configuration File support, we * use that and only fall back to the old Driver-based initialization if the * Configuration File fails for some reason. If force_old_init is set, then * we'll always use the old Driver-based initialization sequence. */ static uint force_old_init; module_param(force_old_init, uint, 0644); MODULE_PARM_DESC(force_old_init, "Force old initialization sequence, deprecated" " parameter"); static int dflt_msg_enable = DFLT_MSG_ENABLE; module_param(dflt_msg_enable, int, 0644); MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap"); /* * The driver uses the best interrupt scheme available on a platform in the * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which * of these schemes the driver may consider as follows: * * msi = 2: choose from among all three options * msi = 1: only consider MSI and INTx interrupts * msi = 0: force INTx interrupts */ static int msi = 2; module_param(msi, int, 0644); MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)"); /* * Queue interrupt hold-off timer values. Queues default to the first of these * upon creation. */ static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 }; module_param_array(intr_holdoff, uint, NULL, 0644); MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers " "0..4 in microseconds, deprecated parameter"); static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 }; module_param_array(intr_cnt, uint, NULL, 0644); MODULE_PARM_DESC(intr_cnt, "thresholds 1..3 for queue interrupt packet counters, " "deprecated parameter"); /* * Normally we tell the chip to deliver Ingress Packets into our DMA buffers * offset by 2 bytes in order to have the IP headers line up on 4-byte * boundaries. This is a requirement for many architectures which will throw * a machine check fault if an attempt is made to access one of the 4-byte IP * header fields on a non-4-byte boundary. And it's a major performance issue * even on some architectures which allow it like some implementations of the * x86 ISA. However, some architectures don't mind this and for some very * edge-case performance sensitive applications (like forwarding large volumes * of small packets), setting this DMA offset to 0 will decrease the number of * PCI-E Bus transfers enough to measurably affect performance. */ static int rx_dma_offset = 2; static bool vf_acls; #ifdef CONFIG_PCI_IOV module_param(vf_acls, bool, 0644); MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement, " "deprecated parameter"); /* Configure the number of PCI-E Virtual Function which are to be instantiated * on SR-IOV Capable Physical Functions. */ static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV]; module_param_array(num_vf, uint, NULL, 0644); MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3"); #endif /* TX Queue select used to determine what algorithm to use for selecting TX * queue. Select between the kernel provided function (select_queue=0) or user * cxgb_select_queue function (select_queue=1) * * Default: select_queue=0 */ static int select_queue; module_param(select_queue, int, 0644); MODULE_PARM_DESC(select_queue, "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method."); static unsigned int tp_vlan_pri_map = HW_TPL_FR_MT_PR_IV_P_FC; module_param(tp_vlan_pri_map, uint, 0644); MODULE_PARM_DESC(tp_vlan_pri_map, "global compressed filter configuration, " "deprecated parameter"); static struct dentry *cxgb4_debugfs_root; static LIST_HEAD(adapter_list); static DEFINE_MUTEX(uld_mutex); /* Adapter list to be accessed from atomic context */ static LIST_HEAD(adap_rcu_list); static DEFINE_SPINLOCK(adap_rcu_lock); static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX]; static const char *uld_str[] = { "RDMA", "iSCSI" }; static void link_report(struct net_device *dev) { if (!netif_carrier_ok(dev)) netdev_info(dev, "link down\n"); else { static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" }; const char *s = "10Mbps"; const struct port_info *p = netdev_priv(dev); switch (p->link_cfg.speed) { case 10000: s = "10Gbps"; break; case 1000: s = "1000Mbps"; break; case 100: s = "100Mbps"; break; case 40000: s = "40Gbps"; break; } netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc[p->link_cfg.fc]); } } #ifdef CONFIG_CHELSIO_T4_DCB /* Set up/tear down Data Center Bridging Priority mapping for a net device. */ static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; int i; /* We use a simple mapping of Port TX Queue Index to DCB * Priority when we're enabling DCB. */ for (i = 0; i < pi->nqsets; i++, txq++) { u32 name, value; int err; name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | FW_PARAMS_PARAM_X_V( FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) | FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id)); value = enable ? i : 0xffffffff; /* Since we can be called while atomic (from "interrupt * level") we need to issue the Set Parameters Commannd * without sleeping (timeout < 0). */ err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, &name, &value, -FW_CMD_MAX_TIMEOUT); if (err) dev_err(adap->pdev_dev, "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n", enable ? "set" : "unset", pi->port_id, i, -err); else txq->dcb_prio = value; } } #endif /* CONFIG_CHELSIO_T4_DCB */ void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat) { struct net_device *dev = adapter->port[port_id]; /* Skip changes from disabled ports. */ if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) { if (link_stat) netif_carrier_on(dev); else { #ifdef CONFIG_CHELSIO_T4_DCB cxgb4_dcb_state_init(dev); dcb_tx_queue_prio_enable(dev, false); #endif /* CONFIG_CHELSIO_T4_DCB */ netif_carrier_off(dev); } link_report(dev); } } void t4_os_portmod_changed(const struct adapter *adap, int port_id) { static const char *mod_str[] = { NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM" }; const struct net_device *dev = adap->port[port_id]; const struct port_info *pi = netdev_priv(dev); if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) netdev_info(dev, "port module unplugged\n"); else if (pi->mod_type < ARRAY_SIZE(mod_str)) netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]); } /* * Configure the exact and hash address filters to handle a port's multicast * and secondary unicast MAC addresses. */ static int set_addr_filters(const struct net_device *dev, bool sleep) { u64 mhash = 0; u64 uhash = 0; bool free = true; u16 filt_idx[7]; const u8 *addr[7]; int ret, naddr = 0; const struct netdev_hw_addr *ha; int uc_cnt = netdev_uc_count(dev); int mc_cnt = netdev_mc_count(dev); const struct port_info *pi = netdev_priv(dev); unsigned int mb = pi->adapter->pf; /* first do the secondary unicast addresses */ netdev_for_each_uc_addr(ha, dev) { addr[naddr++] = ha->addr; if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, naddr, addr, filt_idx, &uhash, sleep); if (ret < 0) return ret; free = false; naddr = 0; } } /* next set up the multicast addresses */ netdev_for_each_mc_addr(ha, dev) { addr[naddr++] = ha->addr; if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) { ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free, naddr, addr, filt_idx, &mhash, sleep); if (ret < 0) return ret; free = false; naddr = 0; } } return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0, uhash | mhash, sleep); } int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */ module_param(dbfifo_int_thresh, int, 0644); MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold"); /* * usecs to sleep while draining the dbfifo */ static int dbfifo_drain_delay = 1000; module_param(dbfifo_drain_delay, int, 0644); MODULE_PARM_DESC(dbfifo_drain_delay, "usecs to sleep while draining the dbfifo"); /* * Set Rx properties of a port, such as promiscruity, address filters, and MTU. * If @mtu is -1 it is left unchanged. */ static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok) { int ret; struct port_info *pi = netdev_priv(dev); ret = set_addr_filters(dev, sleep_ok); if (ret == 0) ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu, (dev->flags & IFF_PROMISC) ? 1 : 0, (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1, sleep_ok); return ret; } /** * link_start - enable a port * @dev: the port to enable * * Performs the MAC and PHY actions needed to enable a port. */ static int link_start(struct net_device *dev) { int ret; struct port_info *pi = netdev_priv(dev); unsigned int mb = pi->adapter->pf; /* * We do not set address filters and promiscuity here, the stack does * that step explicitly. */ ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1, !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true); if (ret == 0) { ret = t4_change_mac(pi->adapter, mb, pi->viid, pi->xact_addr_filt, dev->dev_addr, true, true); if (ret >= 0) { pi->xact_addr_filt = ret; ret = 0; } } if (ret == 0) ret = t4_link_start(pi->adapter, mb, pi->tx_chan, &pi->link_cfg); if (ret == 0) { local_bh_disable(); ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true, true, CXGB4_DCB_ENABLED); local_bh_enable(); } return ret; } int cxgb4_dcb_enabled(const struct net_device *dev) { #ifdef CONFIG_CHELSIO_T4_DCB struct port_info *pi = netdev_priv(dev); if (!pi->dcb.enabled) return 0; return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) || (pi->dcb.state == CXGB4_DCB_STATE_HOST)); #else return 0; #endif } EXPORT_SYMBOL(cxgb4_dcb_enabled); #ifdef CONFIG_CHELSIO_T4_DCB /* Handle a Data Center Bridging update message from the firmware. */ static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd) { int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid)); struct net_device *dev = adap->port[port]; int old_dcb_enabled = cxgb4_dcb_enabled(dev); int new_dcb_enabled; cxgb4_dcb_handle_fw_update(adap, pcmd); new_dcb_enabled = cxgb4_dcb_enabled(dev); /* If the DCB has become enabled or disabled on the port then we're * going to need to set up/tear down DCB Priority parameters for the * TX Queues associated with the port. */ if (new_dcb_enabled != old_dcb_enabled) dcb_tx_queue_prio_enable(dev, new_dcb_enabled); } #endif /* CONFIG_CHELSIO_T4_DCB */ /* Clear a filter and release any of its resources that we own. This also * clears the filter's "pending" status. */ static void clear_filter(struct adapter *adap, struct filter_entry *f) { /* If the new or old filter have loopback rewriteing rules then we'll * need to free any existing Layer Two Table (L2T) entries of the old * filter rule. The firmware will handle freeing up any Source MAC * Table (SMT) entries used for rewriting Source MAC Addresses in * loopback rules. */ if (f->l2t) cxgb4_l2t_release(f->l2t); /* The zeroing of the filter rule below clears the filter valid, * pending, locked flags, l2t pointer, etc. so it's all we need for * this operation. */ memset(f, 0, sizeof(*f)); } /* Handle a filter write/deletion reply. */ static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl) { unsigned int idx = GET_TID(rpl); unsigned int nidx = idx - adap->tids.ftid_base; unsigned int ret; struct filter_entry *f; if (idx >= adap->tids.ftid_base && nidx < (adap->tids.nftids + adap->tids.nsftids)) { idx = nidx; ret = TCB_COOKIE_G(rpl->cookie); f = &adap->tids.ftid_tab[idx]; if (ret == FW_FILTER_WR_FLT_DELETED) { /* Clear the filter when we get confirmation from the * hardware that the filter has been deleted. */ clear_filter(adap, f); } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) { dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n", idx); clear_filter(adap, f); } else if (ret == FW_FILTER_WR_FLT_ADDED) { f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff; f->pending = 0; /* asynchronous setup completed */ f->valid = 1; } else { /* Something went wrong. Issue a warning about the * problem and clear everything out. */ dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n", idx, ret); clear_filter(adap, f); } } } /* Response queue handler for the FW event queue. */ static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp, const struct pkt_gl *gl) { u8 opcode = ((const struct rss_header *)rsp)->opcode; rsp++; /* skip RSS header */ /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. */ if (unlikely(opcode == CPL_FW4_MSG && ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) { rsp++; opcode = ((const struct rss_header *)rsp)->opcode; rsp++; if (opcode != CPL_SGE_EGR_UPDATE) { dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n" , opcode); goto out; } } if (likely(opcode == CPL_SGE_EGR_UPDATE)) { const struct cpl_sge_egr_update *p = (void *)rsp; unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid)); struct sge_txq *txq; txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start]; txq->restarts++; if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) { struct sge_eth_txq *eq; eq = container_of(txq, struct sge_eth_txq, q); netif_tx_wake_queue(eq->txq); } else { struct sge_ofld_txq *oq; oq = container_of(txq, struct sge_ofld_txq, q); tasklet_schedule(&oq->qresume_tsk); } } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) { const struct cpl_fw6_msg *p = (void *)rsp; #ifdef CONFIG_CHELSIO_T4_DCB const struct fw_port_cmd *pcmd = (const void *)p->data; unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid)); unsigned int action = FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16)); if (cmd == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) { int port = FW_PORT_CMD_PORTID_G( be32_to_cpu(pcmd->op_to_portid)); struct net_device *dev = q->adap->port[port]; int state_input = ((pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F) ? CXGB4_DCB_INPUT_FW_DISABLED : CXGB4_DCB_INPUT_FW_ENABLED); cxgb4_dcb_state_fsm(dev, state_input); } if (cmd == FW_PORT_CMD && action == FW_PORT_ACTION_L2_DCB_CFG) dcb_rpl(q->adap, pcmd); else #endif if (p->type == 0) t4_handle_fw_rpl(q->adap, p->data); } else if (opcode == CPL_L2T_WRITE_RPL) { const struct cpl_l2t_write_rpl *p = (void *)rsp; do_l2t_write_rpl(q->adap, p); } else if (opcode == CPL_SET_TCB_RPL) { const struct cpl_set_tcb_rpl *p = (void *)rsp; filter_rpl(q->adap, p); } else dev_err(q->adap->pdev_dev, "unexpected CPL %#x on FW event queue\n", opcode); out: return 0; } /** * uldrx_handler - response queue handler for ULD queues * @q: the response queue that received the packet * @rsp: the response queue descriptor holding the offload message * @gl: the gather list of packet fragments * * Deliver an ingress offload packet to a ULD. All processing is done by * the ULD, we just maintain statistics. */ static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp, const struct pkt_gl *gl) { struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq); /* FW can send CPLs encapsulated in a CPL_FW4_MSG. */ if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG && ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL) rsp += 2; if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) { rxq->stats.nomem++; return -1; } if (gl == NULL) rxq->stats.imm++; else if (gl == CXGB4_MSG_AN) rxq->stats.an++; else rxq->stats.pkts++; return 0; } static void disable_msi(struct adapter *adapter) { if (adapter->flags & USING_MSIX) { pci_disable_msix(adapter->pdev); adapter->flags &= ~USING_MSIX; } else if (adapter->flags & USING_MSI) { pci_disable_msi(adapter->pdev); adapter->flags &= ~USING_MSI; } } /* * Interrupt handler for non-data events used with MSI-X. */ static irqreturn_t t4_nondata_intr(int irq, void *cookie) { struct adapter *adap = cookie; u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A)); if (v & PFSW_F) { adap->swintr = 1; t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v); } if (adap->flags & MASTER_PF) t4_slow_intr_handler(adap); return IRQ_HANDLED; } /* * Name the MSI-X interrupts. */ static void name_msix_vecs(struct adapter *adap) { int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc); /* non-data interrupts */ snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name); /* FW events */ snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", adap->port[0]->name); /* Ethernet queues */ for_each_port(adap, j) { struct net_device *d = adap->port[j]; const struct port_info *pi = netdev_priv(d); for (i = 0; i < pi->nqsets; i++, msi_idx++) snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d", d->name, i); } /* offload queues */ for_each_ofldrxq(&adap->sge, i) snprintf(adap->msix_info[msi_idx++].desc, n, "%s-ofld%d", adap->port[0]->name, i); for_each_rdmarxq(&adap->sge, i) snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d", adap->port[0]->name, i); for_each_rdmaciq(&adap->sge, i) snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d", adap->port[0]->name, i); } static int request_msix_queue_irqs(struct adapter *adap) { struct sge *s = &adap->sge; int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0; int msi_index = 2; err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0, adap->msix_info[1].desc, &s->fw_evtq); if (err) return err; for_each_ethrxq(s, ethqidx) { err = request_irq(adap->msix_info[msi_index].vec, t4_sge_intr_msix, 0, adap->msix_info[msi_index].desc, &s->ethrxq[ethqidx].rspq); if (err) goto unwind; msi_index++; } for_each_ofldrxq(s, ofldqidx) { err = request_irq(adap->msix_info[msi_index].vec, t4_sge_intr_msix, 0, adap->msix_info[msi_index].desc, &s->ofldrxq[ofldqidx].rspq); if (err) goto unwind; msi_index++; } for_each_rdmarxq(s, rdmaqidx) { err = request_irq(adap->msix_info[msi_index].vec, t4_sge_intr_msix, 0, adap->msix_info[msi_index].desc, &s->rdmarxq[rdmaqidx].rspq); if (err) goto unwind; msi_index++; } for_each_rdmaciq(s, rdmaciqqidx) { err = request_irq(adap->msix_info[msi_index].vec, t4_sge_intr_msix, 0, adap->msix_info[msi_index].desc, &s->rdmaciq[rdmaciqqidx].rspq); if (err) goto unwind; msi_index++; } return 0; unwind: while (--rdmaciqqidx >= 0) free_irq(adap->msix_info[--msi_index].vec, &s->rdmaciq[rdmaciqqidx].rspq); while (--rdmaqidx >= 0) free_irq(adap->msix_info[--msi_index].vec, &s->rdmarxq[rdmaqidx].rspq); while (--ofldqidx >= 0) free_irq(adap->msix_info[--msi_index].vec, &s->ofldrxq[ofldqidx].rspq); while (--ethqidx >= 0) free_irq(adap->msix_info[--msi_index].vec, &s->ethrxq[ethqidx].rspq); free_irq(adap->msix_info[1].vec, &s->fw_evtq); return err; } static void free_msix_queue_irqs(struct adapter *adap) { int i, msi_index = 2; struct sge *s = &adap->sge; free_irq(adap->msix_info[1].vec, &s->fw_evtq); for_each_ethrxq(s, i) free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq); for_each_ofldrxq(s, i) free_irq(adap->msix_info[msi_index++].vec, &s->ofldrxq[i].rspq); for_each_rdmarxq(s, i) free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq); for_each_rdmaciq(s, i) free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq); } /** * cxgb4_write_rss - write the RSS table for a given port * @pi: the port * @queues: array of queue indices for RSS * * Sets up the portion of the HW RSS table for the port's VI to distribute * packets to the Rx queues in @queues. * Should never be called before setting up sge eth rx queues */ int cxgb4_write_rss(const struct port_info *pi, const u16 *queues) { u16 *rss; int i, err; struct adapter *adapter = pi->adapter; const struct sge_eth_rxq *rxq; rxq = &adapter->sge.ethrxq[pi->first_qset]; rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL); if (!rss) return -ENOMEM; /* map the queue indices to queue ids */ for (i = 0; i < pi->rss_size; i++, queues++) rss[i] = rxq[*queues].rspq.abs_id; err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0, pi->rss_size, rss, pi->rss_size); /* If Tunnel All Lookup isn't specified in the global RSS * Configuration, then we need to specify a default Ingress * Queue for any ingress packets which aren't hashed. We'll * use our first ingress queue ... */ if (!err) err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid, FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F | FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F | FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F | FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F | FW_RSS_VI_CONFIG_CMD_UDPEN_F, rss[0]); kfree(rss); return err; } /** * setup_rss - configure RSS * @adap: the adapter * * Sets up RSS for each port. */ static int setup_rss(struct adapter *adap) { int i, j, err; for_each_port(adap, i) { const struct port_info *pi = adap2pinfo(adap, i); /* Fill default values with equal distribution */ for (j = 0; j < pi->rss_size; j++) pi->rss[j] = j % pi->nqsets; err = cxgb4_write_rss(pi, pi->rss); if (err) return err; } return 0; } /* * Return the channel of the ingress queue with the given qid. */ static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid) { qid -= p->ingr_start; return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan; } /* * Wait until all NAPI handlers are descheduled. */ static void quiesce_rx(struct adapter *adap) { int i; for (i = 0; i < adap->sge.ingr_sz; i++) { struct sge_rspq *q = adap->sge.ingr_map[i]; if (q && q->handler) { napi_disable(&q->napi); local_bh_disable(); while (!cxgb_poll_lock_napi(q)) mdelay(1); local_bh_enable(); } } } /* Disable interrupt and napi handler */ static void disable_interrupts(struct adapter *adap) { if (adap->flags & FULL_INIT_DONE) { t4_intr_disable(adap); if (adap->flags & USING_MSIX) { free_msix_queue_irqs(adap); free_irq(adap->msix_info[0].vec, adap); } else { free_irq(adap->pdev->irq, adap); } quiesce_rx(adap); } } /* * Enable NAPI scheduling and interrupt generation for all Rx queues. */ static void enable_rx(struct adapter *adap) { int i; for (i = 0; i < adap->sge.ingr_sz; i++) { struct sge_rspq *q = adap->sge.ingr_map[i]; if (!q) continue; if (q->handler) { cxgb_busy_poll_init_lock(q); napi_enable(&q->napi); } /* 0-increment GTS to start the timer and enable interrupts */ t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), SEINTARM_V(q->intr_params) | INGRESSQID_V(q->cntxt_id)); } } static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q, unsigned int nq, unsigned int per_chan, int msi_idx, u16 *ids) { int i, err; for (i = 0; i < nq; i++, q++) { if (msi_idx > 0) msi_idx++; err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i / per_chan], msi_idx, q->fl.size ? &q->fl : NULL, uldrx_handler, 0); if (err) return err; memset(&q->stats, 0, sizeof(q->stats)); if (ids) ids[i] = q->rspq.abs_id; } return 0; } /** * setup_sge_queues - configure SGE Tx/Rx/response queues * @adap: the adapter * * Determines how many sets of SGE queues to use and initializes them. * We support multiple queue sets per port if we have MSI-X, otherwise * just one queue set per port. */ static int setup_sge_queues(struct adapter *adap) { int err, msi_idx, i, j; struct sge *s = &adap->sge; bitmap_zero(s->starving_fl, s->egr_sz); bitmap_zero(s->txq_maperr, s->egr_sz); if (adap->flags & USING_MSIX) msi_idx = 1; /* vector 0 is for non-queue interrupts */ else { err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0, NULL, NULL, -1); if (err) return err; msi_idx = -((int)s->intrq.abs_id + 1); } /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here, * don't forget to update the following which need to be * synchronized to and changes here. * * 1. The calculations of MAX_INGQ in cxgb4.h. * * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs * to accommodate any new/deleted Ingress Queues * which need MSI-X Vectors. * * 3. Update sge_qinfo_show() to include information on the * new/deleted queues. */ err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0], msi_idx, NULL, fwevtq_handler, -1); if (err) { freeout: t4_free_sge_resources(adap); return err; } for_each_port(adap, i) { struct net_device *dev = adap->port[i]; struct port_info *pi = netdev_priv(dev); struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset]; struct sge_eth_txq *t = &s->ethtxq[pi->first_qset]; for (j = 0; j < pi->nqsets; j++, q++) { if (msi_idx > 0) msi_idx++; err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx, &q->fl, t4_ethrx_handler, t4_get_mps_bg_map(adap, pi->tx_chan)); if (err) goto freeout; q->rspq.idx = j; memset(&q->stats, 0, sizeof(q->stats)); } for (j = 0; j < pi->nqsets; j++, t++) { err = t4_sge_alloc_eth_txq(adap, t, dev, netdev_get_tx_queue(dev, j), s->fw_evtq.cntxt_id); if (err) goto freeout; } } j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */ for_each_ofldrxq(s, i) { err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], adap->port[i / j], s->fw_evtq.cntxt_id); if (err) goto freeout; } #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \ err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \ if (err) \ goto freeout; \ if (msi_idx > 0) \ msi_idx += nq; \ } while (0) ALLOC_OFLD_RXQS(s->ofldrxq, s->ofldqsets, j, s->ofld_rxq); ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq); j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */ ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq); #undef ALLOC_OFLD_RXQS for_each_port(adap, i) { /* * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't * have RDMA queues, and that's the right value. */ err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i], s->fw_evtq.cntxt_id, s->rdmarxq[i].rspq.cntxt_id); if (err) goto freeout; } t4_write_reg(adap, is_t4(adap->params.chip) ? MPS_TRC_RSS_CONTROL_A : MPS_T5_TRC_RSS_CONTROL_A, RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) | QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id)); return 0; } /* * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc. * The allocated memory is cleared. */ void *t4_alloc_mem(size_t size) { void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); if (!p) p = vzalloc(size); return p; } /* * Free memory allocated through alloc_mem(). */ void t4_free_mem(void *addr) { if (is_vmalloc_addr(addr)) vfree(addr); else kfree(addr); } /* Send a Work Request to write the filter at a specified index. We construct * a Firmware Filter Work Request to have the work done and put the indicated * filter into "pending" mode which will prevent any further actions against * it till we get a reply from the firmware on the completion status of the * request. */ static int set_filter_wr(struct adapter *adapter, int fidx) { struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; struct sk_buff *skb; struct fw_filter_wr *fwr; unsigned int ftid; skb = alloc_skb(sizeof(*fwr), GFP_KERNEL); if (!skb) return -ENOMEM; /* If the new filter requires loopback Destination MAC and/or VLAN * rewriting then we need to allocate a Layer 2 Table (L2T) entry for * the filter. */ if (f->fs.newdmac || f->fs.newvlan) { /* allocate L2T entry for new filter */ f->l2t = t4_l2t_alloc_switching(adapter->l2t); if (f->l2t == NULL) { kfree_skb(skb); return -EAGAIN; } if (t4_l2t_set_switching(adapter, f->l2t, f->fs.vlan, f->fs.eport, f->fs.dmac)) { cxgb4_l2t_release(f->l2t); f->l2t = NULL; kfree_skb(skb); return -ENOMEM; } } ftid = adapter->tids.ftid_base + fidx; fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr)); memset(fwr, 0, sizeof(*fwr)); /* It would be nice to put most of the following in t4_hw.c but most * of the work is translating the cxgbtool ch_filter_specification * into the Work Request and the definition of that structure is * currently in cxgbtool.h which isn't appropriate to pull into the * common code. We may eventually try to come up with a more neutral * filter specification structure but for now it's easiest to simply * put this fairly direct code in line ... */ fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16)); fwr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) | FW_FILTER_WR_RQTYPE_V(f->fs.type) | FW_FILTER_WR_NOREPLY_V(0) | FW_FILTER_WR_IQ_V(f->fs.iq)); fwr->del_filter_to_l2tix = htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) | FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) | FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) | FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) | FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) | FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) | FW_FILTER_WR_DMAC_V(f->fs.newdmac) | FW_FILTER_WR_SMAC_V(f->fs.newsmac) | FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT || f->fs.newvlan == VLAN_REWRITE) | FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE || f->fs.newvlan == VLAN_REWRITE) | FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) | FW_FILTER_WR_TXCHAN_V(f->fs.eport) | FW_FILTER_WR_PRIO_V(f->fs.prio) | FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0)); fwr->ethtype = htons(f->fs.val.ethtype); fwr->ethtypem = htons(f->fs.mask.ethtype); fwr->frag_to_ovlan_vldm = (FW_FILTER_WR_FRAG_V(f->fs.val.frag) | FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) | FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) | FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) | FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) | FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld)); fwr->smac_sel = 0; fwr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_CHAN_V(0) | FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id)); fwr->maci_to_matchtypem = htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) | FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) | FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) | FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) | FW_FILTER_WR_PORT_V(f->fs.val.iport) | FW_FILTER_WR_PORTM_V(f->fs.mask.iport) | FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) | FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype)); fwr->ptcl = f->fs.val.proto; fwr->ptclm = f->fs.mask.proto; fwr->ttyp = f->fs.val.tos; fwr->ttypm = f->fs.mask.tos; fwr->ivlan = htons(f->fs.val.ivlan); fwr->ivlanm = htons(f->fs.mask.ivlan); fwr->ovlan = htons(f->fs.val.ovlan); fwr->ovlanm = htons(f->fs.mask.ovlan); memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip)); memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm)); memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip)); memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm)); fwr->lp = htons(f->fs.val.lport); fwr->lpm = htons(f->fs.mask.lport); fwr->fp = htons(f->fs.val.fport); fwr->fpm = htons(f->fs.mask.fport); if (f->fs.newsmac) memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma)); /* Mark the filter as "pending" and ship off the Filter Work Request. * When we get the Work Request Reply we'll clear the pending status. */ f->pending = 1; set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3); t4_ofld_send(adapter, skb); return 0; } /* Delete the filter at a specified index. */ static int del_filter_wr(struct adapter *adapter, int fidx) { struct filter_entry *f = &adapter->tids.ftid_tab[fidx]; struct sk_buff *skb; struct fw_filter_wr *fwr; unsigned int len, ftid; len = sizeof(*fwr); ftid = adapter->tids.ftid_base + fidx; skb = alloc_skb(len, GFP_KERNEL); if (!skb) return -ENOMEM; fwr = (struct fw_filter_wr *)__skb_put(skb, len); t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id); /* Mark the filter as "pending" and ship off the Filter Work Request. * When we get the Work Request Reply we'll clear the pending status. */ f->pending = 1; t4_mgmt_tx(adapter, skb); return 0; } static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb, void *accel_priv, select_queue_fallback_t fallback) { int txq; #ifdef CONFIG_CHELSIO_T4_DCB /* If a Data Center Bridging has been successfully negotiated on this * link then we'll use the skb's priority to map it to a TX Queue. * The skb's priority is determined via the VLAN Tag Priority Code * Point field. */ if (cxgb4_dcb_enabled(dev)) { u16 vlan_tci; int err; err = vlan_get_tag(skb, &vlan_tci); if (unlikely(err)) { if (net_ratelimit()) netdev_warn(dev, "TX Packet without VLAN Tag on DCB Link\n"); txq = 0; } else { txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; #ifdef CONFIG_CHELSIO_T4_FCOE if (skb->protocol == htons(ETH_P_FCOE)) txq = skb->priority & 0x7; #endif /* CONFIG_CHELSIO_T4_FCOE */ } return txq; } #endif /* CONFIG_CHELSIO_T4_DCB */ if (select_queue) { txq = (skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : smp_processor_id()); while (unlikely(txq >= dev->real_num_tx_queues)) txq -= dev->real_num_tx_queues; return txq; } return fallback(dev, skb) % dev->real_num_tx_queues; } static inline int is_offload(const struct adapter *adap) { return adap->params.offload; } static int closest_timer(const struct sge *s, int time) { int i, delta, match = 0, min_delta = INT_MAX; for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) { delta = time - s->timer_val[i]; if (delta < 0) delta = -delta; if (delta < min_delta) { min_delta = delta; match = i; } } return match; } static int closest_thres(const struct sge *s, int thres) { int i, delta, match = 0, min_delta = INT_MAX; for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) { delta = thres - s->counter_val[i]; if (delta < 0) delta = -delta; if (delta < min_delta) { min_delta = delta; match = i; } } return match; } /** * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters * @q: the Rx queue * @us: the hold-off time in us, or 0 to disable timer * @cnt: the hold-off packet count, or 0 to disable counter * * Sets an Rx queue's interrupt hold-off time and packet count. At least * one of the two needs to be enabled for the queue to generate interrupts. */ int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us, unsigned int cnt) { struct adapter *adap = q->adap; if ((us | cnt) == 0) cnt = 1; if (cnt) { int err; u32 v, new_idx; new_idx = closest_thres(&adap->sge, cnt); if (q->desc && q->pktcnt_idx != new_idx) { /* the queue has already been created, update it */ v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | FW_PARAMS_PARAM_X_V( FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) | FW_PARAMS_PARAM_YZ_V(q->cntxt_id); err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &v, &new_idx); if (err) return err; } q->pktcnt_idx = new_idx; } us = us == 0 ? 6 : closest_timer(&adap->sge, us); q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0); return 0; } static int cxgb_set_features(struct net_device *dev, netdev_features_t features) { const struct port_info *pi = netdev_priv(dev); netdev_features_t changed = dev->features ^ features; int err; if (!(changed & NETIF_F_HW_VLAN_CTAG_RX)) return 0; err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1, -1, -1, -1, !!(features & NETIF_F_HW_VLAN_CTAG_RX), true); if (unlikely(err)) dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX; return err; } static int setup_debugfs(struct adapter *adap) { if (IS_ERR_OR_NULL(adap->debugfs_root)) return -1; #ifdef CONFIG_DEBUG_FS t4_setup_debugfs(adap); #endif return 0; } /* * upper-layer driver support */ /* * Allocate an active-open TID and set it to the supplied value. */ int cxgb4_alloc_atid(struct tid_info *t, void *data) { int atid = -1; spin_lock_bh(&t->atid_lock); if (t->afree) { union aopen_entry *p = t->afree; atid = (p - t->atid_tab) + t->atid_base; t->afree = p->next; p->data = data; t->atids_in_use++; } spin_unlock_bh(&t->atid_lock); return atid; } EXPORT_SYMBOL(cxgb4_alloc_atid); /* * Release an active-open TID. */ void cxgb4_free_atid(struct tid_info *t, unsigned int atid) { union aopen_entry *p = &t->atid_tab[atid - t->atid_base]; spin_lock_bh(&t->atid_lock); p->next = t->afree; t->afree = p; t->atids_in_use--; spin_unlock_bh(&t->atid_lock); } EXPORT_SYMBOL(cxgb4_free_atid); /* * Allocate a server TID and set it to the supplied value. */ int cxgb4_alloc_stid(struct tid_info *t, int family, void *data) { int stid; spin_lock_bh(&t->stid_lock); if (family == PF_INET) { stid = find_first_zero_bit(t->stid_bmap, t->nstids); if (stid < t->nstids) __set_bit(stid, t->stid_bmap); else stid = -1; } else { stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2); if (stid < 0) stid = -1; } if (stid >= 0) { t->stid_tab[stid].data = data; stid += t->stid_base; /* IPv6 requires max of 520 bits or 16 cells in TCAM * This is equivalent to 4 TIDs. With CLIP enabled it * needs 2 TIDs. */ if (family == PF_INET) t->stids_in_use++; else t->stids_in_use += 4; } spin_unlock_bh(&t->stid_lock); return stid; } EXPORT_SYMBOL(cxgb4_alloc_stid); /* Allocate a server filter TID and set it to the supplied value. */ int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data) { int stid; spin_lock_bh(&t->stid_lock); if (family == PF_INET) { stid = find_next_zero_bit(t->stid_bmap, t->nstids + t->nsftids, t->nstids); if (stid < (t->nstids + t->nsftids)) __set_bit(stid, t->stid_bmap); else stid = -1; } else { stid = -1; } if (stid >= 0) { t->stid_tab[stid].data = data; stid -= t->nstids; stid += t->sftid_base; t->stids_in_use++; } spin_unlock_bh(&t->stid_lock); return stid; } EXPORT_SYMBOL(cxgb4_alloc_sftid); /* Release a server TID. */ void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family) { /* Is it a server filter TID? */ if (t->nsftids && (stid >= t->sftid_base)) { stid -= t->sftid_base; stid += t->nstids; } else { stid -= t->stid_base; } spin_lock_bh(&t->stid_lock); if (family == PF_INET) __clear_bit(stid, t->stid_bmap); else bitmap_release_region(t->stid_bmap, stid, 2); t->stid_tab[stid].data = NULL; if (family == PF_INET) t->stids_in_use--; else t->stids_in_use -= 4; spin_unlock_bh(&t->stid_lock); } EXPORT_SYMBOL(cxgb4_free_stid); /* * Populate a TID_RELEASE WR. Caller must properly size the skb. */ static void mk_tid_release(struct sk_buff *skb, unsigned int chan, unsigned int tid) { struct cpl_tid_release *req; set_wr_txq(skb, CPL_PRIORITY_SETUP, chan); req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req)); INIT_TP_WR(req, tid); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid)); } /* * Queue a TID release request and if necessary schedule a work queue to * process it. */ static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan, unsigned int tid) { void **p = &t->tid_tab[tid]; struct adapter *adap = container_of(t, struct adapter, tids); spin_lock_bh(&adap->tid_release_lock); *p = adap->tid_release_head; /* Low 2 bits encode the Tx channel number */ adap->tid_release_head = (void **)((uintptr_t)p | chan); if (!adap->tid_release_task_busy) { adap->tid_release_task_busy = true; queue_work(adap->workq, &adap->tid_release_task); } spin_unlock_bh(&adap->tid_release_lock); } /* * Process the list of pending TID release requests. */ static void process_tid_release_list(struct work_struct *work) { struct sk_buff *skb; struct adapter *adap; adap = container_of(work, struct adapter, tid_release_task); spin_lock_bh(&adap->tid_release_lock); while (adap->tid_release_head) { void **p = adap->tid_release_head; unsigned int chan = (uintptr_t)p & 3; p = (void *)p - chan; adap->tid_release_head = *p; *p = NULL; spin_unlock_bh(&adap->tid_release_lock); while (!(skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL))) schedule_timeout_uninterruptible(1); mk_tid_release(skb, chan, p - adap->tids.tid_tab); t4_ofld_send(adap, skb); spin_lock_bh(&adap->tid_release_lock); } adap->tid_release_task_busy = false; spin_unlock_bh(&adap->tid_release_lock); } /* * Release a TID and inform HW. If we are unable to allocate the release * message we defer to a work queue. */ void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid) { void *old; struct sk_buff *skb; struct adapter *adap = container_of(t, struct adapter, tids); old = t->tid_tab[tid]; skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC); if (likely(skb)) { t->tid_tab[tid] = NULL; mk_tid_release(skb, chan, tid); t4_ofld_send(adap, skb); } else cxgb4_queue_tid_release(t, chan, tid); if (old) atomic_dec(&t->tids_in_use); } EXPORT_SYMBOL(cxgb4_remove_tid); /* * Allocate and initialize the TID tables. Returns 0 on success. */ static int tid_init(struct tid_info *t) { size_t size; unsigned int stid_bmap_size; unsigned int natids = t->natids; struct adapter *adap = container_of(t, struct adapter, tids); stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids); size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) + t->nstids * sizeof(*t->stid_tab) + t->nsftids * sizeof(*t->stid_tab) + stid_bmap_size * sizeof(long) + t->nftids * sizeof(*t->ftid_tab) + t->nsftids * sizeof(*t->ftid_tab); t->tid_tab = t4_alloc_mem(size); if (!t->tid_tab) return -ENOMEM; t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids]; t->stid_tab = (struct serv_entry *)&t->atid_tab[natids]; t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids]; t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size]; spin_lock_init(&t->stid_lock); spin_lock_init(&t->atid_lock); t->stids_in_use = 0; t->afree = NULL; t->atids_in_use = 0; atomic_set(&t->tids_in_use, 0); /* Setup the free list for atid_tab and clear the stid bitmap. */ if (natids) { while (--natids) t->atid_tab[natids - 1].next = &t->atid_tab[natids]; t->afree = t->atid_tab; } bitmap_zero(t->stid_bmap, t->nstids + t->nsftids); /* Reserve stid 0 for T4/T5 adapters */ if (!t->stid_base && (is_t4(adap->params.chip) || is_t5(adap->params.chip))) __set_bit(0, t->stid_bmap); return 0; } /** * cxgb4_create_server - create an IP server * @dev: the device * @stid: the server TID * @sip: local IP address to bind server to * @sport: the server's TCP port * @queue: queue to direct messages from this server to * * Create an IP server for the given port and address. * Returns <0 on error and one of the %NET_XMIT_* values on success. */ int cxgb4_create_server(const struct net_device *dev, unsigned int stid, __be32 sip, __be16 sport, __be16 vlan, unsigned int queue) { unsigned int chan; struct sk_buff *skb; struct adapter *adap; struct cpl_pass_open_req *req; int ret; skb = alloc_skb(sizeof(*req), GFP_KERNEL); if (!skb) return -ENOMEM; adap = netdev2adap(dev); req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req)); INIT_TP_WR(req, 0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid)); req->local_port = sport; req->peer_port = htons(0); req->local_ip = sip; req->peer_ip = htonl(0); chan = rxq_to_chan(&adap->sge, queue); req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); ret = t4_mgmt_tx(adap, skb); return net_xmit_eval(ret); } EXPORT_SYMBOL(cxgb4_create_server); /* cxgb4_create_server6 - create an IPv6 server * @dev: the device * @stid: the server TID * @sip: local IPv6 address to bind server to * @sport: the server's TCP port * @queue: queue to direct messages from this server to * * Create an IPv6 server for the given port and address. * Returns <0 on error and one of the %NET_XMIT_* values on success. */ int cxgb4_create_server6(const struct net_device *dev, unsigned int stid, const struct in6_addr *sip, __be16 sport, unsigned int queue) { unsigned int chan; struct sk_buff *skb; struct adapter *adap; struct cpl_pass_open_req6 *req; int ret; skb = alloc_skb(sizeof(*req), GFP_KERNEL); if (!skb) return -ENOMEM; adap = netdev2adap(dev); req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req)); INIT_TP_WR(req, 0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid)); req->local_port = sport; req->peer_port = htons(0); req->local_ip_hi = *(__be64 *)(sip->s6_addr); req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8); req->peer_ip_hi = cpu_to_be64(0); req->peer_ip_lo = cpu_to_be64(0); chan = rxq_to_chan(&adap->sge, queue); req->opt0 = cpu_to_be64(TX_CHAN_V(chan)); req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) | SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue)); ret = t4_mgmt_tx(adap, skb); return net_xmit_eval(ret); } EXPORT_SYMBOL(cxgb4_create_server6); int cxgb4_remove_server(const struct net_device *dev, unsigned int stid, unsigned int queue, bool ipv6) { struct sk_buff *skb; struct adapter *adap; struct cpl_close_listsvr_req *req; int ret; adap = netdev2adap(dev); skb = alloc_skb(sizeof(*req), GFP_KERNEL); if (!skb) return -ENOMEM; req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req)); INIT_TP_WR(req, 0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid)); req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) : LISTSVR_IPV6_V(0)) | QUEUENO_V(queue)); ret = t4_mgmt_tx(adap, skb); return net_xmit_eval(ret); } EXPORT_SYMBOL(cxgb4_remove_server); /** * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU * @mtus: the HW MTU table * @mtu: the target MTU * @idx: index of selected entry in the MTU table * * Returns the index and the value in the HW MTU table that is closest to * but does not exceed @mtu, unless @mtu is smaller than any value in the * table, in which case that smallest available value is selected. */ unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu, unsigned int *idx) { unsigned int i = 0; while (i < NMTUS - 1 && mtus[i + 1] <= mtu) ++i; if (idx) *idx = i; return mtus[i]; } EXPORT_SYMBOL(cxgb4_best_mtu); /** * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned * @mtus: the HW MTU table * @header_size: Header Size * @data_size_max: maximum Data Segment Size * @data_size_align: desired Data Segment Size Alignment (2^N) * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL) * * Similar to cxgb4_best_mtu() but instead of searching the Hardware * MTU Table based solely on a Maximum MTU parameter, we break that * parameter up into a Header Size and Maximum Data Segment Size, and * provide a desired Data Segment Size Alignment. If we find an MTU in * the Hardware MTU Table which will result in a Data Segment Size with * the requested alignment _and_ that MTU isn't "too far" from the * closest MTU, then we'll return that rather than the closest MTU. */ unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus, unsigned short header_size, unsigned short data_size_max, unsigned short data_size_align, unsigned int *mtu_idxp) { unsigned short max_mtu = header_size + data_size_max; unsigned short data_size_align_mask = data_size_align - 1; int mtu_idx, aligned_mtu_idx; /* Scan the MTU Table till we find an MTU which is larger than our * Maximum MTU or we reach the end of the table. Along the way, * record the last MTU found, if any, which will result in a Data * Segment Length matching the requested alignment. */ for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) { unsigned short data_size = mtus[mtu_idx] - header_size; /* If this MTU minus the Header Size would result in a * Data Segment Size of the desired alignment, remember it. */ if ((data_size & data_size_align_mask) == 0) aligned_mtu_idx = mtu_idx; /* If we're not at the end of the Hardware MTU Table and the * next element is larger than our Maximum MTU, drop out of * the loop. */ if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu) break; } /* If we fell out of the loop because we ran to the end of the table, * then we just have to use the last [largest] entry. */ if (mtu_idx == NMTUS) mtu_idx--; /* If we found an MTU which resulted in the requested Data Segment * Length alignment and that's "not far" from the largest MTU which is * less than or equal to the maximum MTU, then use that. */ if (aligned_mtu_idx >= 0 && mtu_idx - aligned_mtu_idx <= 1) mtu_idx = aligned_mtu_idx; /* If the caller has passed in an MTU Index pointer, pass the * MTU Index back. Return the MTU value. */ if (mtu_idxp) *mtu_idxp = mtu_idx; return mtus[mtu_idx]; } EXPORT_SYMBOL(cxgb4_best_aligned_mtu); /** * cxgb4_port_chan - get the HW channel of a port * @dev: the net device for the port * * Return the HW Tx channel of the given port. */ unsigned int cxgb4_port_chan(const struct net_device *dev) { return netdev2pinfo(dev)->tx_chan; } EXPORT_SYMBOL(cxgb4_port_chan); unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo) { struct adapter *adap = netdev2adap(dev); u32 v1, v2, lp_count, hp_count; v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); if (is_t4(adap->params.chip)) { lp_count = LP_COUNT_G(v1); hp_count = HP_COUNT_G(v1); } else { lp_count = LP_COUNT_T5_G(v1); hp_count = HP_COUNT_T5_G(v2); } return lpfifo ? lp_count : hp_count; } EXPORT_SYMBOL(cxgb4_dbfifo_count); /** * cxgb4_port_viid - get the VI id of a port * @dev: the net device for the port * * Return the VI id of the given port. */ unsigned int cxgb4_port_viid(const struct net_device *dev) { return netdev2pinfo(dev)->viid; } EXPORT_SYMBOL(cxgb4_port_viid); /** * cxgb4_port_idx - get the index of a port * @dev: the net device for the port * * Return the index of the given port. */ unsigned int cxgb4_port_idx(const struct net_device *dev) { return netdev2pinfo(dev)->port_id; } EXPORT_SYMBOL(cxgb4_port_idx); void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4, struct tp_tcp_stats *v6) { struct adapter *adap = pci_get_drvdata(pdev); spin_lock(&adap->stats_lock); t4_tp_get_tcp_stats(adap, v4, v6); spin_unlock(&adap->stats_lock); } EXPORT_SYMBOL(cxgb4_get_tcp_stats); void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask, const unsigned int *pgsz_order) { struct adapter *adap = netdev2adap(dev); t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask); t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) | HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) | HPZ3_V(pgsz_order[3])); } EXPORT_SYMBOL(cxgb4_iscsi_init); int cxgb4_flush_eq_cache(struct net_device *dev) { struct adapter *adap = netdev2adap(dev); int ret; ret = t4_fwaddrspace_write(adap, adap->mbox, 0xe1000000 + SGE_CTXT_CMD_A, 0x20000000); return ret; } EXPORT_SYMBOL(cxgb4_flush_eq_cache); static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx) { u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8; __be64 indices; int ret; spin_lock(&adap->win0_lock); ret = t4_memory_rw(adap, 0, MEM_EDC0, addr, sizeof(indices), (__be32 *)&indices, T4_MEMORY_READ); spin_unlock(&adap->win0_lock); if (!ret) { *cidx = (be64_to_cpu(indices) >> 25) & 0xffff; *pidx = (be64_to_cpu(indices) >> 9) & 0xffff; } return ret; } int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx, u16 size) { struct adapter *adap = netdev2adap(dev); u16 hw_pidx, hw_cidx; int ret; ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx); if (ret) goto out; if (pidx != hw_pidx) { u16 delta; u32 val; if (pidx >= hw_pidx) delta = pidx - hw_pidx; else delta = size - hw_pidx + pidx; if (is_t4(adap->params.chip)) val = PIDX_V(delta); else val = PIDX_T5_V(delta); wmb(); t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), QID_V(qid) | val); } out: return ret; } EXPORT_SYMBOL(cxgb4_sync_txq_pidx); void cxgb4_disable_db_coalescing(struct net_device *dev) { struct adapter *adap; adap = netdev2adap(dev); t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, NOCOALESCE_F); } EXPORT_SYMBOL(cxgb4_disable_db_coalescing); void cxgb4_enable_db_coalescing(struct net_device *dev) { struct adapter *adap; adap = netdev2adap(dev); t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, NOCOALESCE_F, 0); } EXPORT_SYMBOL(cxgb4_enable_db_coalescing); int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte) { struct adapter *adap; u32 offset, memtype, memaddr; u32 edc0_size, edc1_size, mc0_size, mc1_size, size; u32 edc0_end, edc1_end, mc0_end, mc1_end; int ret; adap = netdev2adap(dev); offset = ((stag >> 8) * 32) + adap->vres.stag.start; /* Figure out where the offset lands in the Memory Type/Address scheme. * This code assumes that the memory is laid out starting at offset 0 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have * MC0, and some have both MC0 and MC1. */ size = t4_read_reg(adap, MA_EDRAM0_BAR_A); edc0_size = EDRAM0_SIZE_G(size) << 20; size = t4_read_reg(adap, MA_EDRAM1_BAR_A); edc1_size = EDRAM1_SIZE_G(size) << 20; size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A); mc0_size = EXT_MEM0_SIZE_G(size) << 20; edc0_end = edc0_size; edc1_end = edc0_end + edc1_size; mc0_end = edc1_end + mc0_size; if (offset < edc0_end) { memtype = MEM_EDC0; memaddr = offset; } else if (offset < edc1_end) { memtype = MEM_EDC1; memaddr = offset - edc0_end; } else { if (offset < mc0_end) { memtype = MEM_MC0; memaddr = offset - edc1_end; } else if (is_t4(adap->params.chip)) { /* T4 only has a single memory channel */ goto err; } else { size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A); mc1_size = EXT_MEM1_SIZE_G(size) << 20; mc1_end = mc0_end + mc1_size; if (offset < mc1_end) { memtype = MEM_MC1; memaddr = offset - mc0_end; } else { /* offset beyond the end of any memory */ goto err; } } } spin_lock(&adap->win0_lock); ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ); spin_unlock(&adap->win0_lock); return ret; err: dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n", stag, offset); return -EINVAL; } EXPORT_SYMBOL(cxgb4_read_tpte); u64 cxgb4_read_sge_timestamp(struct net_device *dev) { u32 hi, lo; struct adapter *adap; adap = netdev2adap(dev); lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A); hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A)); return ((u64)hi << 32) | (u64)lo; } EXPORT_SYMBOL(cxgb4_read_sge_timestamp); int cxgb4_bar2_sge_qregs(struct net_device *dev, unsigned int qid, enum cxgb4_bar2_qtype qtype, u64 *pbar2_qoffset, unsigned int *pbar2_qid) { return t4_bar2_sge_qregs(netdev2adap(dev), qid, (qtype == CXGB4_BAR2_QTYPE_EGRESS ? T4_BAR2_QTYPE_EGRESS : T4_BAR2_QTYPE_INGRESS), pbar2_qoffset, pbar2_qid); } EXPORT_SYMBOL(cxgb4_bar2_sge_qregs); static struct pci_driver cxgb4_driver; static void check_neigh_update(struct neighbour *neigh) { const struct device *parent; const struct net_device *netdev = neigh->dev; if (netdev->priv_flags & IFF_802_1Q_VLAN) netdev = vlan_dev_real_dev(netdev); parent = netdev->dev.parent; if (parent && parent->driver == &cxgb4_driver.driver) t4_l2t_update(dev_get_drvdata(parent), neigh); } static int netevent_cb(struct notifier_block *nb, unsigned long event, void *data) { switch (event) { case NETEVENT_NEIGH_UPDATE: check_neigh_update(data); break; case NETEVENT_REDIRECT: default: break; } return 0; } static bool netevent_registered; static struct notifier_block cxgb4_netevent_nb = { .notifier_call = netevent_cb }; static void drain_db_fifo(struct adapter *adap, int usecs) { u32 v1, v2, lp_count, hp_count; do { v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A); v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A); if (is_t4(adap->params.chip)) { lp_count = LP_COUNT_G(v1); hp_count = HP_COUNT_G(v1); } else { lp_count = LP_COUNT_T5_G(v1); hp_count = HP_COUNT_T5_G(v2); } if (lp_count == 0 && hp_count == 0) break; set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(usecs_to_jiffies(usecs)); } while (1); } static void disable_txq_db(struct sge_txq *q) { unsigned long flags; spin_lock_irqsave(&q->db_lock, flags); q->db_disabled = 1; spin_unlock_irqrestore(&q->db_lock, flags); } static void enable_txq_db(struct adapter *adap, struct sge_txq *q) { spin_lock_irq(&q->db_lock); if (q->db_pidx_inc) { /* Make sure that all writes to the TX descriptors * are committed before we tell HW about them. */ wmb(); t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc)); q->db_pidx_inc = 0; } q->db_disabled = 0; spin_unlock_irq(&q->db_lock); } static void disable_dbs(struct adapter *adap) { int i; for_each_ethrxq(&adap->sge, i) disable_txq_db(&adap->sge.ethtxq[i].q); for_each_ofldrxq(&adap->sge, i) disable_txq_db(&adap->sge.ofldtxq[i].q); for_each_port(adap, i) disable_txq_db(&adap->sge.ctrlq[i].q); } static void enable_dbs(struct adapter *adap) { int i; for_each_ethrxq(&adap->sge, i) enable_txq_db(adap, &adap->sge.ethtxq[i].q); for_each_ofldrxq(&adap->sge, i) enable_txq_db(adap, &adap->sge.ofldtxq[i].q); for_each_port(adap, i) enable_txq_db(adap, &adap->sge.ctrlq[i].q); } static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd) { if (adap->uld_handle[CXGB4_ULD_RDMA]) ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA], cmd); } static void process_db_full(struct work_struct *work) { struct adapter *adap; adap = container_of(work, struct adapter, db_full_task); drain_db_fifo(adap, dbfifo_drain_delay); enable_dbs(adap); notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); t4_set_reg_field(adap, SGE_INT_ENABLE3_A, DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, DBFIFO_HP_INT_F | DBFIFO_LP_INT_F); } static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q) { u16 hw_pidx, hw_cidx; int ret; spin_lock_irq(&q->db_lock); ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx); if (ret) goto out; if (q->db_pidx != hw_pidx) { u16 delta; u32 val; if (q->db_pidx >= hw_pidx) delta = q->db_pidx - hw_pidx; else delta = q->size - hw_pidx + q->db_pidx; if (is_t4(adap->params.chip)) val = PIDX_V(delta); else val = PIDX_T5_V(delta); wmb(); t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), QID_V(q->cntxt_id) | val); } out: q->db_disabled = 0; q->db_pidx_inc = 0; spin_unlock_irq(&q->db_lock); if (ret) CH_WARN(adap, "DB drop recovery failed.\n"); } static void recover_all_queues(struct adapter *adap) { int i; for_each_ethrxq(&adap->sge, i) sync_txq_pidx(adap, &adap->sge.ethtxq[i].q); for_each_ofldrxq(&adap->sge, i) sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q); for_each_port(adap, i) sync_txq_pidx(adap, &adap->sge.ctrlq[i].q); } static void process_db_drop(struct work_struct *work) { struct adapter *adap; adap = container_of(work, struct adapter, db_drop_task); if (is_t4(adap->params.chip)) { drain_db_fifo(adap, dbfifo_drain_delay); notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP); drain_db_fifo(adap, dbfifo_drain_delay); recover_all_queues(adap); drain_db_fifo(adap, dbfifo_drain_delay); enable_dbs(adap); notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY); } else { u32 dropped_db = t4_read_reg(adap, 0x010ac); u16 qid = (dropped_db >> 15) & 0x1ffff; u16 pidx_inc = dropped_db & 0x1fff; u64 bar2_qoffset; unsigned int bar2_qid; int ret; ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS, &bar2_qoffset, &bar2_qid); if (ret) dev_err(adap->pdev_dev, "doorbell drop recovery: " "qid=%d, pidx_inc=%d\n", qid, pidx_inc); else writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid), adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL); /* Re-enable BAR2 WC */ t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15); } t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0); } void t4_db_full(struct adapter *adap) { if (is_t4(adap->params.chip)) { disable_dbs(adap); notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); t4_set_reg_field(adap, SGE_INT_ENABLE3_A, DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0); queue_work(adap->workq, &adap->db_full_task); } } void t4_db_dropped(struct adapter *adap) { if (is_t4(adap->params.chip)) { disable_dbs(adap); notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL); } queue_work(adap->workq, &adap->db_drop_task); } static void uld_attach(struct adapter *adap, unsigned int uld) { void *handle; struct cxgb4_lld_info lli; unsigned short i; lli.pdev = adap->pdev; lli.pf = adap->pf; lli.l2t = adap->l2t; lli.tids = &adap->tids; lli.ports = adap->port; lli.vr = &adap->vres; lli.mtus = adap->params.mtus; if (uld == CXGB4_ULD_RDMA) { lli.rxq_ids = adap->sge.rdma_rxq; lli.ciq_ids = adap->sge.rdma_ciq; lli.nrxq = adap->sge.rdmaqs; lli.nciq = adap->sge.rdmaciqs; } else if (uld == CXGB4_ULD_ISCSI) { lli.rxq_ids = adap->sge.ofld_rxq; lli.nrxq = adap->sge.ofldqsets; } lli.ntxq = adap->sge.ofldqsets; lli.nchan = adap->params.nports; lli.nports = adap->params.nports; lli.wr_cred = adap->params.ofldq_wr_cred; lli.adapter_type = adap->params.chip; lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A)); lli.cclk_ps = 1000000000 / adap->params.vpd.cclk; lli.udb_density = 1 << adap->params.sge.eq_qpp; lli.ucq_density = 1 << adap->params.sge.iq_qpp; lli.filt_mode = adap->params.tp.vlan_pri_map; /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */ for (i = 0; i < NCHAN; i++) lli.tx_modq[i] = i; lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A); lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A); lli.fw_vers = adap->params.fw_vers; lli.dbfifo_int_thresh = dbfifo_int_thresh; lli.sge_ingpadboundary = adap->sge.fl_align; lli.sge_egrstatuspagesize = adap->sge.stat_len; lli.sge_pktshift = adap->sge.pktshift; lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN; lli.max_ordird_qp = adap->params.max_ordird_qp; lli.max_ird_adapter = adap->params.max_ird_adapter; lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl; lli.nodeid = dev_to_node(adap->pdev_dev); handle = ulds[uld].add(&lli); if (IS_ERR(handle)) { dev_warn(adap->pdev_dev, "could not attach to the %s driver, error %ld\n", uld_str[uld], PTR_ERR(handle)); return; } adap->uld_handle[uld] = handle; if (!netevent_registered) { register_netevent_notifier(&cxgb4_netevent_nb); netevent_registered = true; } if (adap->flags & FULL_INIT_DONE) ulds[uld].state_change(handle, CXGB4_STATE_UP); } static void attach_ulds(struct adapter *adap) { unsigned int i; spin_lock(&adap_rcu_lock); list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list); spin_unlock(&adap_rcu_lock); mutex_lock(&uld_mutex); list_add_tail(&adap->list_node, &adapter_list); for (i = 0; i < CXGB4_ULD_MAX; i++) if (ulds[i].add) uld_attach(adap, i); mutex_unlock(&uld_mutex); } static void detach_ulds(struct adapter *adap) { unsigned int i; mutex_lock(&uld_mutex); list_del(&adap->list_node); for (i = 0; i < CXGB4_ULD_MAX; i++) if (adap->uld_handle[i]) { ulds[i].state_change(adap->uld_handle[i], CXGB4_STATE_DETACH); adap->uld_handle[i] = NULL; } if (netevent_registered && list_empty(&adapter_list)) { unregister_netevent_notifier(&cxgb4_netevent_nb); netevent_registered = false; } mutex_unlock(&uld_mutex); spin_lock(&adap_rcu_lock); list_del_rcu(&adap->rcu_node); spin_unlock(&adap_rcu_lock); } static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state) { unsigned int i; mutex_lock(&uld_mutex); for (i = 0; i < CXGB4_ULD_MAX; i++) if (adap->uld_handle[i]) ulds[i].state_change(adap->uld_handle[i], new_state); mutex_unlock(&uld_mutex); } /** * cxgb4_register_uld - register an upper-layer driver * @type: the ULD type * @p: the ULD methods * * Registers an upper-layer driver with this driver and notifies the ULD * about any presently available devices that support its type. Returns * %-EBUSY if a ULD of the same type is already registered. */ int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p) { int ret = 0; struct adapter *adap; if (type >= CXGB4_ULD_MAX) return -EINVAL; mutex_lock(&uld_mutex); if (ulds[type].add) { ret = -EBUSY; goto out; } ulds[type] = *p; list_for_each_entry(adap, &adapter_list, list_node) uld_attach(adap, type); out: mutex_unlock(&uld_mutex); return ret; } EXPORT_SYMBOL(cxgb4_register_uld); /** * cxgb4_unregister_uld - unregister an upper-layer driver * @type: the ULD type * * Unregisters an existing upper-layer driver. */ int cxgb4_unregister_uld(enum cxgb4_uld type) { struct adapter *adap; if (type >= CXGB4_ULD_MAX) return -EINVAL; mutex_lock(&uld_mutex); list_for_each_entry(adap, &adapter_list, list_node) adap->uld_handle[type] = NULL; ulds[type].add = NULL; mutex_unlock(&uld_mutex); return 0; } EXPORT_SYMBOL(cxgb4_unregister_uld); #if IS_ENABLED(CONFIG_IPV6) static int cxgb4_inet6addr_handler(struct notifier_block *this, unsigned long event, void *data) { struct inet6_ifaddr *ifa = data; struct net_device *event_dev = ifa->idev->dev; const struct device *parent = NULL; #if IS_ENABLED(CONFIG_BONDING) struct adapter *adap; #endif if (event_dev->priv_flags & IFF_802_1Q_VLAN) event_dev = vlan_dev_real_dev(event_dev); #if IS_ENABLED(CONFIG_BONDING) if (event_dev->flags & IFF_MASTER) { list_for_each_entry(adap, &adapter_list, list_node) { switch (event) { case NETDEV_UP: cxgb4_clip_get(adap->port[0], (const u32 *)ifa, 1); break; case NETDEV_DOWN: cxgb4_clip_release(adap->port[0], (const u32 *)ifa, 1); break; default: break; } } return NOTIFY_OK; } #endif if (event_dev) parent = event_dev->dev.parent; if (parent && parent->driver == &cxgb4_driver.driver) { switch (event) { case NETDEV_UP: cxgb4_clip_get(event_dev, (const u32 *)ifa, 1); break; case NETDEV_DOWN: cxgb4_clip_release(event_dev, (const u32 *)ifa, 1); break; default: break; } } return NOTIFY_OK; } static bool inet6addr_registered; static struct notifier_block cxgb4_inet6addr_notifier = { .notifier_call = cxgb4_inet6addr_handler }; static void update_clip(const struct adapter *adap) { int i; struct net_device *dev; int ret; rcu_read_lock(); for (i = 0; i < MAX_NPORTS; i++) { dev = adap->port[i]; ret = 0; if (dev) ret = cxgb4_update_root_dev_clip(dev); if (ret < 0) break; } rcu_read_unlock(); } #endif /* IS_ENABLED(CONFIG_IPV6) */ /** * cxgb_up - enable the adapter * @adap: adapter being enabled * * Called when the first port is enabled, this function performs the * actions necessary to make an adapter operational, such as completing * the initialization of HW modules, and enabling interrupts. * * Must be called with the rtnl lock held. */ static int cxgb_up(struct adapter *adap) { int err; err = setup_sge_queues(adap); if (err) goto out; err = setup_rss(adap); if (err) goto freeq; if (adap->flags & USING_MSIX) { name_msix_vecs(adap); err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0, adap->msix_info[0].desc, adap); if (err) goto irq_err; err = request_msix_queue_irqs(adap); if (err) { free_irq(adap->msix_info[0].vec, adap); goto irq_err; } } else { err = request_irq(adap->pdev->irq, t4_intr_handler(adap), (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, adap->port[0]->name, adap); if (err) goto irq_err; } enable_rx(adap); t4_sge_start(adap); t4_intr_enable(adap); adap->flags |= FULL_INIT_DONE; notify_ulds(adap, CXGB4_STATE_UP); #if IS_ENABLED(CONFIG_IPV6) update_clip(adap); #endif out: return err; irq_err: dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err); freeq: t4_free_sge_resources(adap); goto out; } static void cxgb_down(struct adapter *adapter) { cancel_work_sync(&adapter->tid_release_task); cancel_work_sync(&adapter->db_full_task); cancel_work_sync(&adapter->db_drop_task); adapter->tid_release_task_busy = false; adapter->tid_release_head = NULL; t4_sge_stop(adapter); t4_free_sge_resources(adapter); adapter->flags &= ~FULL_INIT_DONE; } /* * net_device operations */ static int cxgb_open(struct net_device *dev) { int err; struct port_info *pi = netdev_priv(dev); struct adapter *adapter = pi->adapter; netif_carrier_off(dev); if (!(adapter->flags & FULL_INIT_DONE)) { err = cxgb_up(adapter); if (err < 0) return err; } err = link_start(dev); if (!err) netif_tx_start_all_queues(dev); return err; } static int cxgb_close(struct net_device *dev) { struct port_info *pi = netdev_priv(dev); struct adapter *adapter = pi->adapter; netif_tx_stop_all_queues(dev); netif_carrier_off(dev); return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false); } /* Return an error number if the indicated filter isn't writable ... */ static int writable_filter(struct filter_entry *f) { if (f->locked) return -EPERM; if (f->pending) return -EBUSY; return 0; } /* Delete the filter at the specified index (if valid). The checks for all * the common problems with doing this like the filter being locked, currently * pending in another operation, etc. */ static int delete_filter(struct adapter *adapter, unsigned int fidx) { struct filter_entry *f; int ret; if (fidx >= adapter->tids.nftids + adapter->tids.nsftids) return -EINVAL; f = &adapter->tids.ftid_tab[fidx]; ret = writable_filter(f); if (ret) return ret; if (f->valid) return del_filter_wr(adapter, fidx); return 0; } int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid, __be32 sip, __be16 sport, __be16 vlan, unsigned int queue, unsigned char port, unsigned char mask) { int ret; struct filter_entry *f; struct adapter *adap; int i; u8 *val; adap = netdev2adap(dev); /* Adjust stid to correct filter index */ stid -= adap->tids.sftid_base; stid += adap->tids.nftids; /* Check to make sure the filter requested is writable ... */ f = &adap->tids.ftid_tab[stid]; ret = writable_filter(f); if (ret) return ret; /* Clear out any old resources being used by the filter before * we start constructing the new filter. */ if (f->valid) clear_filter(adap, f); /* Clear out filter specifications */ memset(&f->fs, 0, sizeof(struct ch_filter_specification)); f->fs.val.lport = cpu_to_be16(sport); f->fs.mask.lport = ~0; val = (u8 *)&sip; if ((val[0] | val[1] | val[2] | val[3]) != 0) { for (i = 0; i < 4; i++) { f->fs.val.lip[i] = val[i]; f->fs.mask.lip[i] = ~0; } if (adap->params.tp.vlan_pri_map & PORT_F) { f->fs.val.iport = port; f->fs.mask.iport = mask; } } if (adap->params.tp.vlan_pri_map & PROTOCOL_F) { f->fs.val.proto = IPPROTO_TCP; f->fs.mask.proto = ~0; } f->fs.dirsteer = 1; f->fs.iq = queue; /* Mark filter as locked */ f->locked = 1; f->fs.rpttid = 1; ret = set_filter_wr(adap, stid); if (ret) { clear_filter(adap, f); return ret; } return 0; } EXPORT_SYMBOL(cxgb4_create_server_filter); int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid, unsigned int queue, bool ipv6) { int ret; struct filter_entry *f; struct adapter *adap; adap = netdev2adap(dev); /* Adjust stid to correct filter index */ stid -= adap->tids.sftid_base; stid += adap->tids.nftids; f = &adap->tids.ftid_tab[stid]; /* Unlock the filter */ f->locked = 0; ret = delete_filter(adap, stid); if (ret) return ret; return 0; } EXPORT_SYMBOL(cxgb4_remove_server_filter); static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev, struct rtnl_link_stats64 *ns) { struct port_stats stats; struct port_info *p = netdev_priv(dev); struct adapter *adapter = p->adapter; /* Block retrieving statistics during EEH error * recovery. Otherwise, the recovery might fail * and the PCI device will be removed permanently */ spin_lock(&adapter->stats_lock); if (!netif_device_present(dev)) { spin_unlock(&adapter->stats_lock); return ns; } t4_get_port_stats(adapter, p->tx_chan, &stats); spin_unlock(&adapter->stats_lock); ns->tx_bytes = stats.tx_octets; ns->tx_packets = stats.tx_frames; ns->rx_bytes = stats.rx_octets; ns->rx_packets = stats.rx_frames; ns->multicast = stats.rx_mcast_frames; /* detailed rx_errors */ ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long + stats.rx_runt; ns->rx_over_errors = 0; ns->rx_crc_errors = stats.rx_fcs_err; ns->rx_frame_errors = stats.rx_symbol_err; ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 + stats.rx_ovflow2 + stats.rx_ovflow3 + stats.rx_trunc0 + stats.rx_trunc1 + stats.rx_trunc2 + stats.rx_trunc3; ns->rx_missed_errors = 0; /* detailed tx_errors */ ns->tx_aborted_errors = 0; ns->tx_carrier_errors = 0; ns->tx_fifo_errors = 0; ns->tx_heartbeat_errors = 0; ns->tx_window_errors = 0; ns->tx_errors = stats.tx_error_frames; ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err + ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors; return ns; } static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { unsigned int mbox; int ret = 0, prtad, devad; struct port_info *pi = netdev_priv(dev); struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data; switch (cmd) { case SIOCGMIIPHY: if (pi->mdio_addr < 0) return -EOPNOTSUPP; data->phy_id = pi->mdio_addr; break; case SIOCGMIIREG: case SIOCSMIIREG: if (mdio_phy_id_is_c45(data->phy_id)) { prtad = mdio_phy_id_prtad(data->phy_id); devad = mdio_phy_id_devad(data->phy_id); } else if (data->phy_id < 32) { prtad = data->phy_id; devad = 0; data->reg_num &= 0x1f; } else return -EINVAL; mbox = pi->adapter->pf; if (cmd == SIOCGMIIREG) ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad, data->reg_num, &data->val_out); else ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad, data->reg_num, data->val_in); break; default: return -EOPNOTSUPP; } return ret; } static void cxgb_set_rxmode(struct net_device *dev) { /* unfortunately we can't return errors to the stack */ set_rxmode(dev, -1, false); } static int cxgb_change_mtu(struct net_device *dev, int new_mtu) { int ret; struct port_info *pi = netdev_priv(dev); if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */ return -EINVAL; ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1, -1, -1, -1, true); if (!ret) dev->mtu = new_mtu; return ret; } static int cxgb_set_mac_addr(struct net_device *dev, void *p) { int ret; struct sockaddr *addr = p; struct port_info *pi = netdev_priv(dev); if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid, pi->xact_addr_filt, addr->sa_data, true, true); if (ret < 0) return ret; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); pi->xact_addr_filt = ret; return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void cxgb_netpoll(struct net_device *dev) { struct port_info *pi = netdev_priv(dev); struct adapter *adap = pi->adapter; if (adap->flags & USING_MSIX) { int i; struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset]; for (i = pi->nqsets; i; i--, rx++) t4_sge_intr_msix(0, &rx->rspq); } else t4_intr_handler(adap)(0, adap); } #endif static const struct net_device_ops cxgb4_netdev_ops = { .ndo_open = cxgb_open, .ndo_stop = cxgb_close, .ndo_start_xmit = t4_eth_xmit, .ndo_select_queue = cxgb_select_queue, .ndo_get_stats64 = cxgb_get_stats, .ndo_set_rx_mode = cxgb_set_rxmode, .ndo_set_mac_address = cxgb_set_mac_addr, .ndo_set_features = cxgb_set_features, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = cxgb_ioctl, .ndo_change_mtu = cxgb_change_mtu, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = cxgb_netpoll, #endif #ifdef CONFIG_CHELSIO_T4_FCOE .ndo_fcoe_enable = cxgb_fcoe_enable, .ndo_fcoe_disable = cxgb_fcoe_disable, #endif /* CONFIG_CHELSIO_T4_FCOE */ #ifdef CONFIG_NET_RX_BUSY_POLL .ndo_busy_poll = cxgb_busy_poll, #endif }; void t4_fatal_err(struct adapter *adap) { t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0); t4_intr_disable(adap); dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n"); } static void setup_memwin(struct adapter *adap) { u32 nic_win_base = t4_get_util_window(adap); t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC); } static void setup_memwin_rdma(struct adapter *adap) { if (adap->vres.ocq.size) { u32 start; unsigned int sz_kb; start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2); start &= PCI_BASE_ADDRESS_MEM_MASK; start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres); sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10; t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3), start | BIR_V(1) | WINDOW_V(ilog2(sz_kb))); t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3), adap->vres.ocq.start); t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3)); } } static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c) { u32 v; int ret; /* get device capabilities */ memset(c, 0, sizeof(*c)); c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); c->cfvalid_to_len16 = htonl(FW_LEN16(*c)); ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c); if (ret < 0) return ret; /* select capabilities we'll be using */ if (c->niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) { if (!vf_acls) c->niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM); else c->niccaps = htons(FW_CAPS_CONFIG_NIC_VM); } else if (vf_acls) { dev_err(adap->pdev_dev, "virtualization ACLs not supported"); return ret; } c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F); ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL); if (ret < 0) return ret; ret = t4_config_glbl_rss(adap, adap->pf, FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F | FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F); if (ret < 0) return ret; ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64, MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF, FW_CMD_CAP_PF); if (ret < 0) return ret; t4_sge_init(adap); /* tweak some settings */ t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849); t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12)); t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A); v = t4_read_reg(adap, TP_PIO_DATA_A); t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F); /* first 4 Tx modulation queues point to consecutive Tx channels */ adap->params.tp.tx_modq_map = 0xE4; t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A, TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map)); /* associate each Tx modulation queue with consecutive Tx channels */ v = 0x84218421; t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, &v, 1, TP_TX_SCHED_HDR_A); t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, &v, 1, TP_TX_SCHED_FIFO_A); t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, &v, 1, TP_TX_SCHED_PCMD_A); #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */ if (is_offload(adap)) { t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A, TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A, TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) | TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT)); } /* get basic stuff going */ return t4_early_init(adap, adap->pf); } /* * Max # of ATIDs. The absolute HW max is 16K but we keep it lower. */ #define MAX_ATIDS 8192U /* * Phase 0 of initialization: contact FW, obtain config, perform basic init. * * If the firmware we're dealing with has Configuration File support, then * we use that to perform all configuration */ /* * Tweak configuration based on module parameters, etc. Most of these have * defaults assigned to them by Firmware Configuration Files (if we're using * them) but need to be explicitly set if we're using hard-coded * initialization. But even in the case of using Firmware Configuration * Files, we'd like to expose the ability to change these via module * parameters so these are essentially common tweaks/settings for * Configuration Files and hard-coded initialization ... */ static int adap_init0_tweaks(struct adapter *adapter) { /* * Fix up various Host-Dependent Parameters like Page Size, Cache * Line Size, etc. The firmware default is for a 4KB Page Size and * 64B Cache Line Size ... */ t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES); /* * Process module parameters which affect early initialization. */ if (rx_dma_offset != 2 && rx_dma_offset != 0) { dev_err(&adapter->pdev->dev, "Ignoring illegal rx_dma_offset=%d, using 2\n", rx_dma_offset); rx_dma_offset = 2; } t4_set_reg_field(adapter, SGE_CONTROL_A, PKTSHIFT_V(PKTSHIFT_M), PKTSHIFT_V(rx_dma_offset)); /* * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux * adds the pseudo header itself. */ t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A, CSUM_HAS_PSEUDO_HDR_F, 0); return 0; } /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips * unto themselves and they contain their own firmware to perform their * tasks ... */ static int phy_aq1202_version(const u8 *phy_fw_data, size_t phy_fw_size) { int offset; /* At offset 0x8 you're looking for the primary image's * starting offset which is 3 Bytes wide * * At offset 0xa of the primary image, you look for the offset * of the DRAM segment which is 3 Bytes wide. * * The FW version is at offset 0x27e of the DRAM and is 2 Bytes * wide */ #define be16(__p) (((__p)[0] << 8) | (__p)[1]) #define le16(__p) ((__p)[0] | ((__p)[1] << 8)) #define le24(__p) (le16(__p) | ((__p)[2] << 16)) offset = le24(phy_fw_data + 0x8) << 12; offset = le24(phy_fw_data + offset + 0xa); return be16(phy_fw_data + offset + 0x27e); #undef be16 #undef le16 #undef le24 } static struct info_10gbt_phy_fw { unsigned int phy_fw_id; /* PCI Device ID */ char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */ int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size); int phy_flash; /* Has FLASH for PHY Firmware */ } phy_info_array[] = { { PHY_AQ1202_DEVICEID, PHY_AQ1202_FIRMWARE, phy_aq1202_version, 1, }, { PHY_BCM84834_DEVICEID, PHY_BCM84834_FIRMWARE, NULL, 0, }, { 0, NULL, NULL }, }; static struct info_10gbt_phy_fw *find_phy_info(int devid) { int i; for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) { if (phy_info_array[i].phy_fw_id == devid) return &phy_info_array[i]; } return NULL; } /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error * we return a negative error number. If we transfer new firmware we return 1 * (from t4_load_phy_fw()). If we don't do anything we return 0. */ static int adap_init0_phy(struct adapter *adap) { const struct firmware *phyf; int ret; struct info_10gbt_phy_fw *phy_info; /* Use the device ID to determine which PHY file to flash. */ phy_info = find_phy_info(adap->pdev->device); if (!phy_info) { dev_warn(adap->pdev_dev, "No PHY Firmware file found for this PHY\n"); return -EOPNOTSUPP; } /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then * use that. The adapter firmware provides us with a memory buffer * where we can load a PHY firmware file from the host if we want to * override the PHY firmware File in flash. */ ret = request_firmware_direct(&phyf, phy_info->phy_fw_file, adap->pdev_dev); if (ret < 0) { /* For adapters without FLASH attached to PHY for their * firmware, it's obviously a fatal error if we can't get the * firmware to the adapter. For adapters with PHY firmware * FLASH storage, it's worth a warning if we can't find the * PHY Firmware but we'll neuter the error ... */ dev_err(adap->pdev_dev, "unable to find PHY Firmware image " "/lib/firmware/%s, error %d\n", phy_info->phy_fw_file, -ret); if (phy_info->phy_flash) { int cur_phy_fw_ver = 0; t4_phy_fw_ver(adap, &cur_phy_fw_ver); dev_warn(adap->pdev_dev, "continuing with, on-adapter " "FLASH copy, version %#x\n", cur_phy_fw_ver); ret = 0; } return ret; } /* Load PHY Firmware onto adapter. */ ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock, phy_info->phy_fw_version, (u8 *)phyf->data, phyf->size); if (ret < 0) dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n", -ret); else if (ret > 0) { int new_phy_fw_ver = 0; if (phy_info->phy_fw_version) new_phy_fw_ver = phy_info->phy_fw_version(phyf->data, phyf->size); dev_info(adap->pdev_dev, "Successfully transferred PHY " "Firmware /lib/firmware/%s, version %#x\n", phy_info->phy_fw_file, new_phy_fw_ver); } release_firmware(phyf); return ret; } /* * Attempt to initialize the adapter via a Firmware Configuration File. */ static int adap_init0_config(struct adapter *adapter, int reset) { struct fw_caps_config_cmd caps_cmd; const struct firmware *cf; unsigned long mtype = 0, maddr = 0; u32 finiver, finicsum, cfcsum; int ret; int config_issued = 0; char *fw_config_file, fw_config_file_path[256]; char *config_name = NULL; /* * Reset device if necessary. */ if (reset) { ret = t4_fw_reset(adapter, adapter->mbox, PIORSTMODE_F | PIORST_F); if (ret < 0) goto bye; } /* If this is a 10Gb/s-BT adapter make sure the chip-external * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs * to be performed after any global adapter RESET above since some * PHYs only have local RAM copies of the PHY firmware. */ if (is_10gbt_device(adapter->pdev->device)) { ret = adap_init0_phy(adapter); if (ret < 0) goto bye; } /* * If we have a T4 configuration file under /lib/firmware/cxgb4/, * then use that. Otherwise, use the configuration file stored * in the adapter flash ... */ switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) { case CHELSIO_T4: fw_config_file = FW4_CFNAME; break; case CHELSIO_T5: fw_config_file = FW5_CFNAME; break; default: dev_err(adapter->pdev_dev, "Device %d is not supported\n", adapter->pdev->device); ret = -EINVAL; goto bye; } ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev); if (ret < 0) { config_name = "On FLASH"; mtype = FW_MEMTYPE_CF_FLASH; maddr = t4_flash_cfg_addr(adapter); } else { u32 params[7], val[7]; sprintf(fw_config_file_path, "/lib/firmware/%s", fw_config_file); config_name = fw_config_file_path; if (cf->size >= FLASH_CFG_MAX_SIZE) ret = -ENOMEM; else { params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 1, params, val); if (ret == 0) { /* * For t4_memory_rw() below addresses and * sizes have to be in terms of multiples of 4 * bytes. So, if the Configuration File isn't * a multiple of 4 bytes in length we'll have * to write that out separately since we can't * guarantee that the bytes following the * residual byte in the buffer returned by * request_firmware() are zeroed out ... */ size_t resid = cf->size & 0x3; size_t size = cf->size & ~0x3; __be32 *data = (__be32 *)cf->data; mtype = FW_PARAMS_PARAM_Y_G(val[0]); maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16; spin_lock(&adapter->win0_lock); ret = t4_memory_rw(adapter, 0, mtype, maddr, size, data, T4_MEMORY_WRITE); if (ret == 0 && resid != 0) { union { __be32 word; char buf[4]; } last; int i; last.word = data[size >> 2]; for (i = resid; i < 4; i++) last.buf[i] = 0; ret = t4_memory_rw(adapter, 0, mtype, maddr + size, 4, &last.word, T4_MEMORY_WRITE); } spin_unlock(&adapter->win0_lock); } } release_firmware(cf); if (ret) goto bye; } /* * Issue a Capability Configuration command to the firmware to get it * to parse the Configuration File. We don't use t4_fw_config_file() * because we want the ability to modify various features after we've * processed the configuration file ... */ memset(&caps_cmd, 0, sizeof(caps_cmd)); caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); caps_cmd.cfvalid_to_len16 = htonl(FW_CAPS_CONFIG_CMD_CFVALID_F | FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) | FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) | FW_LEN16(caps_cmd)); ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware * Configuration File in FLASH), our last gasp effort is to use the * Firmware Configuration File which is embedded in the firmware. A * very few early versions of the firmware didn't have one embedded * but we can ignore those. */ if (ret == -ENOENT) { memset(&caps_cmd, 0, sizeof(caps_cmd)); caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); config_name = "Firmware Default"; } config_issued = 1; if (ret < 0) goto bye; finiver = ntohl(caps_cmd.finiver); finicsum = ntohl(caps_cmd.finicsum); cfcsum = ntohl(caps_cmd.cfcsum); if (finicsum != cfcsum) dev_warn(adapter->pdev_dev, "Configuration File checksum "\ "mismatch: [fini] csum=%#x, computed csum=%#x\n", finicsum, cfcsum); /* * And now tell the firmware to use the configuration we just loaded. */ caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F); caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd), NULL); if (ret < 0) goto bye; /* * Tweak configuration based on system architecture, module * parameters, etc. */ ret = adap_init0_tweaks(adapter); if (ret < 0) goto bye; /* * And finally tell the firmware to initialize itself using the * parameters from the Configuration File. */ ret = t4_fw_initialize(adapter, adapter->mbox); if (ret < 0) goto bye; /* Emit Firmware Configuration File information and return * successfully. */ dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\ "Configuration File \"%s\", version %#x, computed checksum %#x\n", config_name, finiver, cfcsum); return 0; /* * Something bad happened. Return the error ... (If the "error" * is that there's no Configuration File on the adapter we don't * want to issue a warning since this is fairly common.) */ bye: if (config_issued && ret != -ENOENT) dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n", config_name, -ret); return ret; } static struct fw_info fw_info_array[] = { { .chip = CHELSIO_T4, .fs_name = FW4_CFNAME, .fw_mod_name = FW4_FNAME, .fw_hdr = { .chip = FW_HDR_CHIP_T4, .fw_ver = __cpu_to_be32(FW_VERSION(T4)), .intfver_nic = FW_INTFVER(T4, NIC), .intfver_vnic = FW_INTFVER(T4, VNIC), .intfver_ri = FW_INTFVER(T4, RI), .intfver_iscsi = FW_INTFVER(T4, ISCSI), .intfver_fcoe = FW_INTFVER(T4, FCOE), }, }, { .chip = CHELSIO_T5, .fs_name = FW5_CFNAME, .fw_mod_name = FW5_FNAME, .fw_hdr = { .chip = FW_HDR_CHIP_T5, .fw_ver = __cpu_to_be32(FW_VERSION(T5)), .intfver_nic = FW_INTFVER(T5, NIC), .intfver_vnic = FW_INTFVER(T5, VNIC), .intfver_ri = FW_INTFVER(T5, RI), .intfver_iscsi = FW_INTFVER(T5, ISCSI), .intfver_fcoe = FW_INTFVER(T5, FCOE), }, } }; static struct fw_info *find_fw_info(int chip) { int i; for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) { if (fw_info_array[i].chip == chip) return &fw_info_array[i]; } return NULL; } /* * Phase 0 of initialization: contact FW, obtain config, perform basic init. */ static int adap_init0(struct adapter *adap) { int ret; u32 v, port_vec; enum dev_state state; u32 params[7], val[7]; struct fw_caps_config_cmd caps_cmd; int reset = 1; /* Grab Firmware Device Log parameters as early as possible so we have * access to it for debugging, etc. */ ret = t4_init_devlog_params(adap); if (ret < 0) return ret; /* Contact FW, advertising Master capability */ ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state); if (ret < 0) { dev_err(adap->pdev_dev, "could not connect to FW, error %d\n", ret); return ret; } if (ret == adap->mbox) adap->flags |= MASTER_PF; /* * If we're the Master PF Driver and the device is uninitialized, * then let's consider upgrading the firmware ... (We always want * to check the firmware version number in order to A. get it for * later reporting and B. to warn if the currently loaded firmware * is excessively mismatched relative to the driver.) */ t4_get_fw_version(adap, &adap->params.fw_vers); t4_get_tp_version(adap, &adap->params.tp_vers); if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) { struct fw_info *fw_info; struct fw_hdr *card_fw; const struct firmware *fw; const u8 *fw_data = NULL; unsigned int fw_size = 0; /* This is the firmware whose headers the driver was compiled * against */ fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip)); if (fw_info == NULL) { dev_err(adap->pdev_dev, "unable to get firmware info for chip %d.\n", CHELSIO_CHIP_VERSION(adap->params.chip)); return -EINVAL; } /* allocate memory to read the header of the firmware on the * card */ card_fw = t4_alloc_mem(sizeof(*card_fw)); /* Get FW from from /lib/firmware/ */ ret = request_firmware(&fw, fw_info->fw_mod_name, adap->pdev_dev); if (ret < 0) { dev_err(adap->pdev_dev, "unable to load firmware image %s, error %d\n", fw_info->fw_mod_name, ret); } else { fw_data = fw->data; fw_size = fw->size; } /* upgrade FW logic */ ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw, state, &reset); /* Cleaning up */ release_firmware(fw); t4_free_mem(card_fw); if (ret < 0) goto bye; } /* * Grab VPD parameters. This should be done after we establish a * connection to the firmware since some of the VPD parameters * (notably the Core Clock frequency) are retrieved via requests to * the firmware. On the other hand, we need these fairly early on * so we do this right after getting ahold of the firmware. */ ret = get_vpd_params(adap, &adap->params.vpd); if (ret < 0) goto bye; /* * Find out what ports are available to us. Note that we need to do * this before calling adap_init0_no_config() since it needs nports * and portvec ... */ v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec); if (ret < 0) goto bye; adap->params.nports = hweight32(port_vec); adap->params.portvec = port_vec; /* If the firmware is initialized already, emit a simply note to that * effect. Otherwise, it's time to try initializing the adapter. */ if (state == DEV_STATE_INIT) { dev_info(adap->pdev_dev, "Coming up as %s: "\ "Adapter already initialized\n", adap->flags & MASTER_PF ? "MASTER" : "SLAVE"); } else { dev_info(adap->pdev_dev, "Coming up as MASTER: "\ "Initializing adapter\n"); /* Find out whether we're dealing with a version of the * firmware which has configuration file support. */ params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF)); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); /* If the firmware doesn't support Configuration Files, * return an error. */ if (ret < 0) { dev_err(adap->pdev_dev, "firmware doesn't support " "Firmware Configuration Files\n"); goto bye; } /* The firmware provides us with a memory buffer where we can * load a Configuration File from the host if we want to * override the Configuration File in flash. */ ret = adap_init0_config(adap, reset); if (ret == -ENOENT) { dev_err(adap->pdev_dev, "no Configuration File " "present on adapter.\n"); goto bye; } if (ret < 0) { dev_err(adap->pdev_dev, "could not initialize " "adapter, error %d\n", -ret); goto bye; } } /* Give the SGE code a chance to pull in anything that it needs ... * Note that this must be called after we retrieve our VPD parameters * in order to know how to convert core ticks to seconds, etc. */ ret = t4_sge_init(adap); if (ret < 0) goto bye; if (is_bypass_device(adap->pdev->device)) adap->params.bypass = 1; /* * Grab some of our basic fundamental operating parameters. */ #define FW_PARAM_DEV(param) \ (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \ FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param)) #define FW_PARAM_PFVF(param) \ FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \ FW_PARAMS_PARAM_Y_V(0) | \ FW_PARAMS_PARAM_Z_V(0) params[0] = FW_PARAM_PFVF(EQ_START); params[1] = FW_PARAM_PFVF(L2T_START); params[2] = FW_PARAM_PFVF(L2T_END); params[3] = FW_PARAM_PFVF(FILTER_START); params[4] = FW_PARAM_PFVF(FILTER_END); params[5] = FW_PARAM_PFVF(IQFLINT_START); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); if (ret < 0) goto bye; adap->sge.egr_start = val[0]; adap->l2t_start = val[1]; adap->l2t_end = val[2]; adap->tids.ftid_base = val[3]; adap->tids.nftids = val[4] - val[3] + 1; adap->sge.ingr_start = val[5]; /* qids (ingress/egress) returned from firmware can be anywhere * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END. * Hence driver needs to allocate memory for this range to * store the queue info. Get the highest IQFLINT/EQ index returned * in FW_EQ_*_CMD.alloc command. */ params[0] = FW_PARAM_PFVF(EQ_END); params[1] = FW_PARAM_PFVF(IQFLINT_END); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); if (ret < 0) goto bye; adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1; adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1; adap->sge.egr_map = kcalloc(adap->sge.egr_sz, sizeof(*adap->sge.egr_map), GFP_KERNEL); if (!adap->sge.egr_map) { ret = -ENOMEM; goto bye; } adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz, sizeof(*adap->sge.ingr_map), GFP_KERNEL); if (!adap->sge.ingr_map) { ret = -ENOMEM; goto bye; } /* Allocate the memory for the vaious egress queue bitmaps * ie starving_fl, txq_maperr and blocked_fl. */ adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL); if (!adap->sge.starving_fl) { ret = -ENOMEM; goto bye; } adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL); if (!adap->sge.txq_maperr) { ret = -ENOMEM; goto bye; } #ifdef CONFIG_DEBUG_FS adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz), sizeof(long), GFP_KERNEL); if (!adap->sge.blocked_fl) { ret = -ENOMEM; goto bye; } #endif params[0] = FW_PARAM_PFVF(CLIP_START); params[1] = FW_PARAM_PFVF(CLIP_END); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); if (ret < 0) goto bye; adap->clipt_start = val[0]; adap->clipt_end = val[1]; /* query params related to active filter region */ params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START); params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); /* If Active filter size is set we enable establishing * offload connection through firmware work request */ if ((val[0] != val[1]) && (ret >= 0)) { adap->flags |= FW_OFLD_CONN; adap->tids.aftid_base = val[0]; adap->tids.aftid_end = val[1]; } /* If we're running on newer firmware, let it know that we're * prepared to deal with encapsulated CPL messages. Older * firmware won't understand this and we'll just get * unencapsulated messages ... */ params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); val[0] = 1; (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val); /* * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL * capability. Earlier versions of the firmware didn't have the * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no * permission to use ULPTX MEMWRITE DSGL. */ if (is_t4(adap->params.chip)) { adap->params.ulptx_memwrite_dsgl = false; } else { params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val); adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0); } /* * Get device capabilities so we can determine what resources we need * to manage. */ memset(&caps_cmd, 0, sizeof(caps_cmd)); caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd)); ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd); if (ret < 0) goto bye; if (caps_cmd.ofldcaps) { /* query offload-related parameters */ params[0] = FW_PARAM_DEV(NTID); params[1] = FW_PARAM_PFVF(SERVER_START); params[2] = FW_PARAM_PFVF(SERVER_END); params[3] = FW_PARAM_PFVF(TDDP_START); params[4] = FW_PARAM_PFVF(TDDP_END); params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); if (ret < 0) goto bye; adap->tids.ntids = val[0]; adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS); adap->tids.stid_base = val[1]; adap->tids.nstids = val[2] - val[1] + 1; /* * Setup server filter region. Divide the available filter * region into two parts. Regular filters get 1/3rd and server * filters get 2/3rd part. This is only enabled if workarond * path is enabled. * 1. For regular filters. * 2. Server filter: This are special filters which are used * to redirect SYN packets to offload queue. */ if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) { adap->tids.sftid_base = adap->tids.ftid_base + DIV_ROUND_UP(adap->tids.nftids, 3); adap->tids.nsftids = adap->tids.nftids - DIV_ROUND_UP(adap->tids.nftids, 3); adap->tids.nftids = adap->tids.sftid_base - adap->tids.ftid_base; } adap->vres.ddp.start = val[3]; adap->vres.ddp.size = val[4] - val[3] + 1; adap->params.ofldq_wr_cred = val[5]; adap->params.offload = 1; } if (caps_cmd.rdmacaps) { params[0] = FW_PARAM_PFVF(STAG_START); params[1] = FW_PARAM_PFVF(STAG_END); params[2] = FW_PARAM_PFVF(RQ_START); params[3] = FW_PARAM_PFVF(RQ_END); params[4] = FW_PARAM_PFVF(PBL_START); params[5] = FW_PARAM_PFVF(PBL_END); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); if (ret < 0) goto bye; adap->vres.stag.start = val[0]; adap->vres.stag.size = val[1] - val[0] + 1; adap->vres.rq.start = val[2]; adap->vres.rq.size = val[3] - val[2] + 1; adap->vres.pbl.start = val[4]; adap->vres.pbl.size = val[5] - val[4] + 1; params[0] = FW_PARAM_PFVF(SQRQ_START); params[1] = FW_PARAM_PFVF(SQRQ_END); params[2] = FW_PARAM_PFVF(CQ_START); params[3] = FW_PARAM_PFVF(CQ_END); params[4] = FW_PARAM_PFVF(OCQ_START); params[5] = FW_PARAM_PFVF(OCQ_END); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val); if (ret < 0) goto bye; adap->vres.qp.start = val[0]; adap->vres.qp.size = val[1] - val[0] + 1; adap->vres.cq.start = val[2]; adap->vres.cq.size = val[3] - val[2] + 1; adap->vres.ocq.start = val[4]; adap->vres.ocq.size = val[5] - val[4] + 1; params[0] = FW_PARAM_DEV(MAXORDIRD_QP); params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); if (ret < 0) { adap->params.max_ordird_qp = 8; adap->params.max_ird_adapter = 32 * adap->tids.ntids; ret = 0; } else { adap->params.max_ordird_qp = val[0]; adap->params.max_ird_adapter = val[1]; } dev_info(adap->pdev_dev, "max_ordird_qp %d max_ird_adapter %d\n", adap->params.max_ordird_qp, adap->params.max_ird_adapter); } if (caps_cmd.iscsicaps) { params[0] = FW_PARAM_PFVF(ISCSI_START); params[1] = FW_PARAM_PFVF(ISCSI_END); ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val); if (ret < 0) goto bye; adap->vres.iscsi.start = val[0]; adap->vres.iscsi.size = val[1] - val[0] + 1; } #undef FW_PARAM_PFVF #undef FW_PARAM_DEV /* The MTU/MSS Table is initialized by now, so load their values. If * we're initializing the adapter, then we'll make any modifications * we want to the MTU/MSS Table and also initialize the congestion * parameters. */ t4_read_mtu_tbl(adap, adap->params.mtus, NULL); if (state != DEV_STATE_INIT) { int i; /* The default MTU Table contains values 1492 and 1500. * However, for TCP, it's better to have two values which are * a multiple of 8 +/- 4 bytes apart near this popular MTU. * This allows us to have a TCP Data Payload which is a * multiple of 8 regardless of what combination of TCP Options * are in use (always a multiple of 4 bytes) which is * important for performance reasons. For instance, if no * options are in use, then we have a 20-byte IP header and a * 20-byte TCP header. In this case, a 1500-byte MSS would * result in a TCP Data Payload of 1500 - 40 == 1460 bytes * which is not a multiple of 8. So using an MSS of 1488 in * this case results in a TCP Data Payload of 1448 bytes which * is a multiple of 8. On the other hand, if 12-byte TCP Time * Stamps have been negotiated, then an MTU of 1500 bytes * results in a TCP Data Payload of 1448 bytes which, as * above, is a multiple of 8 bytes ... */ for (i = 0; i < NMTUS; i++) if (adap->params.mtus[i] == 1492) { adap->params.mtus[i] = 1488; break; } t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, adap->params.b_wnd); } t4_init_sge_params(adap); t4_init_tp_params(adap); adap->flags |= FW_OK; return 0; /* * Something bad happened. If a command timed out or failed with EIO * FW does not operate within its spec or something catastrophic * happened to HW/FW, stop issuing commands. */ bye: kfree(adap->sge.egr_map); kfree(adap->sge.ingr_map); kfree(adap->sge.starving_fl); kfree(adap->sge.txq_maperr); #ifdef CONFIG_DEBUG_FS kfree(adap->sge.blocked_fl); #endif if (ret != -ETIMEDOUT && ret != -EIO) t4_fw_bye(adap, adap->mbox); return ret; } /* EEH callbacks */ static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev, pci_channel_state_t state) { int i; struct adapter *adap = pci_get_drvdata(pdev); if (!adap) goto out; rtnl_lock(); adap->flags &= ~FW_OK; notify_ulds(adap, CXGB4_STATE_START_RECOVERY); spin_lock(&adap->stats_lock); for_each_port(adap, i) { struct net_device *dev = adap->port[i]; netif_device_detach(dev); netif_carrier_off(dev); } spin_unlock(&adap->stats_lock); disable_interrupts(adap); if (adap->flags & FULL_INIT_DONE) cxgb_down(adap); rtnl_unlock(); if ((adap->flags & DEV_ENABLED)) { pci_disable_device(pdev); adap->flags &= ~DEV_ENABLED; } out: return state == pci_channel_io_perm_failure ? PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET; } static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev) { int i, ret; struct fw_caps_config_cmd c; struct adapter *adap = pci_get_drvdata(pdev); if (!adap) { pci_restore_state(pdev); pci_save_state(pdev); return PCI_ERS_RESULT_RECOVERED; } if (!(adap->flags & DEV_ENABLED)) { if (pci_enable_device(pdev)) { dev_err(&pdev->dev, "Cannot reenable PCI " "device after reset\n"); return PCI_ERS_RESULT_DISCONNECT; } adap->flags |= DEV_ENABLED; } pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); pci_cleanup_aer_uncorrect_error_status(pdev); if (t4_wait_dev_ready(adap->regs) < 0) return PCI_ERS_RESULT_DISCONNECT; if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0) return PCI_ERS_RESULT_DISCONNECT; adap->flags |= FW_OK; if (adap_init1(adap, &c)) return PCI_ERS_RESULT_DISCONNECT; for_each_port(adap, i) { struct port_info *p = adap2pinfo(adap, i); ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1, NULL, NULL); if (ret < 0) return PCI_ERS_RESULT_DISCONNECT; p->viid = ret; p->xact_addr_filt = -1; } t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd, adap->params.b_wnd); setup_memwin(adap); if (cxgb_up(adap)) return PCI_ERS_RESULT_DISCONNECT; return PCI_ERS_RESULT_RECOVERED; } static void eeh_resume(struct pci_dev *pdev) { int i; struct adapter *adap = pci_get_drvdata(pdev); if (!adap) return; rtnl_lock(); for_each_port(adap, i) { struct net_device *dev = adap->port[i]; if (netif_running(dev)) { link_start(dev); cxgb_set_rxmode(dev); } netif_device_attach(dev); } rtnl_unlock(); } static const struct pci_error_handlers cxgb4_eeh = { .error_detected = eeh_err_detected, .slot_reset = eeh_slot_reset, .resume = eeh_resume, }; static inline bool is_x_10g_port(const struct link_config *lc) { return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 || (lc->supported & FW_PORT_CAP_SPEED_40G) != 0; } static inline void init_rspq(struct adapter *adap, struct sge_rspq *q, unsigned int us, unsigned int cnt, unsigned int size, unsigned int iqe_size) { q->adap = adap; cxgb4_set_rspq_intr_params(q, us, cnt); q->iqe_len = iqe_size; q->size = size; } /* * Perform default configuration of DMA queues depending on the number and type * of ports we found and the number of available CPUs. Most settings can be * modified by the admin prior to actual use. */ static void cfg_queues(struct adapter *adap) { struct sge *s = &adap->sge; int i, n10g = 0, qidx = 0; #ifndef CONFIG_CHELSIO_T4_DCB int q10g = 0; #endif int ciq_size; for_each_port(adap, i) n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg); #ifdef CONFIG_CHELSIO_T4_DCB /* For Data Center Bridging support we need to be able to support up * to 8 Traffic Priorities; each of which will be assigned to its * own TX Queue in order to prevent Head-Of-Line Blocking. */ if (adap->params.nports * 8 > MAX_ETH_QSETS) { dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n", MAX_ETH_QSETS, adap->params.nports * 8); BUG_ON(1); } for_each_port(adap, i) { struct port_info *pi = adap2pinfo(adap, i); pi->first_qset = qidx; pi->nqsets = 8; qidx += pi->nqsets; } #else /* !CONFIG_CHELSIO_T4_DCB */ /* * We default to 1 queue per non-10G port and up to # of cores queues * per 10G port. */ if (n10g) q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g; if (q10g > netif_get_num_default_rss_queues()) q10g = netif_get_num_default_rss_queues(); for_each_port(adap, i) { struct port_info *pi = adap2pinfo(adap, i); pi->first_qset = qidx; pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1; qidx += pi->nqsets; } #endif /* !CONFIG_CHELSIO_T4_DCB */ s->ethqsets = qidx; s->max_ethqsets = qidx; /* MSI-X may lower it later */ if (is_offload(adap)) { /* * For offload we use 1 queue/channel if all ports are up to 1G, * otherwise we divide all available queues amongst the channels * capped by the number of available cores. */ if (n10g) { i = min_t(int, ARRAY_SIZE(s->ofldrxq), num_online_cpus()); s->ofldqsets = roundup(i, adap->params.nports); } else s->ofldqsets = adap->params.nports; /* For RDMA one Rx queue per channel suffices */ s->rdmaqs = adap->params.nports; /* Try and allow at least 1 CIQ per cpu rounding down * to the number of ports, with a minimum of 1 per port. * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port. * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port. * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port. */ s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus()); s->rdmaciqs = (s->rdmaciqs / adap->params.nports) * adap->params.nports; s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports); } for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) { struct sge_eth_rxq *r = &s->ethrxq[i]; init_rspq(adap, &r->rspq, 5, 10, 1024, 64); r->fl.size = 72; } for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++) s->ethtxq[i].q.size = 1024; for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) s->ctrlq[i].q.size = 512; for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) s->ofldtxq[i].q.size = 1024; for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) { struct sge_ofld_rxq *r = &s->ofldrxq[i]; init_rspq(adap, &r->rspq, 5, 1, 1024, 64); r->rspq.uld = CXGB4_ULD_ISCSI; r->fl.size = 72; } for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) { struct sge_ofld_rxq *r = &s->rdmarxq[i]; init_rspq(adap, &r->rspq, 5, 1, 511, 64); r->rspq.uld = CXGB4_ULD_RDMA; r->fl.size = 72; } ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids; if (ciq_size > SGE_MAX_IQ_SIZE) { CH_WARN(adap, "CIQ size too small for available IQs\n"); ciq_size = SGE_MAX_IQ_SIZE; } for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) { struct sge_ofld_rxq *r = &s->rdmaciq[i]; init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64); r->rspq.uld = CXGB4_ULD_RDMA; } init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64); init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64); } /* * Reduce the number of Ethernet queues across all ports to at most n. * n provides at least one queue per port. */ static void reduce_ethqs(struct adapter *adap, int n) { int i; struct port_info *pi; while (n < adap->sge.ethqsets) for_each_port(adap, i) { pi = adap2pinfo(adap, i); if (pi->nqsets > 1) { pi->nqsets--; adap->sge.ethqsets--; if (adap->sge.ethqsets <= n) break; } } n = 0; for_each_port(adap, i) { pi = adap2pinfo(adap, i); pi->first_qset = n; n += pi->nqsets; } } /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */ #define EXTRA_VECS 2 static int enable_msix(struct adapter *adap) { int ofld_need = 0; int i, want, need, allocated; struct sge *s = &adap->sge; unsigned int nchan = adap->params.nports; struct msix_entry *entries; entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1), GFP_KERNEL); if (!entries) return -ENOMEM; for (i = 0; i < MAX_INGQ + 1; ++i) entries[i].entry = i; want = s->max_ethqsets + EXTRA_VECS; if (is_offload(adap)) { want += s->rdmaqs + s->rdmaciqs + s->ofldqsets; /* need nchan for each possible ULD */ ofld_need = 3 * nchan; } #ifdef CONFIG_CHELSIO_T4_DCB /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for * each port. */ need = 8 * adap->params.nports + EXTRA_VECS + ofld_need; #else need = adap->params.nports + EXTRA_VECS + ofld_need; #endif allocated = pci_enable_msix_range(adap->pdev, entries, need, want); if (allocated < 0) { dev_info(adap->pdev_dev, "not enough MSI-X vectors left," " not using MSI-X\n"); kfree(entries); return allocated; } /* Distribute available vectors to the various queue groups. * Every group gets its minimum requirement and NIC gets top * priority for leftovers. */ i = allocated - EXTRA_VECS - ofld_need; if (i < s->max_ethqsets) { s->max_ethqsets = i; if (i < s->ethqsets) reduce_ethqs(adap, i); } if (is_offload(adap)) { if (allocated < want) { s->rdmaqs = nchan; s->rdmaciqs = nchan; } /* leftovers go to OFLD */ i = allocated - EXTRA_VECS - s->max_ethqsets - s->rdmaqs - s->rdmaciqs; s->ofldqsets = (i / nchan) * nchan; /* round down */ } for (i = 0; i < allocated; ++i) adap->msix_info[i].vec = entries[i].vector; kfree(entries); return 0; } #undef EXTRA_VECS static int init_rss(struct adapter *adap) { unsigned int i; int err; err = t4_init_rss_mode(adap, adap->mbox); if (err) return err; for_each_port(adap, i) { struct port_info *pi = adap2pinfo(adap, i); pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL); if (!pi->rss) return -ENOMEM; } return 0; } static void print_port_info(const struct net_device *dev) { char buf[80]; char *bufp = buf; const char *spd = ""; const struct port_info *pi = netdev_priv(dev); const struct adapter *adap = pi->adapter; if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB) spd = " 2.5 GT/s"; else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB) spd = " 5 GT/s"; else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB) spd = " 8 GT/s"; if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M) bufp += sprintf(bufp, "100/"); if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G) bufp += sprintf(bufp, "1000/"); if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G) bufp += sprintf(bufp, "10G/"); if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G) bufp += sprintf(bufp, "40G/"); if (bufp != buf) --bufp; sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type)); netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n", adap->params.vpd.id, CHELSIO_CHIP_RELEASE(adap->params.chip), buf, is_offload(adap) ? "R" : "", adap->params.pci.width, spd, (adap->flags & USING_MSIX) ? " MSI-X" : (adap->flags & USING_MSI) ? " MSI" : ""); netdev_info(dev, "S/N: %s, P/N: %s\n", adap->params.vpd.sn, adap->params.vpd.pn); } static void enable_pcie_relaxed_ordering(struct pci_dev *dev) { pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); } /* * Free the following resources: * - memory used for tables * - MSI/MSI-X * - net devices * - resources FW is holding for us */ static void free_some_resources(struct adapter *adapter) { unsigned int i; t4_free_mem(adapter->l2t); t4_free_mem(adapter->tids.tid_tab); kfree(adapter->sge.egr_map); kfree(adapter->sge.ingr_map); kfree(adapter->sge.starving_fl); kfree(adapter->sge.txq_maperr); #ifdef CONFIG_DEBUG_FS kfree(adapter->sge.blocked_fl); #endif disable_msi(adapter); for_each_port(adapter, i) if (adapter->port[i]) { kfree(adap2pinfo(adapter, i)->rss); free_netdev(adapter->port[i]); } if (adapter->flags & FW_OK) t4_fw_bye(adapter, adapter->pf); } #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) #define SEGMENT_SIZE 128 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int func, i, err, s_qpp, qpp, num_seg; struct port_info *pi; bool highdma = false; struct adapter *adapter = NULL; void __iomem *regs; printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); err = pci_request_regions(pdev, KBUILD_MODNAME); if (err) { /* Just info, some other driver may have claimed the device. */ dev_info(&pdev->dev, "cannot obtain PCI resources\n"); return err; } err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "cannot enable PCI device\n"); goto out_release_regions; } regs = pci_ioremap_bar(pdev, 0); if (!regs) { dev_err(&pdev->dev, "cannot map device registers\n"); err = -ENOMEM; goto out_disable_device; } err = t4_wait_dev_ready(regs); if (err < 0) goto out_unmap_bar0; /* We control everything through one PF */ func = SOURCEPF_G(readl(regs + PL_WHOAMI_A)); if (func != ent->driver_data) { iounmap(regs); pci_disable_device(pdev); pci_save_state(pdev); /* to restore SR-IOV later */ goto sriov; } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { highdma = true; err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (err) { dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " "coherent allocations\n"); goto out_unmap_bar0; } } else { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "no usable DMA configuration\n"); goto out_unmap_bar0; } } pci_enable_pcie_error_reporting(pdev); enable_pcie_relaxed_ordering(pdev); pci_set_master(pdev); pci_save_state(pdev); adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); if (!adapter) { err = -ENOMEM; goto out_unmap_bar0; } adapter->workq = create_singlethread_workqueue("cxgb4"); if (!adapter->workq) { err = -ENOMEM; goto out_free_adapter; } /* PCI device has been enabled */ adapter->flags |= DEV_ENABLED; adapter->regs = regs; adapter->pdev = pdev; adapter->pdev_dev = &pdev->dev; adapter->mbox = func; adapter->pf = func; adapter->msg_enable = dflt_msg_enable; memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map)); spin_lock_init(&adapter->stats_lock); spin_lock_init(&adapter->tid_release_lock); spin_lock_init(&adapter->win0_lock); INIT_WORK(&adapter->tid_release_task, process_tid_release_list); INIT_WORK(&adapter->db_full_task, process_db_full); INIT_WORK(&adapter->db_drop_task, process_db_drop); err = t4_prep_adapter(adapter); if (err) goto out_free_adapter; if (!is_t4(adapter->params.chip)) { s_qpp = (QUEUESPERPAGEPF0_S + (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf); qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp); num_seg = PAGE_SIZE / SEGMENT_SIZE; /* Each segment size is 128B. Write coalescing is enabled only * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the * queue is less no of segments that can be accommodated in * a page size. */ if (qpp > num_seg) { dev_err(&pdev->dev, "Incorrect number of egress queues per page\n"); err = -EINVAL; goto out_free_adapter; } adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); if (!adapter->bar2) { dev_err(&pdev->dev, "cannot map device bar2 region\n"); err = -ENOMEM; goto out_free_adapter; } } setup_memwin(adapter); err = adap_init0(adapter); #ifdef CONFIG_DEBUG_FS bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz); #endif setup_memwin_rdma(adapter); if (err) goto out_unmap_bar; for_each_port(adapter, i) { struct net_device *netdev; netdev = alloc_etherdev_mq(sizeof(struct port_info), MAX_ETH_QSETS); if (!netdev) { err = -ENOMEM; goto out_free_dev; } SET_NETDEV_DEV(netdev, &pdev->dev); adapter->port[i] = netdev; pi = netdev_priv(netdev); pi->adapter = adapter; pi->xact_addr_filt = -1; pi->port_id = i; netdev->irq = pdev->irq; netdev->hw_features = NETIF_F_SG | TSO_FLAGS | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; if (highdma) netdev->hw_features |= NETIF_F_HIGHDMA; netdev->features |= netdev->hw_features; netdev->vlan_features = netdev->features & VLAN_FEAT; netdev->priv_flags |= IFF_UNICAST_FLT; netdev->netdev_ops = &cxgb4_netdev_ops; #ifdef CONFIG_CHELSIO_T4_DCB netdev->dcbnl_ops = &cxgb4_dcb_ops; cxgb4_dcb_state_init(netdev); #endif cxgb4_set_ethtool_ops(netdev); } pci_set_drvdata(pdev, adapter); if (adapter->flags & FW_OK) { err = t4_port_init(adapter, func, func, 0); if (err) goto out_free_dev; } /* * Configure queues and allocate tables now, they can be needed as * soon as the first register_netdev completes. */ cfg_queues(adapter); adapter->l2t = t4_init_l2t(); if (!adapter->l2t) { /* We tolerate a lack of L2T, giving up some functionality */ dev_warn(&pdev->dev, "could not allocate L2T, continuing\n"); adapter->params.offload = 0; } #if IS_ENABLED(CONFIG_IPV6) adapter->clipt = t4_init_clip_tbl(adapter->clipt_start, adapter->clipt_end); if (!adapter->clipt) { /* We tolerate a lack of clip_table, giving up * some functionality */ dev_warn(&pdev->dev, "could not allocate Clip table, continuing\n"); adapter->params.offload = 0; } #endif if (is_offload(adapter) && tid_init(&adapter->tids) < 0) { dev_warn(&pdev->dev, "could not allocate TID table, " "continuing\n"); adapter->params.offload = 0; } /* See what interrupts we'll be using */ if (msi > 1 && enable_msix(adapter) == 0) adapter->flags |= USING_MSIX; else if (msi > 0 && pci_enable_msi(pdev) == 0) adapter->flags |= USING_MSI; err = init_rss(adapter); if (err) goto out_free_dev; /* * The card is now ready to go. If any errors occur during device * registration we do not fail the whole card but rather proceed only * with the ports we manage to register successfully. However we must * register at least one net device. */ for_each_port(adapter, i) { pi = adap2pinfo(adapter, i); netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets); netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets); err = register_netdev(adapter->port[i]); if (err) break; adapter->chan_map[pi->tx_chan] = i; print_port_info(adapter->port[i]); } if (i == 0) { dev_err(&pdev->dev, "could not register any net devices\n"); goto out_free_dev; } if (err) { dev_warn(&pdev->dev, "only %d net devices registered\n", i); err = 0; } if (cxgb4_debugfs_root) { adapter->debugfs_root = debugfs_create_dir(pci_name(pdev), cxgb4_debugfs_root); setup_debugfs(adapter); } /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ pdev->needs_freset = 1; if (is_offload(adapter)) attach_ulds(adapter); sriov: #ifdef CONFIG_PCI_IOV if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) if (pci_enable_sriov(pdev, num_vf[func]) == 0) dev_info(&pdev->dev, "instantiated %u virtual functions\n", num_vf[func]); #endif return 0; out_free_dev: free_some_resources(adapter); out_unmap_bar: if (!is_t4(adapter->params.chip)) iounmap(adapter->bar2); out_free_adapter: if (adapter->workq) destroy_workqueue(adapter->workq); kfree(adapter); out_unmap_bar0: iounmap(regs); out_disable_device: pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); out_release_regions: pci_release_regions(pdev); return err; } static void remove_one(struct pci_dev *pdev) { struct adapter *adapter = pci_get_drvdata(pdev); #ifdef CONFIG_PCI_IOV pci_disable_sriov(pdev); #endif if (adapter) { int i; /* Tear down per-adapter Work Queue first since it can contain * references to our adapter data structure. */ destroy_workqueue(adapter->workq); if (is_offload(adapter)) detach_ulds(adapter); disable_interrupts(adapter); for_each_port(adapter, i) if (adapter->port[i]->reg_state == NETREG_REGISTERED) unregister_netdev(adapter->port[i]); debugfs_remove_recursive(adapter->debugfs_root); /* If we allocated filters, free up state associated with any * valid filters ... */ if (adapter->tids.ftid_tab) { struct filter_entry *f = &adapter->tids.ftid_tab[0]; for (i = 0; i < (adapter->tids.nftids + adapter->tids.nsftids); i++, f++) if (f->valid) clear_filter(adapter, f); } if (adapter->flags & FULL_INIT_DONE) cxgb_down(adapter); free_some_resources(adapter); #if IS_ENABLED(CONFIG_IPV6) t4_cleanup_clip_tbl(adapter); #endif iounmap(adapter->regs); if (!is_t4(adapter->params.chip)) iounmap(adapter->bar2); pci_disable_pcie_error_reporting(pdev); if ((adapter->flags & DEV_ENABLED)) { pci_disable_device(pdev); adapter->flags &= ~DEV_ENABLED; } pci_release_regions(pdev); synchronize_rcu(); kfree(adapter); } else pci_release_regions(pdev); } static struct pci_driver cxgb4_driver = { .name = KBUILD_MODNAME, .id_table = cxgb4_pci_tbl, .probe = init_one, .remove = remove_one, .shutdown = remove_one, .err_handler = &cxgb4_eeh, }; static int __init cxgb4_init_module(void) { int ret; /* Debugfs support is optional, just warn if this fails */ cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL); if (!cxgb4_debugfs_root) pr_warn("could not create debugfs entry, continuing\n"); ret = pci_register_driver(&cxgb4_driver); if (ret < 0) debugfs_remove(cxgb4_debugfs_root); #if IS_ENABLED(CONFIG_IPV6) if (!inet6addr_registered) { register_inet6addr_notifier(&cxgb4_inet6addr_notifier); inet6addr_registered = true; } #endif return ret; } static void __exit cxgb4_cleanup_module(void) { #if IS_ENABLED(CONFIG_IPV6) if (inet6addr_registered) { unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier); inet6addr_registered = false; } #endif pci_unregister_driver(&cxgb4_driver); debugfs_remove(cxgb4_debugfs_root); /* NULL ok */ } module_init(cxgb4_init_module); module_exit(cxgb4_cleanup_module);